Intracorporeal Cortical Telemetry as a Step to Automatic Closed-Loop EEG-Based CI Fitting: A Proof of Concept
Abstract
:1. Introduction
Aim of the Study
2. Materials and Methods
2.1. Increasing the Time Window: Principle of Multiple Interleaved Concatenation of NRT Blocks
2.2. ‘In Vitro’ Recordings: Verifying the Interleaved Concatenation Paradigm (‘MPx’)
2.3. ’In Vivo’ Recordings: Real-Time Stimulation and Simultaneous EEG Extra and Intracorporeal Recordings
3. Results
3.1. ‘In Vitro’ Recordings: Verifying the Interleaved Concatenation Paradigm (‘MPx’)
3.2. ‘In Vivo’ Recordings: Simultaneous Extra- and Intracorporeal Recording
4. Discussion
Limitations and Suggestions for Future Advances in CI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, C.J.; Hughes, M.L.; Luk, B.; Abbas, P.J.; Wolaver, A.; Gervais, J. The Relationship Between EAP and EABR Thresholds and Levels Used to Program the Nucleus 24 Speech Processor: Data from Adults. Ear Hear. 2000, 21, 151–163. [Google Scholar] [CrossRef]
- Gärtner, L.; Lenarz, T.; Joseph, G.; Büchner, A. Clinical use of a system for the automated recording and analysis of electrically evoked compound action potentials (ECAPs) in cochlear implant patients. Acta Otolaryngol. 2010, 130, 724–732. [Google Scholar] [CrossRef]
- Alvarez, I.; de la Torre, A.; Sainz, M.; Roldán, C.; Schoesser, H.; Spitzer, P. Using evoked compound action potentials to assess activation of electrodes and predict C-levels in the Tempo+ cochlear implant speech processor. Ear Hear. 2010, 31, 134–145. [Google Scholar] [CrossRef]
- Joly, C.A.; Péan, V.; Hermann, R.; Seldran, F.; Thai-Van, H.; Truy, E. Using Electrically-evoked Compound Action Potentials to Estimate Perceptive Levels in Experienced Adult Cochlear Implant Users. Otol Neurotol. 2017, 38, 1278–1289. [Google Scholar] [CrossRef]
- Kasper, A.; Pelizzone, M.; Montandon, P. Electrically evoked auditory brainstem responses in cochlear implant patients. ORL J. Otorhinolaryngol. Relat. Spec. 1992, 54, 285–294. [Google Scholar] [CrossRef]
- Saeedi, A.; Hemmert, W. Investigation of Electrically Evoked Auditory Brainstem Responses to Multi-Pulse Stimulation of High Frequency in Cochlear Implant Users. Front. Neurosci. 2020, 14, 615. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.L.; Arenberg, J.G.; Middlebrooks, J.C.; Pfingst, B.E. Cochlear implant thresholds: Comparison of middle latency responses with psychophysical and cortical-spike-activity thresholds. Hear. Res. 2001, 152, 55–66. [Google Scholar] [CrossRef]
- Firszt, J.B.; Chambers, R.D.; Kraus, N. Neurophysiology of cochlear implant users II: Comparison among speech perception, dynamic range, and physiological measures. Ear Hear. 2002, 23, 516–531. [Google Scholar] [CrossRef]
- Davids, T.; Valero, J.; Papsin, B.C.; Harrison, R.V.; Gordon, K.A. Effect of increasing duration of stimulation on the electrically evoked auditory brainstem and middle latency responses in pediatric cochlear implant users. J. Otolaryngol. Head Neck Surg. 2008, 37, 559–564. [Google Scholar]
- Kelly, A.S.; Purdy, S.C.; Thorne, P.R. Electrophysiological and speech perception measures of auditory processing in experienced adult cochlear implant users. Clin. Neurophysiol. 2005, 116, 1235–1246. [Google Scholar] [CrossRef]
