Bacterial Degradation of Ibuprofen: Insights into Metabolites, Enzymes, and Environmental Fate Biodegradation of Ibuprofen by Achromobacter Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Bacterial Strains
2.2. Biodegradation of IBU and Optimization of Achromobacter sp. Growth at Different Physicochemical Conditions
2.3. Quantification of Ibuprofen Biodegradation
2.4. Metabolite Identification
2.5. Enzyme Activities
2.6. Molecular Screening of Biodegradable Enzymes of Ibuprofen Using Polymerase Chain Reaction (PCR)
2.7. Statistical Analysis
3. Results
3.1. Optimum Growth Parameters for Ibuprofen-Degrading Bacteria
3.2. Efficiency of IBU Biodegradation by Achromobacter Species
3.3. Postulation of IBU Biotransformation Pathway by A. spanius S11
3.4. Specific Activity of Enzymes Involved in Ibuprofen Degradation
3.5. Detection of Genes Involved in Biodegradation of Ibuprofen by Achromobacter spanius Strain S11
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angelakis, A.N.; Asano, T.; Bahri, A.; Jimenez, B.E.; Tchobanoglous, G. Water Reuse: From Ancient to Modern Times and the Future. Front. Environ. Sci. 2018, 6, 26. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mentha, S.S.; Misra, Y.; Dwivedi, N. Emerging Pollutants of Severe Environmental Concern in Water and Wastewater: A Comprehensive Review on Current Developments and Future Research. Water-Energy Nexus 2023, 6, 74–95. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Wang, P.; Chen, J.; Wang, X.; Yuan, Q. Anthropogenic Disturbances on Distribution and Sources of Pharmaceuticals and Personal Care Products throughout the Jinsha River Basin, China. Environ. Res. 2021, 198, 110449. [Google Scholar] [CrossRef]
- Vasilachi, I.; Asiminicesei, D.; Fertu, D.; Gavrilescu, M. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Elmelegy, S.A.; Khalil, M.S.; Mohamed, M.S.M. Efficient Biodegradation and Detoxification of Congo Red via Newly Isolated Bacillus Strains. Egypt. J. Chem. 2024, 67, 67–76. [Google Scholar] [CrossRef]
- Maeng, S.K.; Sharma, S.K.; Lekkerkerker-Teunissen, K.; Amy, G.L. Occurrence and Fate of Bulk Organic Matter and Pharmaceutically Active Compounds in Managed Aquifer Recharge: A Review. Water Res. 2011, 45, 3015–3033. [Google Scholar] [CrossRef]
- Benotti, M.J.; Trenholm, R.A.; Vanderford, B.J.; Holady, J.C.; Stanford, B.D.; Snyder, S.A. Pharmaceuticals and Endocrine Disrupting Compounds in U.S. Drinking Water. Environ. Sci. Technol. 2009, 43, 597–603. [Google Scholar] [CrossRef]
- Elawwad, A.; Tarek, A.; Abdelmoneim, T.K.; Safwat, S.M.; Mohamed, M.S.M. Prevalence of Antibiotic Resistance Genes (ARGs) in a Small Wastewater Treatment Plant in Egypt. In Proceedings of the 9th World Congress on Civil, Structural, and Environmental Engineering (CSEE 2024), London, UK, 14–16 April 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Żur, J.; Piński, A.; Marchlewicz, A.; Hupert-Kocurek, K.; Wojcieszyńska, D.; Guzik, U. Organic Micropollutants Paracetamol and Ibuprofen—Toxicity, Biodegradation, and Genetic Background of Their Utilization by Bacteria. Environ. Sci. Pollut. Res. 2018, 25, 21498–21524. [Google Scholar] [CrossRef]
