Retrospective Study 2019–2021 of Antimicrobial Resistance in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis in Mexicali, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Bacterial Identification and Antimicrobial Susceptibility Testing
2.3. Statistical Analysis
3. Results
3.1. Antimicrobial Resistance Profile by Infection Site
- Urinary Tract Infections (UTIs)
- Lower Respiratory Tract Infections (LRTIs)
- Soft Tissue Infections
- Bloodstream Infections
3.2. Carbapenem Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okeke, I.N.; de Kraker, M.E.A.; Van Boeckel, T.P.; Kumar, C.K.; Schmitt, H.; Gales, A.C.; Bertagnolio, S.; Sharland, M.; Laxminarayan, R. The Scope of the Antimicrobial Resistance Challenge. Lancet 2024, 403, 2426–2438. [Google Scholar] [CrossRef] [PubMed]
- Gharavi, M.J.; Zarei, J.; Roshani-Asl, P.; Yazdanyar, Z.; Sharif, M.; Rashidi, N. Comprehensive Study of Antimicrobial Susceptibility Pattern and Extended Spectrum Beta-Lactamase (ESBL) Prevalence in Bacteria Isolated from Urine Samples. Sci. Rep. 2021, 11, 578. [Google Scholar] [CrossRef] [PubMed]
- Garza-González, E.; Franco-Cendejas, R.; Morfín-Otero, R.; Echaniz-Aviles, G.; Rojas-Larios, F.; Bocanegra-Ibarias, P.; Flores-Treviño, S.; Ponce-De-León, A.; Rodríguez-Noriega, E.; Alavez-Ramírez, N.; et al. The Evolution of Antimicrobial Resistance in Mexico During the Last Decade: Results from the INVIFAR Group. Microb. Drug Resist. 2020, 26, 1372–1382. [Google Scholar] [CrossRef]
- López-Jácome, L.E.; Fernández-Rodríguez, D.; Franco-Cendejas, R.; Camacho-Ortiz, A.; Morfin-Otero, M.D.R.; Rodríguez-Noriega, E.; Ponce-De-León, A.; Ortiz-Brizuela, E.; Rojas-Larios, F.; Velázquez-Acosta, M.D.C.; et al. Increment Antimicrobial Resistance during the COVID-19 Pandemic: Results from the Invifar Network. Microb. Drug Resist. 2022, 28, 338–345. [Google Scholar] [CrossRef]
- Chaaban, T.; Ezzeddine, Z.; Ghssein, G. Antibiotic Misuse during the COVID-19 Pandemic in Lebanon: A Cross-Sectional Study. COVID 2024, 4, 921–929. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic Prescribing in Patients with COVID-19: Rapid Review and Meta-Analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Parra, J.; Muiño-Miguez, A.; Bendala-Estrada, A.D.; Ramos-Martínez, A.; Muñez-Rubio, E.; Carracedo, E.F.; Montes, J.T.; Rubio-Rivas, M.; Arnalich-Fernandez, F.; Pérez, J.L.B.; et al. Inappropriate Antibiotic Use in the COVID-19 Era: Factors Associated with Inappropriate Prescribing and Secondary Complications. Analysis of the Registry SEMI-COVID. PLoS ONE 2021, 16, e0251340. [Google Scholar] [CrossRef]
- Palusiak, A. Proteus mirabilis and Klebsiella pneumoniae as Pathogens Capable of Causing Co-Infections and Exhibiting Similarities in Their Virulence Factors. Front. Cell. Infect. Microbiol. 2022, 12, 991657. [Google Scholar] [CrossRef]
- Sokhn, E.S.; Salami, A.; El Roz, A.; Salloum, L.; Bahmad, H.F.; Ghssein, G. Antimicrobial Susceptibilities and Laboratory Profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates as Agents of Urinary Tract Infection in Lebanon: Paving the Way for Better Diagnostics. Med. Sci. 2020, 8, 32. [Google Scholar] [CrossRef]
- Vance, M.K.; Cretella, D.A.; Ward, L.M.; Vijayvargiya, P.; Garrigos, Z.E.; Wingler, M.J.B. Risk Factors for Bloodstream Infections Due to ESBL-Producing Escherichia coli, Klebsiella Spp., and Proteus mirabilis. Pharmacy 2023, 11, 74. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Macesic, N.; Uhlemann, A.C.; Peleg, A.Y. Multidrug-Resistant Gram-Negative Bacterial Infections. Lancet 2025, 405, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef]