- Visram, A.S.; Innes-Brown, H.; El-Deredy, W.; McKay, C.M. Cortical auditory evoked potentials as an objective measure of behavioral thresholds in cochlear implant users. Hear. Res. 2015, 327, 35–42. [Google Scholar] [CrossRef]
- Tavora-Vieira, D.; Wedekind, A.; Marino, R.; Purdy, S.C.; Rajan, G.P. Using aided cortical assessment as an objective tool to evaluate cochlear implant fitting in users with single-sided deafness. PLoS ONE 2018, 13, e0193081. [Google Scholar] [CrossRef] [Green Version]
- Friesen, L.M.; Tremblay, K.L. Acoustic change complexes recorded in adult cochlear implant listeners. Ear Hear. 2006, 27, 678–685. [Google Scholar] [CrossRef]
- Martin, B.A. Can the acoustic change complex be recorded in an individual with a cochlear implant? Separating neural responses from cochlear implant artifact. J. Am. Acad. Audiol. 2007, 18, 126–140. [Google Scholar] [CrossRef]
- Hoppe, U.; Wohlberedt, T.; Danilkina, G.; Hessel, H. Acoustic change complex in cochlear implant subjects in comparison with psychoacoustic measures. Cochlear Implants Int. 2010, 11 (Suppl. 1), 426–430. [Google Scholar] [CrossRef]
- Kim, J.R. Acoustic Change Complex: Clinical Implications. J. Audiol. Otol. 2015, 19, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Ponton, C.W.; Don, M. The mismatch negativity in cochlear implant users. Ear Hear. 1995, 16, 131–146. [Google Scholar] [CrossRef]
- Lopez-Valdes, A.; Mc Laughlin, M.; Viani, L.; Walshe, P.; Smith, J.; Zeng, F.G.; Reilly, R.B. Auditory mismatch negativity in cochlear implant users: A window to spectral discrimination. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2013, 2013, 3555–3558. [Google Scholar] [CrossRef]
- Rahne, T.; Plontke, S.K.; Wagner, L. Mismatch negativity (MMN) objectively reflects timbre discrimination thresholds in normal-hearing listeners and cochlear implant users. Brain Res. 2014, 1586, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Abrahamse, R.; Beynon, A.; Piai, V. Long-term auditory processing outcomes in early implanted young adults with cochlear implants: The mismatch negativity vs. P300 response. Clin. Neurophysiol. 2021, 132, 258–268. [Google Scholar] [CrossRef]
- Beynon, A.J.; Snik, A.F.M.; van den Broek, P. Evaluation of cochlear implant benefit with auditory cortical evoked potentials. Int. J. Audiol. 2002, 41, 429–435. [Google Scholar] [CrossRef]
- Beynon, A.J.; Snik, A.F.M. Use of the event-related P300 potential in cochlear implant subjects for the study of strategy-dependent speech processing. Int. J. Audiol. 2004, 43, S44–S47. [Google Scholar]
- Martin, B.A.; Tremblay, K.L.; Korczak, P. Speech evoked potentials: From the laboratory to the clinic. Ear Hear. 2008, 29, 285–313. [Google Scholar] [CrossRef]
- Henkin, Y.; Tetin-Schneider, S.; Hildesheimer, M.; Kishon-Rabin, L. Cortical neural activity underlying speech perception in postlingual adult cochlear implant recipients. Audiol. Neurootol. 2009, 14, 39–53. [Google Scholar] [CrossRef]
- Finke, M.; Billinger, M.; Büchner, A. Toward Automated Cochlear Implant Fitting Procedures Based on Event-Related Potentials. Ear Hear. 2017, 38, e118–e127. [Google Scholar] [CrossRef]
