Audio-Vestibular Evaluation of Pediatric Pseudo-Conductive Hearing Loss: Third Window Syndromes
Abstract
:1. Introduction
2. Etiological Factors of Pseudo-Conductive Hearing Loss in Children
2.1. Inner Ear Malformations Causing the Third Window Effect
2.2. Semicircular Canal Dehiscence
2.3. Perilymphatic Fistula
3. Clinical Characteristics of Third Window Syndromes
4. Pitfalls of Pediatric Audio-Vestibular Evaluation on Third Window Syndromes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fitzpatrick, E.M.; McCurdy, L.; Whittingham, J.; Rourke, R.; Nassrallah, F.; Grandpierre, V.; Momoli, F.; Bijelic, V. Hearing loss prevalence and hearing health among school-aged children in the Canadian Arctic. Int. J. Audiol. 2021, 60, 521–531. [Google Scholar] [CrossRef]
- Morse-Fortier, C.; Doney, E.; Fallon, K.; Remenschneider, A. Audiometric evaluation and diagnosis of conductive hearing loss. Oper. Tech. Otolaryngol. Neck Surg. 2024, 35, 11–17. [Google Scholar] [CrossRef]
- Ho, M.L. Third Window Lesions. Neuroimaging Clin. N. Am. 2019, 29, 57–92. [Google Scholar] [CrossRef] [PubMed]
- Merchant, S.N.; Rosowski, J.J. Conductive hearing loss caused by third-window lesions of the inner ear. Otol. Neurotol. 2008, 29, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Ratnayake, S.; Crunkhorn, R.; Iqbal, J.; Strachan, L.; Avula, S. Audiovestibular Quantification in Rare Third Window Disorders in Children. Front. Neurol. 2020, 11, 954. [Google Scholar] [CrossRef] [PubMed]
- Wackym, P.A.; Balaban, C.D.; Zhang, P.; Siker, D.A.; Hundal, J.S. Third Window Syndrome: Surgical Management of Cochlea-Facial Nerve Dehiscence. Front. Neurol. 2019, 10, 1281. [Google Scholar] [CrossRef]
- Scarpa, A.; Ralli, M.; Cassandro, C.; Gioacchini, F.M.; Greco, A.; di Stadio, A.; Cavaliere, M.; Troisi, D.; de Vincentiis, M.; Cassandro, E. Inner-Ear Disorders Presenting with Air-Bone Gaps: A Review. J. Int. Adv. Otol. 2020, 16, 111–116. [Google Scholar] [CrossRef]
- Sennaroğlu, L.; Bajin, M.D. Classification and Current Management of Inner Ear Malformations. Balk. Med J. 2017, 34, 397–411. [Google Scholar] [CrossRef]
- Karlberg, M.; Annertz, M.; Magnusson, M. Mondini-like malformation mimicking otosclerosis and superior semicircular canal dehiscence. J. Laryngol. Otol. 2006, 120, 419–422. [Google Scholar] [CrossRef]
- Sarioglu, F.C.; Pekcevik, Y.; Guleryuz, H.; Cetin, A.C.; Guneri, E.A. The Relationship between the Third Window Abnormalities and Inner Ear Malformations in Children with Hearing Loss. J. Int. Adv. Otol. 2021, 17, 387–392. [Google Scholar] [CrossRef]
- D’arco, F.; Kandemirli, S.G.; Dahmoush, H.M.; Alves, C.A.P.F.; Severino, M.; Dellepiane, F.; Robson, C.D.; Lequin, M.H.; Rossi-Espagnet, C.; O’brien, W.T.; et al. Incomplete partition type II in its various manifestations: Isolated, in association with EVA, syndromic, and beyond; a multicentre international study. Neuroradiology 2024, 66, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Sennaroglu, L. Another evidence for pressure transfer mechanism in incomplete partition two anomaly via enlarged vestibular aqueduct. Cochlea-Implant. Int. 2018, 19, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.F.; Wood, B.; Krishnaswamy, J.; Rajan, G.P. Incomplete cochlear partition type II variants as an indicator of congenital partial deafness: A first report. Otol. Neurotol. 2012, 33, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Sennaroglu, L.; Saatci, I. A new classification for cochleovestibular malformations. Laryngoscope 2002, 112, 2230–2241. [Google Scholar] [CrossRef]