- Torumkuney, D.; De La Torre, C.; Langfeld, K.; Lopez-Turrent, N.P.; Ossaille Beltrame, C. Country Data on AMR in Mexico in the Context of Community-Acquired Respiratory Tract Infections: Links between Antibiotic Susceptibility, Local and International Antibiotic Prescribing Guidelines, Access to Medicine and Clinical Outcome. J. Antimicrob. Chemother. 2022, 77, i43–i50. [Google Scholar] [CrossRef]
- Silva-Sanchez, J.; Barrios, H.; Reyna-Flores, F.; Bello-Diaz, M.; Sanchez-Perez, A.; Rojas, T.; Consortium, B.R.; Garza-Ramos, U. Prevalence and Characterization of Plasmid-Mediated Quinolone Resistance Genes in Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae Isolates in Mexico. Microb. Drug Resist. 2011, 17, 497–505. [Google Scholar] [CrossRef]
- Gallegos-Miranda, V.; Garza-Ramos, U.; Bolado-Martínez, E.; Navarro-Navarro, M.; Félix-Murray, K.R.; Candia-Plata, M.D.C.; Sanchez-Martinez, G.; Dúran-Bedolla, J.; Silva-Sánchez, J. ESBL-Producing Escherichia Coli and Klebsiella Pneumoniae from Health-Care Institutions in Mexico. J. Chemother. 2021, 33, 122–127. [Google Scholar] [CrossRef]
- Silva-Sánchez, J.; Cruz-Trujillo, E.; Barrios, H.; Reyna-Flores, F.; Sánchez-Pérez, A.; Garza-Ramos, U.; Morfin-Otero, R.; Rodríguez-Noriega, E.; Novales, G.M.; Solórzano, F.; et al. Characterization of Plasmid-Mediated Quinolone Resistance (PMQR) Genes in Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae Pediatric Clinical Isolates in Mexico. PLoS ONE 2013, 8, e77968. [Google Scholar] [CrossRef]
- Miranda-Romero, A.L.; Silva-Sanchez, J.; Garza–Ramos, U.; Barrios, H.; Sánchez-Pérez, A.; Reyna-Flores, F. Molecular Characterization of ESBL-Producing Escherichia coli Isolates from Hospital- and Community-Acquired Infections in NW Mexico. Diagn. Microbiol. Infect. Dis. 2017, 87, 49–52. [Google Scholar] [CrossRef]
- Ballesteros-Monrreal, M.G.; Mendez-Pfeiffer, P.; Ortíz, B.; Bolado-Martínez, E.; Álvarez-Ainza, M.L.; Enciso-Martínez, Y.; Arenas-Hernández, M.M.P.; Diaz-Murrieta, B.; Barrios-Villa, E.; Valencia, D. Uropathogenic E. coli and Hybrid Pathotypes in Mexican Women with Urinary Tract Infections: A Comprehensive Molecular and Phenotypic Overview. Curr. Issues Mol. Biol. 2024, 46, 5909–5928. [Google Scholar] [CrossRef]
- Reyna-Flores, F.; Barrios, H.; Garza-Ramos, U.; Sánchez-Pérez, A.; Rojas-Moreno, T.; Uribe-Salas, F.J.; Fagundo-Sierra, R.; Silva-Sanchez, J. Molecular Epidemiology of Escherichia coli O25b-ST131 Isolates Causing Community-Acquired UTIs in Mexico. Diagn. Microbiol. Infect. Dis. 2013, 76, 396–398. [Google Scholar] [CrossRef]
- Robles-Torres, J.I.; Ocaña-Munguía, M.A.; Madero Morales, P.A.; Ruiz-Galindo, E.; Garza-González, E.; Gómez-Guerra, L. Antimicrobial Resistance and Extended Spectrum Beta-Lactamases in Urinary Tract Infections: A Serious Problem in Northern Mexico. Rev. Mex. Urología 2020, 80, 1–12. [Google Scholar] [CrossRef]
- Freiwald, A.; Sauer, S. Phylogenetic Classification and Identification of Bacteria by Mass Spectrometry. Nat. Protoc. 2009, 4, 732–742. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. M100 (Ed 32); Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2022. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 13.0. Available online: https://www.eucast.org/eucast_news/news_singleview?tx_ttnews%5Btt_news%5D=518&cHash=2509b0db92646dffba041406dcc9f20c (accessed on 8 January 2024).