- Chopra, S.; Kumar, D. Ibuprofen as an Emerging Organic Contaminant in Environment, Distribution and Remediation. Heliyon 2020, 6, e04087. [Google Scholar] [CrossRef]
- Pomati, F.; Castiglioni, S.; Zuccato, E.; Fanelli, R.; Vigetti, D.; Rossetti, C.; Calamari, D. Effects of a Complex Mixture of Therapeutic Drugs at Environmental Levels on Human Embryonic Cells. Environ. Sci. Technol. 2006, 40, 2442–2447. [Google Scholar] [CrossRef]
- Brozinski, J.M.; Lahti, M.; Meierjohann, A.; Oikari, A.; Kronberg, L. The Anti-Inflammatory Drugs Diclofenac, Naproxen and Ibuprofen Are Found in the Bile of Wild Fish Caught Downstream of a Wastewater Treatment Plant. Environ. Sci. Technol. 2013, 47, 342–348. [Google Scholar] [CrossRef] [PubMed]
- David, A.; Pancharatna, K. Developmental Anomalies Induced by a Non-Selective COX Inhibitor (Ibuprofen) in Zebrafish (Danio rerio). Environ. Toxicol. Pharmacol. 2009, 27, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Grzesiuk, M.; Pijanowska, J.; Markowska, M.; Bednarska, A. Morphological Deformation of Daphnia magna Embryos Caused by Prolonged Exposure to Ibuprofen. Environ. Pollut. 2020, 261, 114135. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Choi, K.; Kim, J.; Ji, K.; Kim, S.; Ahn, B.; Yun, J.; Choi, K.; Khim, J.S.; Zhang, X.; et al. Endocrine Disruption and Consequences of Chronic Exposure to Ibuprofen in Japanese Medaka (Oryzias Latipes) and Freshwater Cladocerans Daphnia Magna and Moina Macrocopa. Aquat. Toxicol. 2010, 98, 256–264. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, X.; Zhu, Z.; Wang, Y.; Gao, J.; Cui, P. Process Intensification and Waste Minimization for Ibuprofen Synthesis Process. J. Clean. Prod. 2018, 194, 396–405. [Google Scholar] [CrossRef]
- Buser, H.R.; Poiger, T.; Muller, M.D. Occurrence and Environmental Behavior of the Chiral Pharmaceutical Drug Ibuprofen in Surface Waters and in Wastewater. Environ. Sci. Technol. 1999, 33, 2529–2535. [Google Scholar] [CrossRef]
- Santos, L.H.M.L.M.; Araújo, A.N.; Fachini, A.; Pena, A.; Delerue-Matos, C.; Montenegro, M.C.B.S.M. Ecotoxicological Aspects Related to the Presence of Pharmaceuticals in the Aquatic Environment. J. Hazard. Mater. 2010, 175, 45–95. [Google Scholar] [CrossRef]
- Marchlewicz, A.; Guzik, U.; Wojcieszyńska, D. Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment - Sources, Risks, Biodegradation. Water. Air. Soil Pollut. 2015, 226, 355. [Google Scholar] [CrossRef]
- Murdoch, R.W.; Hay, A.G. The Biotransformation of Ibuprofen to Trihydroxyibuprofen in Activated Sludge and by Variovorax Ibu-1. Biodegradation 2015, 26, 105–113. [Google Scholar] [CrossRef]
- Carter, W.C.; Brown, B.R. Ibuprofen: Clinical Pharmacology, Medical Uses and Adverse Effects; Nova Science Publishers: Hauppauge, NY, USA, 2013; ISBN 9781626186590. [Google Scholar]
- Jan-Roblero, J.; Cruz-Maya, J.A. Ibuprofen: Toxicology and Biodegradation of an Emerging Contaminant. Molecules 2023, 28, 2097. [Google Scholar] [CrossRef]