- Forli, F.; Lazzerini, F.; Auletta, G.; Bruschini, L.; Berrettini, S. Enlarged vestibular aqueduct and Mondini Malformation: Audiological, clinical, radiologic and genetic features. Eur. Arch. Otorhinolaryngol. 2021, 278, 2305–2312. [Google Scholar] [CrossRef]
- Elmoursy, M.M. The incidence of enlarged vestibular aqueduct among hearing-impaired children: Hospital-based tertiary care referral center. Egypt. J. Otolaryngol. 2022, 38, 145. [Google Scholar] [CrossRef]
- Madden, C.; Halsted, M.; Benton, C.; Greinwald, J.; Choo, D. Enlarged vestibular aqueduct syndrome in the pediatric population. Otol. Neurotol. 2003, 24, 625–632. [Google Scholar] [CrossRef]
- Feraco, P.; Piccinini, S.; Gagliardo, C. Imaging of inner ear malformations: A primer for radiologists. Radiol. Med. 2021, 126, 1282–1295. [Google Scholar] [CrossRef]
- Boston, M.; Halsted, M.; Meinzen-Derr, J.; Bean, J.; Vijayasekaran, S.; Arjmand, E.; Choo, D.; Benton, C.; Greinwald, J. The large vestibular aqueduct: A new definition based on audiologic and computed tomography correlation. Otolaryngol. Neck Surg. 2007, 136, 972–977. [Google Scholar] [CrossRef]
- Hura, N.; Stewart, M.; Walsh, J. Progression of hearing loss and cochlear implantation in large vestibular aqueduct syndrome. Int. J. Pediatr. Otorhinolaryngol. 2020, 135, 110133. [Google Scholar] [CrossRef]
- Merchant, S.N.; Nakajima, H.H.; Halpin, C.; Nadol, J.J.B.; Lee, D.J.; Innis, W.P.; Curtin, H.; Rosowski, J.J. Clinical investigation and mechanism of air-bone gaps in large vestibular aqueduct syndrome. Ann. Otol. Rhinol. Laryngol. 2007, 116, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Minor, L.B.; Solomon, D.; Zinreich, J.S.; Zee, D.S. Sound-and/or pressure-induced vertigo due to bone dehiscence of the superior semicircular canal. Arch. Otolaryngol. Neck Surg. 1998, 124, 249–258. [Google Scholar] [CrossRef]
- Hagiwara, M.; Shaikh, J.A.; Fang, Y.; Fatterpekar, G.; Roehm, P.C. Prevalence of radiographic semicircular canal dehiscence in very young children: An evaluation using high-resolution computed tomography of the temporal bones. Pediatr. Radiol. 2012, 42, 1456–1464. [Google Scholar] [CrossRef] [PubMed]
- Meiklejohn, D.A.; Corrales, C.E.; Boldt, B.M.; Sharon, J.D.; Yeom, K.W.; Carey, J.P.; Blevins, N.H. Pediatric Semicircular Canal Dehiscence: Radiographic and Histologic Prevalence, With Clinical Correlation. Otol. Neurotol. 2015, 36, 1383–1389. [Google Scholar] [CrossRef]
- Saxby, A.J.; Gowdy, C.; Fandiño, M.; Chadha, N.K.; Kozak, F.K.; Sargent, M.A.; Lea, J. Radiological prevalence of superior and posterior semicircular canal dehiscence in children. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 411–418. [Google Scholar] [CrossRef]
- Chen, E.Y.; Paladin, A.; Phillips, G.; Raske, M.; Vega, L.; Peterson, D.; Sie, K.C. Semicircular canal dehiscence in the pediatric population. Int. J. Pediatr. Otorhinolaryngol. 2009, 73, 321–327. [Google Scholar] [CrossRef]
- Ertuğrul, G. Posterior Semicircular Canal Dehiscence and Auditory Neuropathy in a 22-month-old Male Baby. Turk. Klin. J. Case Rep. 2020, 28, 240–244. [Google Scholar] [CrossRef]