- Ballesteros-Monrreal, M.G.; Mendez-Pfeiffer, P.; Barrios-Villa, E.; Arenas-Hernández, M.M.P.; Enciso-Martínez, Y.; Sepúlveda-Moreno, C.O.; Bolado-Martínez, E.; Valencia, D. Uropathogenic Escherichia coli in Mexico, an Overview of Virulence and Resistance Determinants: Systematic Review and Meta-Analysis. Arch. Med. Res. 2023, 54, 247–260. [Google Scholar] [CrossRef]
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population Genomics of Klebsiella Pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef]
- CENETEC. Diagnóstico y Tratamiento de La Neumonía Bacteriana Adquirida En La Comunidad En Población Menor a 18 Años. Available online: http://www.cenetec-difusion.com/CMGPC/GPC-SS-120-21/ER.pdf (accessed on 17 September 2024).
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-Acquired Pneumonia. In An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America; American Thoracic Society Documents: San Francisco, CA, USA, 2019; Volume 200, pp. E45–E67. [Google Scholar] [CrossRef]
- Bontron, S.; Poirel, L.; Kieffer, N.; Savov, E.; Trifonova, A.; Todorova, I.; Kueffer, G.; Nordmann, P. Increased Resistance to Carbapenems in Proteus mirabilis Mediated by Amplification of the blaVIM-1-Carrying and IS26-Associated Class 1 Integron. Microb. Drug Resist. 2019, 25, 663–667. [Google Scholar] [CrossRef]
- Girlich, D.; Bonnin, R.A.; Dortet, L.; Naas, T. Genetics of Acquired Antibiotic Resistance Genes in Proteus Spp. Front. Microbiol. 2020, 11, 500668. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Larios, F.; Martínez-Guerra, B.A.; López-Jácome, L.E.; Bolado-Martínez, E.; Vázquez-Larios, M.D.R.; Velázquez-Acosta, M.D.C.; Romero-Romero, D.; Mireles-Dávalos, C.D.; Quintana-Ponce, S.; Feliciano-Guzmán, J.M.; et al. Active Surveillance of Antimicrobial Resistance and Carbapenemase-Encoding Genes According to Sites of Care and Age Groups in Mexico: Results from the INVIFAR Network. Pathogens 2023, 12, 1144. [Google Scholar] [CrossRef] [PubMed]
- Delgadillo-Valles, R.; Marquez-Salazar, D.A.; Rechy-Iruretagoyena, D.A.; Hernandez-Acevedo, G.N.; Arauz-Cabrera, J.I.; Barrios-Villa, E. Investigation of the Beta-Lactam Resistance Profile in Pseudomonas Aeruginosa Strains in Mexicali: 2019–2021. Rev. Argent. Microbiol. 2024, 56, 368–372. [Google Scholar] [CrossRef]
- Arauz-Cabrera, J.; Marquez-Salazar, D.; Delgadillo-Valles, R.; Caporal-Hernandez, L.; Hernandez-Acevedo, G.N.; Barrios-Villa, E. Genomic Profile of a Multidrug-Resistant Klebsiella Pneumoniae Strain Isolated from a Urine Specimen. Curr. Microbiol. 2024, 81, 276. [Google Scholar] [CrossRef]
- Garza-González, E.; Camacho-Ortiz, A.; Ponce-De-Leon, A.; Ortiz-Brizuela, E.; López-Jácome, L.E.; Colin, C.; Rojas-Larios, F.; Newton-Sánchez, O.A.; Echaniz-Aviles, G.; Carnalla-Barajas, M.N.; et al. Bacterial Incidence and Drug Resistance from Pathogens Recovered from Blood, Cerebrospinal and Pleural Fluids in 2019–2020. Results of the Invifar Network. PeerJ 2023, 11, e14411. [Google Scholar] [CrossRef]
- Tillotson, G.S. Trojan Horse Antibiotics–A Novel Way to Circumvent Gram-Negative Bacterial Resistance? Infect. Dis. 2016, 9, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Ezzeddine, Z.; Ghssein, G. Towards New Antibiotics Classes Targeting Bacterial Metallophores. Microb. Pathog. 2023, 182, 106221. [Google Scholar] [CrossRef] [PubMed]
