Next Article in Journal
Biological Activities of Cationicity-Enhanced and Hydrophobicity-Optimized Analogues of an Antimicrobial Peptide, Dermaseptin-PS3, from the Skin Secretion of Phyllomedusa sauvagii
Previous Article in Journal
Histopathological Evaluation of the Exposure by Cyanobacteria Cultive Containing [d-Leu1]Microcystin-LR on Lithobates catesbeianus Tadpoles
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Toxins 2018, 10(8), 319;

Distribution Analysis of Twelve Mycotoxins in Corn and Corn-Derived Products by LC-MS/MS to Evaluate the Carry-Over Ratio during Wet-Milling

Advanced Food Safety Research Group, BrainKorea21 Plus, Department of Food Science and Technology, Chung-Ang University, 4726, Seodong-daero, Anseong-si 17546, Gyeonggi-do, Korea
National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea
Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Korea
These authors contributed equally to this work.
Authors to whom correspondence should be addressed.
Received: 9 July 2018 / Revised: 27 July 2018 / Accepted: 1 August 2018 / Published: 6 August 2018
(This article belongs to the Section Mycotoxins)
Full-Text   |   PDF [1937 KB, uploaded 9 August 2018]   |  


This study investigated the distribution of twelve mycotoxins (aflatoxins B1, B2, G1, and G2; ochratoxin A; fumonisins B1 and B2; deoxynivalenol; nivalenol; zearalenone; T-2 toxin; and HT-2 toxin) in corn and corn by-products (corn bran, cornstarch, corn gluten, corn gluten feed, corn germ, light steep water, and corn steep liquor) produced by wet-milling in Korea. Fifty-two samples were collected from three factories producing cornstarch and other corn by-products. The samples were pretreated on an immunoaffinity column (IAC), and then the levels of the 12 mycotoxins were analyzed simultaneously by liquid chromatography-coupled triple-quadrupole mass spectrometry (LC-MS/MS). Fusarium mycotoxins were mainly found in raw corn and corn gluten feed samples. Other mycotoxins—such as aflatoxins, ochratoxin A, and HT-2 toxin—were detected in tiny amounts below the limit of quantification (LOQ) in cornstarch, corn germ, and corn bran. Ochratoxin A and nivalenol were mainly carried over into cornstarch. Aflatoxin B1, deoxynivalenol, T-2 toxin, HT-2 toxin, and the fumonisins were concentrated in corn gluten feed. Zearalenone was evenly distributed in all corn by-products except cornstarch during the milling process. View Full-Text
Keywords: corn; corn by-products; wet-milling; mycotoxin; LC-MS/MS analysis corn; corn by-products; wet-milling; mycotoxin; LC-MS/MS analysis

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Park, J.; Kim, D.-H.; Moon, J.-Y.; An, J.-A.; Kim, Y.-W.; Chung, S.-H.; Lee, C. Distribution Analysis of Twelve Mycotoxins in Corn and Corn-Derived Products by LC-MS/MS to Evaluate the Carry-Over Ratio during Wet-Milling. Toxins 2018, 10, 319.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Toxins EISSN 2072-6651 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top