- Doerfer, K.W.; Hong, R.S. Etiology. In Third Mobile Window Syndrome of the Inner Ear: Superior Semicircular Canal Dehiscence and Associated Disorders; Springer: Berlin/Heidelberg, Germany, 2023; pp. 27–39. [Google Scholar]
- Hermann, M.; Coelho, D.H. Perilymph fistula presenting with contralateral symptoms. Otol. Neurotol. 2014, 35, 301–304. [Google Scholar] [CrossRef]
- Alzahrani, M.; Fadous, R.; Dufour, J.J.; Saliba, I. Perilymphatic fistulas: Can we predict the diagnosis? Eur. Arch. Otorhinolaryngol. 2015, 272, 1885–1891. [Google Scholar] [CrossRef]
- Morvan, J.B.; Cathelinaud, O.; Rivière, D.; Vatin, L.; Bousquet, F.; Verdalle, P. Diagnosis and treatment of post-traumatic perilymphatic fistula: Report of 16 cases. Rev. Laryngol.-Otol.-Rhinol. 2012, 133, 171–176. [Google Scholar]
- Valigorsky, P., III; Gianoli, G.J.; Fitzgerald, D. Perilymphatic fistula. In Third Mobile Window Syndrome of the Inner Ear: Superior Semicircular Canal Dehiscence and Associated Disorders; Springer Nature: Berlin/Heidelberg, Germany, 2023; pp. 155–171. [Google Scholar]
- Park, G.Y.; Byun, H.; Moon, I.J.; Hong, S.H.; Cho, Y.-S.; Chung, W.-H. Effects of early surgical exploration in suspected barotraumatic perilymph fistulas. Clin. Exp. Otorhinolaryngol. 2012, 5, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Crunkhorn, R.; Dasgupta, S.; Seal, A.K.; Dasgupta, S. Fifteen-minute consultation: The dizzy child. Arch. Dis. Child. Educ. Pract. Ed. 2021, 108, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Castellucci, A.; Brandolini, C.; Piras, G.; Modugno, G. Tympanometric findings in superior semicircular canal dehiscence syndrome. Acta Otorhinolaryngol. Ital. 2013, 33, 112–120. [Google Scholar] [PubMed]
- Lagman, C.; Ong, V.; Chung, L.K.; Elhajjmoussa, L.; Fong, C.; Wang, A.C.; Gopen, Q.; Yang, I. Pediatric superior semicircular canal dehiscence: Illustrative case and systematic review. J. Neurosurg. Pediatr. 2017, 20, 196–203. [Google Scholar] [CrossRef]
- Zhou, G.; Gopen, Q.; Poe, D.S. Clinical and diagnostic characterization of canal dehiscence syndrome: A great otologic mimicker. Otol. Neurotol. 2007, 28, 920–926. [Google Scholar] [CrossRef]
- Castellucci, A.; Piras, G.; del Vecchio, V.; Crocetta, F.M.; Maiolo, V.; Ferri, G.G.; Ghidini, A.; Brandolini, C. The effect of superior canal dehiscence size and location on audiometric measurements, vestibular-evoked myogenic potentials and video-head impulse testing. Eur. Arch. Otorhinolaryngol. 2021, 278, 997–1015. [Google Scholar] [CrossRef]
- Castellucci, A.; Martellucci, S.; Malara, P.; Botti, C.; del Vecchio, V.; Brandolini, C.; Ferri, G.G.; Ghidini, A.; Armato, E. Possible pathomechanisms accounting for both sound/pressure-induced eye movements and video head impulse test data in superior canal dehiscence. Acta Otolaryngol. 2021, 141, 749–753. [Google Scholar] [CrossRef]
- Dasgupta, S.; Ratnayake, S.A.B. Functional and Objective Audiovestibular Evaluation of Children with Apparent Semicircular Canal Dehiscence-A Case Series in a Pediatric Vestibular Center. Front. Neurol. 2019, 10, 306. [Google Scholar] [CrossRef]
- El-Danasoury, I.; El Sirafy, G.; Taha, H.; Hegazy, S. Vestibular evoked myogenic potentials (VEMPs) in young children: Test parameters and normative data. Egypt. J. Ear Nose Throat Allied Sci. 2015, 16, 81–85. [Google Scholar] [CrossRef]