- Lawrence, J.R.; Swerhone, G.D.W.; Wassenaar, L.I.; Neu, T.R. Effects of Selected Pharmaceuticals on Riverine Biofilm Communities. Can. J. Microbiol. 2005, 51, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Vinet, L.; Zhedanov, A. Microbial Degradation of Xenobiotics; Singh, S.N., Ed.; Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2012; Volume 44, ISBN 978-3-642-23788-1. [Google Scholar]
- Abdelkader, A.A.; Khalil, M.S.; Mohamed, M.S.M. Simultaneous Biodegradation of λ-Cyhalothrin Pesticide and Vicia faba Growth Promotion under Greenhouse Conditions. AMB Express 2022, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Karnjanapiboonwong, A.; Chase, D.A.; Wang, J.; Morse, A.N.; Anderson, T.A. Occurrence, Fate, and Persistence of Gemfibrozil in Water and Soil. Environ. Toxicol. Chem. 2012, 31, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, S.C.; Boxall, A.B.A. Factors Affecting the Degradation of Pharmaceuticals in Agricultural Soils. Environ. Toxicol. Chem. 2009, 28, 2546–2554. [Google Scholar] [CrossRef]
- Ho, Y.N.; Mathew, D.C.; Hsiao, S.C.; Shih, C.H.; Chien, M.F.; Chiang, H.M.; Huang, C.C. Selection and Application of Endophytic Bacterium Achromobacter xylosoxidans Strain F3B for Improving Phytoremediation of Phenolic Pollutants. J. Hazard. Mater. 2012, 219–220, 43–49. [Google Scholar] [CrossRef]
- Liang, D.H.; Hu, Y. Simultaneous Sulfamethoxazole Biodegradation and Nitrogen Conversion by Achromobacter Sp. JL9 Using with Different Carbon and Nitrogen Sources. Bioresour. Technol. 2019, 293, 122061. [Google Scholar] [CrossRef]
- Mohamed, M.S.M.; Asair, A.A.; Fetyan, N.A.H.; Elnagdy, S.M. Complete Biodegradation of Diclofenac by New Bacterial Strains: Postulated Pathways and Degrading Enzymes. Microorganisms 2023, 11, 1445. [Google Scholar] [CrossRef]
- Nguyen, L.N.; Nghiem, L.D.; Pramanik, B.K.; Oh, S. Cometabolic Biotransformation and Impacts of the Anti-Inflammatory Drug Diclofenac on Activated Sludge Microbial Communities. Sci. Total Environ. 2019, 657, 739–745. [Google Scholar] [CrossRef]
- Wojcieszyńska, D.; Guzik, U.; Greń, I.; Perkosz, M.; Hupert-Kocurek, K. Induction of Aromatic Ring: Cleavage Dioxygenases in Stenotrophomonas maltophilia Strain KB2 in Cometabolic Systems. World J. Microbiol. Biotechnol. 2011, 27, 805–811. [Google Scholar] [CrossRef]
- Janik-Karpinska, E.; Brancaleoni, R.; Niemcewicz, M.; Wojtas, W.; Foco, M.; Podogrocki, M.; Bijak, M. Healthcare Waste—A Serious Problem for Global Health. Healthcare 2023, 11, 242. [Google Scholar] [CrossRef]
- Wexler, P. Encyclopedia of Toxicology. Encycl. Toxicol. 2014, 38, 464. [Google Scholar] [CrossRef]
- Sadutto, D.; Andreu, V.; Ilo, T.; Akkanen, J.; Picó, Y. Pharmaceuticals and Personal Care Products in a Mediterranean Coastal Wetland: Impact of Anthropogenic and Spatial Factors and Environmental Risk Assessment. Environ. Pollut. 2021, 271, 116353. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Rosazza, J.P.N. Microbial Transformation of Ibuprofen by a Nocardia Species. Appl. Environ. Microbiol. 1994, 60, 1292–1296. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, R.W.; Hay, A.G. Genetic and Chemical Characterization of Ibuprofen Degradation by Sphingomonas Ibu-2. Microbiol. (United Kingdom) 2013, 159, 621–632. [Google Scholar] [CrossRef]