- Jacquemin, L.; Mertens, G.; Schlee, W.; Van de Heyning, P.; Gilles, A. Literature overview on P3 measurement as an objective measure of auditory performance in post-lingually deaf adults with a cochlear implant. Int. J. Audiol. 2019, 58, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Berger, H. Über das Elektroenkephalogramm des Menschen. Arch. Psychiatr. Nervenkrankh. 1929, 87, 53. [Google Scholar] [CrossRef]
- Price, C.N.; Moncrieff, D. Defining the Role of Attention in Hierarchical Auditory Processing. Audiol. Res. 2021, 11, 112–128. [Google Scholar] [CrossRef]
- Dillier, N.; Lai, W.K.; Almqvist, B.; Frohne, C.; Müller-Deile, J.; Stecker, M.; von Wallenberg, E. Measurement of the electrically evoked compound action potential via a neural response telemetry system. Ann. Otol. Rhinol. Laryngol. 2002, 111, 407–414. [Google Scholar] [CrossRef]
- Miller, C.A.; Abbas, P.J.; Brown, C.J. An improved method of reducing stimulus artifact in the electrically evoked whole-nerve potential. Ear Hear. 2000, 21, 280–290. [Google Scholar] [CrossRef]
- Franck, K.H.; Norton, S.J. Estimation of psychophysical levels using the electrically evoked compound action potential measured with the neural response telemetry capabilities of Cochlear Corporation’s CI24M device. Ear Hear. 2001, 22, 289–299. [Google Scholar] [CrossRef]
- Cafarelli Dees, D.; Dillier, N.; Lai, W.K.; von Wallenberg, E.; van Dijk, B.; Akdas, F.; Aksit, M.; Batman, C.; Beynon, A.; Burdo, S.; et al. Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the Nucleus CI24M cochlear implant system. Audiol. Neurootol. 2005, 10, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Beynon, A.J.; Luijten, B.M. Feasibility of measuring EPs using extracochlear monopolar electrodes of the Nucleus Freedom implant. In Proceedings of the 5th International Symposium on Objective Measures in Cochlear and Brainstem Implants, Varese, Italy, 9–12 May 2007; p. 9. [Google Scholar]
- Nuwer, M.R.; Comi, G.; Emerson, R.; Fuglsang-Frederiksen, A.; Guerit, J.M.; Hinrichs, H.; Ikeda, A.; Luccas, F.J.C.; Rappelsburger, P. IFCN standards for digital recording of clinical EEG. Electroen. Clin. Neurosci. 1998, 106, 259–261. [Google Scholar] [CrossRef]
- Beynon, A.J. Testing patients with cochlear and brainstem implants. In Basic Concepts of Clinical Electrophysiology in Audiology, 1st ed.; Durrant, J.D., Fowler, C.G., Ferraro, J.A., Purdy, S.C., Eds.; Plural Publ. Inc.: San Diego, CA, USA, 2021; pp. 400–412. [Google Scholar]
- Mc Laughlin, M.; Lu, T.; Dimitrijevic, A.; Zeng, F.G. Towards a Closed-Loop Cochlear Implant System: Application of Embedded Monitoring of Peripheral and Central Neural Activity. IEEE Trans. Neural Syst. Rehabil. 2012, 20, 443–454. [Google Scholar] [CrossRef]
- Somers, B.; Long, C.J.; Francart, T. EEG-based diagnostics of the auditory system using cochlear implant electrodes as sensors. Sci. Rep. 2021, 11, 5383. [Google Scholar] [CrossRef]
- Heasman, J.M.; Prado-Guiterrez, P.; Fewster, L.; McKay, C.M.; Shepherd, R.K. Measurement of the electrically evoked auditory brainstem and cortical responses using the Nucleus Freedom cochlear implant. In Proceedings of the Conference on Implantable Auditory Prostheses, Pacific Grove, CA, USA, 4 August 2005; p. 204. [Google Scholar]