- Manzari, L.; Burgess, A.M.; McGarvie, L.A.; Curthoys, I.S. An indicator of probable semicircular canal dehiscence: Ocular vestibular evoked myogenic potentials to high frequencies. Otolaryngol. Head Neck Surg. 2013, 149, 142–145. [Google Scholar] [CrossRef]
- Wiener-Vacher, S.R.; Campi, M.; Boizeau, P.; Thai-Van, H. Cervical vestibular evoked myogenic potentials in healthy children: Normative values for bone and air conduction. Front. Neurol. 2023, 14, 1157975. [Google Scholar] [CrossRef]
- Zalewski, C.K.; Chien, W.W.; King, K.A.; Muskett, J.A.; Baron, R.E.; Butman, J.A.; Griffith, A.J.; Brewer, C.C. Vestibular Dysfunction in Patients with Enlarged Vestibular Aqueduct. Otolaryngol. Neck Surg. 2015, 153, 257–262. [Google Scholar] [CrossRef]
- Ertugrul, G.; Sennaroglu, G.; Sennaroglu, L. Postural Control in Subjects with Incomplete Partition Inner Ear Malformations: A Comparison of Incomplete Partition Types. ORL J. Otorhinolaryngol. Relat. Spec. 2022, 84, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Bonnard, A.; Karltorp, E.; Verrecchia, L. Vestibular Loss in Children Affected by EVAS and IP2 Malformation and Operated with Cochlear Implant. Audiol. Res. 2023, 13, 130–142. [Google Scholar] [CrossRef]
- Hain, T. Mondini and Related Malformations of the Inner Ear. 2023. Available online: https://dizziness-and-balance.com/disorders/hearing/congenital/mondini.html (accessed on 16 February 2023).
- Benchetrit, L.; Jabbour, N.; Appachi, S.; Liu, Y.; Cohen, M.S.; Anne, S. Cochlear Implantation in Pediatric Patients with Enlarged Vestibular Aqueduct: A Systematic Review. Laryngoscope 2022, 132, 1459–1472. [Google Scholar] [CrossRef]
- Bluestone, C.D. Otitis media and congenital perilymphatic fistula as a cause of sensorineural hearing loss in children. Pediatr. Infect. Dis. J. 1988, 7 (Suppl. 11), S141–S145. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, J.R.; Shoshany, T.N.; Lipson, S.; Zhou, G. Peripheral Vestibular Disorders in Children and Adolescents with Concussion. Otolaryngol. Head Neck Surg. 2018, 159, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Parnes, L.S.; McCabe, B.F. Perilymph fistula: An important cause of deafness and dizziness in children. Pediatrics 1987, 80, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Maitland, C.G. Perilymphatic fistula. Curr. Neurol. Neurosci. Rep. 2001, 1, 486–491. [Google Scholar] [CrossRef]
- Sarna, B.; Abouzari, M.; Merna, C.; Jamshidi, S.; Saber, T.; Djalilian, H.R. Perilymphatic Fistula: A Review of Classification, Etiology, Diagnosis, and Treatment. Front. Neurol. 2020, 11, 1046. [Google Scholar] [CrossRef]
- Kim, J.S.; Son, S.E.; Kim, M.B.; Cho, Y.S.; Chung, W.H. Significance of pseudo-conductive hearing loss and positional nystagmus for perilymphatic fistula: Are they related to third-window effects? Clin. Exp. Otorhinolaryngol. 2021, 14, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Ward, B.K.; Carey, J.P.; Minor, L.B. Superior canal dehiscence syndrome: Lessons from the first 20 years. Front. Neurol. 2017, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Merchant, S.N.; Rosowski, J.J.; McKenna, M.J. Superior semcircualr canal dehiscence mimicking otosclerotic hearing loss. Adv. Otorhinolaryngol. 2007, 65, 137–145. [Google Scholar]
- Seo, Y.J.; Kwak, C.; Kim, S.; Park, Y.A.; Park, K.H.; Han, W. Update on Bone-Conduction Auditory Brainstem Responses: A Review. J. Audiol. Otol. 2018, 22, 53–58. [Google Scholar] [CrossRef] [PubMed]