- Fox, V.; Mangioni, D.; Renica, S.; Comelli, A.; Teri, A.; Zatelli, M.; Orena, B.S.; Scuderi, C.; Cavallero, A.; Rossi, M.; et al. Genomic Characterization of Klebsiella pneumoniae Carbapenemase-Producing Klebsiella pneumoniae (KPC-Kp) Strains Circulating in Three University Hospitals in Northern Italy over Three Years. Antimicrob. Resist. Infect. Control. 2024, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Bakr, K.I.; Abdul-Rahman, S.M.; Muhammad Hamasalih, R. Molecular Detection of β-Lactamase Genes in Klebsiella pneumoniae and Escherichia coli Isolated from Different Clinical Sources. Cell. Mol. Biol. 2022, 67, 170–180. [Google Scholar] [CrossRef]
- Ludden, C.; Coll, F.; Gouliouris, T.; Restif, O.; Blane, B.; Blackwell, G.A.; Kumar, N.; Naydenova, P.; Crawley, C.; Brown, N.M.; et al. Defining Nosocomial Transmission of Escherichia Coli and Antimicrobial Resistance Genes: A Genomic Surveillance Study. Lancet Microbe 2021, 2, e472–e480. [Google Scholar] [CrossRef]
Sample Source | Microorganism | Number of Isolates (%) | ESBL-Producing Isolates | |||
---|---|---|---|---|---|---|
2019 | 2020 | 2021 | Total (%) | |||
Lower respiratory tract | E. coli | 114 (5.1) | 20 | 34 * | 21 * | 75 (65.8) |
K. pneumoniae | 164 (37.9) | 6 | 18 | 24 | 48 (29.3) | |
P. mirabilis ** | 8 (3.9) | 0 | 0 | 0 | 0 (0) | |
Soft tissue | E. coli | 123 (5.5) | 11 | 15 | 42 | 68 (55.3) |
K. pneumoniae | 40 (9.2) | 4 | 3 | 7 | 14 (35.0) | |
P. mirabilis ** | 24 (11.8) | 0 | 0 | 0 | 0 (0) | |
Sterile body fluids 1 | E. coli | 65 (2.9) | 8 | 5 | 18 | 31 (47.7) |
K. pneumoniae | 6 (1.4) | 1 | 1 | 0 | 2 (33.3) | |
P. mirabilis ** | 0 (0) | 0 | 0 | 0 | 0 (0) | |
Blood | E. coli | 46 (2.1) | 2 | 6 | 9 | 17 (34.0) |
K. pneumoniae | 17 (3.9) | 1 | 1 | 2 | 4 (23.5) | |
P. mirabilis ** | 1 (0.005) | 0 | 0 | 0 | 0 (0) | |
Urinary tract | E. coli | 1803 (80.7) | 198 | 179 | 237 | 614 (34.1) |
K. pneumoniae | 181 (41.8) | 10 | 11 | 24 | 46 (25.4) | |
P. mirabilis ** | 164 (80.4) | 0 | 0 | 0 | 0 (0) | |
Other 2 | E. coli | 83 (3.7) | 11 | 10 | 14 | 35 (42.2) |
K. pneumoniae | 25 (5.7) | 2 | 2 | 3 | 7 (28.0) | |
P. mirabilis ** | 7 (3.4) | 0 | 0 | 0 | 0 (0) | |
Total | E. coli | 2234 | 250 | 249 | 341 | 840 (37.6) |
K. pneumoniae | 433 | 24 | 36 | 60 | 120 (27.7). | |
P. mirabilis ** | 204 | 0 | 0 | 0 | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Márquez-Salazar, D.A.; Delgadillo-Valles, R.; Hernández-Acevedo, G.N.; Barrios-Villa, E.; Muñiz-Salazar, R.; López-Valencia, G.; Martínez-Miranda, R.; Arauz-Cabrera, J. Retrospective Study 2019–2021 of Antimicrobial Resistance in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis in Mexicali, Mexico. Microbiol. Res. 2025, 16, 126. https://doi.org/10.3390/microbiolres16060126
Márquez-Salazar DA, Delgadillo-Valles R, Hernández-Acevedo GN, Barrios-Villa E, Muñiz-Salazar R, López-Valencia G, Martínez-Miranda R, Arauz-Cabrera J. Retrospective Study 2019–2021 of Antimicrobial Resistance in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis in Mexicali, Mexico. Microbiology Research. 2025; 16(6):126. https://doi.org/10.3390/microbiolres16060126
Chicago/Turabian StyleMárquez-Salazar, Dolores A., Ricardo Delgadillo-Valles, Gerson N. Hernández-Acevedo, Edwin Barrios-Villa, Raquel Muñiz-Salazar, Gilberto López-Valencia, Rafael Martínez-Miranda, and Jonathan Arauz-Cabrera. 2025. "Retrospective Study 2019–2021 of Antimicrobial Resistance in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis in Mexicali, Mexico" Microbiology Research 16, no. 6: 126. https://doi.org/10.3390/microbiolres16060126
APA StyleMárquez-Salazar, D. A., Delgadillo-Valles, R., Hernández-Acevedo, G. N., Barrios-Villa, E., Muñiz-Salazar, R., López-Valencia, G., Martínez-Miranda, R., & Arauz-Cabrera, J. (2025). Retrospective Study 2019–2021 of Antimicrobial Resistance in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis in Mexicali, Mexico. Microbiology Research, 16(6), 126. https://doi.org/10.3390/microbiolres16060126