- Beynon Andy, J.; Luijten, B.M.; Snik Ad, F.M. Intracorporeal recordings of slow vertex potentials: The cochlear implant used as an EEG system. In Proceedings of the XXIth Biennial Symposium of the International Evoked Response Audiometry Study Group (IERASG), Rio de Janeiro, Brazil, 8–11 June 2009; p. 46. [Google Scholar]
- Theodore, W.H.; Fisher, R. Brain stimulation for epilepsy. Acta Neurochir. Suppl. 2007, 97, 261–272. [Google Scholar] [CrossRef]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, J.D.; et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef]
- Truy, E.; Ionescu, E.; Ceruse, P.; Gallego, S. The binaural digisonic cochlear implant: Surgical technique. Otol. Neurotol. 2002, 23, 704–709. [Google Scholar] [CrossRef]
- Chen, H.; Koubeissi, M.Z. Electroencephalography in Epilepsy Evaluation. Continuum 2019, 25, 431–453. [Google Scholar] [CrossRef]
- Micheli, C.; Schepers, I.M.; Ozker, M.; Yoshor, D.; Beauchamp, M.S.; Rieger, J.W. Electrocorticography reveals continuous auditory and visual speech tracking in temporal and occipital cortex. Eur. J. Neurosci. 2020, 51, 1364–1376. [Google Scholar] [CrossRef]
- Lightfoot, G. Summary of the N1-P2 Cortical Auditory Evoked Potential to Estimate the Auditory Threshold in Adults. Semin. Hear. 2016, 37, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Verschueren, E.; Somers, B.; Francart, T. Neural envelope tracking as a measure of speech understanding in cochlear implant users. Hear. Res. 2019, 373, 23–31. [Google Scholar] [CrossRef]
- Iotzov, I.; Parra, L.C. EEG can predict speech intelligibility. J. Neural. Eng. 2019, 16, 036008. [Google Scholar] [CrossRef] [Green Version]
- Decruy, L.; Vanthornhout, J.; Francart, T. Hearing impairment is associated with enhanced neural tracking of the speech envelope. Hear. Res. 2020, 393, 107961. [Google Scholar] [CrossRef]
- Hoppe, U.; Weiss, S.; Stewart, R.W.; Eysholdt, U. An automatic sequential recognition method for cortical auditory evoked potentials. IEEE Trans. Biomed. Eng. 2001, 48, 154–164. [Google Scholar] [CrossRef]
Subject | N1 Latency [ms] | P2 Latency [ms] | P-P Amplitude N1P2 [uV] | |||
---|---|---|---|---|---|---|
EEG | ICT | EEG | ICT | EEG | ICT | |
#1 | 92 | 80 | 217 | 189 | 10.9 | 9.8 |
#2 | 93 | 90 | 184 | 202 | 9.3 | 7.7 |
#3 | 81 | 110 | 189 | 194 | 11.5 | 7.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beynon, A.J.; Luijten, B.M.; Mylanus, E.A.M. Intracorporeal Cortical Telemetry as a Step to Automatic Closed-Loop EEG-Based CI Fitting: A Proof of Concept. Audiol. Res. 2021, 11, 691-705. https://doi.org/10.3390/audiolres11040062
Beynon AJ, Luijten BM, Mylanus EAM. Intracorporeal Cortical Telemetry as a Step to Automatic Closed-Loop EEG-Based CI Fitting: A Proof of Concept. Audiology Research. 2021; 11(4):691-705. https://doi.org/10.3390/audiolres11040062
Chicago/Turabian StyleBeynon, Andy J., Bart M. Luijten, and Emmanuel A. M. Mylanus. 2021. "Intracorporeal Cortical Telemetry as a Step to Automatic Closed-Loop EEG-Based CI Fitting: A Proof of Concept" Audiology Research 11, no. 4: 691-705. https://doi.org/10.3390/audiolres11040062
APA StyleBeynon, A. J., Luijten, B. M., & Mylanus, E. A. M. (2021). Intracorporeal Cortical Telemetry as a Step to Automatic Closed-Loop EEG-Based CI Fitting: A Proof of Concept. Audiology Research, 11(4), 691-705. https://doi.org/10.3390/audiolres11040062