Reference | Age Range (Year) | Number of Cases with TWSs | Etiology of TWSs | Audiological Tests | Audiological Findings | Vestibular Tests | Vestibular Findings |
---|---|---|---|---|---|---|---|
Dasgupta, et al. 2020 [5] | 5–17 | 8/8 | SCD, X linked, Multiple | Pure tone audiometry both AC and BC with masking (if necessary) Tympanometry Acoustic reflexes TEOAE | ABG at low frequency Normal tympanometry Mostly AR present Mostly TEOAE present | vHIT cVEMP at 500 Hz TB | Decreased VOR gain in the affected SSC and mostly saccades present Increased amplitude in the side of the lesion and usually decreased thresholds |
Dasgupta, et al. 2019 [40] | 5–17 | 13/580 | SCD | Pure tone audiometry Tympanometry Acoustic reflexes TEOAE | Mixed, conductive, or SNHL Normal impedancemetry Mostly AR Present Mostly TEOAE Present | vHIT VNG Rotatory chair Vesibulo-spinal tests | Decreased VOR gain and presence of saccades Mostly normal oculomotor function Majority of normal rotatory chair Majority of normal vestibulospinal test |
Kim, et al. 2021 [54] | 12–80 | 60/60 | PLF | Pure tone audiometry both AC and BC | The presence of ABG at low frequency in 45% of cases | Spontaneous nystagmus Positional test | The presence of spontaneous nystagmus in 35% of cases The presence of positional nystagmus in 92% of cases |
Bonnard, et al. 2023 [46] | 1–25 | 27 | EVA, IP-II | Not available | Not available | vHIT cVEMP at 500 Hz TB Caloric test iced water | SSC hypofunction on the non-implanted side in 13.6% of patients Vestibular loss in otolith function on the non-implanted side in 13.3% of patients Canal loss on the non-implanted side in 13.6% of patients |
Castellucci, et al. 2013 [35] | 8–80 | 45 | Unilateral SCD | Tympanometry Pure tone audiometry both AC and BC | An asymmetry between tympanometry peak compliance of the involved side Asymmetry ratio of compliance at the eardrum ≥ 14% in favor of the pathologic ear ABG > 20 dB nHL | Not available | Not available |
Castellucci, et al. 2013 [38] | 8–88 | 73 | SCD | Pure tone audiometry both AC and BC Tympanometry | Low-frequency ABG Both AC PTA and ABG associated with the SCD size Type A tympanogram Insufficient association between peak tympanometry compliance and SCD location and size | AC and BC cVEMP and oVEMP at 500 Hz TB vHIT | Both amplitudes and thresholds of cVEMPs and oVEMPs associated with the SCD size Lower VOR gain in dehiscence at arcuate eminence than ampullary arm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ertugrul, G.; Comert, A.; Aykul Yagcioglu, A. Audio-Vestibular Evaluation of Pediatric Pseudo-Conductive Hearing Loss: Third Window Syndromes. Audiol. Res. 2024, 14, 790-798. https://doi.org/10.3390/audiolres14050066
Ertugrul G, Comert A, Aykul Yagcioglu A. Audio-Vestibular Evaluation of Pediatric Pseudo-Conductive Hearing Loss: Third Window Syndromes. Audiology Research. 2024; 14(5):790-798. https://doi.org/10.3390/audiolres14050066
Chicago/Turabian StyleErtugrul, Gorkem, Aycan Comert, and Aysenur Aykul Yagcioglu. 2024. "Audio-Vestibular Evaluation of Pediatric Pseudo-Conductive Hearing Loss: Third Window Syndromes" Audiology Research 14, no. 5: 790-798. https://doi.org/10.3390/audiolres14050066
APA StyleErtugrul, G., Comert, A., & Aykul Yagcioglu, A. (2024). Audio-Vestibular Evaluation of Pediatric Pseudo-Conductive Hearing Loss: Third Window Syndromes. Audiology Research, 14(5), 790-798. https://doi.org/10.3390/audiolres14050066