- Ferrando-Climent, L.; Collado, N.; Buttiglieri, G.; Gros, M.; Rodriguez-Roda, I.; Rodriguez-Mozaz, S.; Barceló, D. Comprehensive Study of Ibuprofen and Its Metabolites in Activated Sludge Batch Experiments and Aquatic Environment. Sci. Total Environ. 2012, 438, 404–413. [Google Scholar] [CrossRef]
- Parolini, M.; Binelli, A. Sub-Lethal Effects Induced by a Mixture of Three Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) on the Freshwater Bivalve Dreissena polymorpha. Ecotoxicology 2012, 21, 379–392. [Google Scholar] [CrossRef]
- Horel, A.; Schiewer, S. Influence of Constant and Fluctuating Temperature on Biodegradation Rates of Fish Biodiesel Blends Contaminating Alaskan Sand. Chemosphere 2011, 83, 652–660. [Google Scholar] [CrossRef]
- Kim, J.; Cho, K.J.; Han, G.; Lee, C.; Hwang, S. Effects of Temperature and PH on the Biokinetic Properties of Thiocyanate Biodegradation under Autotrophic Conditions. Water Res. 2013, 47, 251–258. [Google Scholar] [CrossRef]
- Dong, J.J.; Fernández-Fueyo, E.; Hollmann, F.; Paul, C.E.; Pesic, M.; Schmidt, S.; Wang, Y.; Younes, S.; Zhang, W. Biocatalytic Oxidation Reactions: A Chemist’s Perspective. Angew. Chemie - Int. Ed. 2018, 57, 9238–9261. [Google Scholar] [CrossRef]
- Bühler, B.; Bollhalder, I.; Hauer, B.; Witholt, B.; Schmid, A. Chemical Biotechnology for the Specific Oxyfunctionalization of Hydrocarbons on a Technical Scale. Biotechnol. Bioeng. 2003, 82, 833–842. [Google Scholar] [CrossRef]
- Almeida, B.; Kjeldal, H.; Lolas, I.; Knudsen, A.D.; Carvalho, G.; Nielsen, K.L.; Barreto Crespo, M.T.; Stensballe, A.; Nielsen, J.L. Quantitative Proteomic Analysis of Ibuprofen-Degrading Patulibacter Sp. Strain I11. Biodegradation 2013, 24, 615–630. [Google Scholar] [CrossRef] [PubMed]
- Fetyan, N.A.H.; Azeiz, A.Z.A.; Ismail, I.M.; Shaban, S.A. Oxidative Decolorization of Direct Blue 71 Azo Dye by Saccharomyces Cerevisiae Catalyzed by Nano Zero-Valent Iron. Annu. Res. Rev. Biol. 2016, 11, 1–12. [Google Scholar] [CrossRef]
- Zille, A.; Gornacka, B.; Rehorek, A.; Cavaco-Paulo, A. Degradation of Azo Dyes by Trametes villosa Laccase over Long Periods of Oxidative Conditions. Appl. Environ. Microbiol. 2005, 71, 6711–6718. [Google Scholar] [CrossRef] [PubMed]
- Niño Corredor, A.N.; Comba González, N.B.; Acelas, M.; Montoya Castaño, D. Genome of the Epiphytic Bacterium Achromobacter denitrificans Strain EPI24, Isolated from a Macroalga Located in the Colombian Caribbean. Biotechnol. Rep. 2023, 37, 22–25. [Google Scholar] [CrossRef]
Isolates | Degradation of Ibuprofen Percentage * | |
---|---|---|
72 h | 144 h | |
S11 | 91.18 ± 1.19 c | 95.40 ± 0.84 c |
S18 | 72.39 ± 1.55 b | 73.01 ± 0.89 b |
Control | 01. 02 ± 0.28 a | 01.15 ± 0.47 a |
Compound Name | RT (Min) | Molecular Composition | M.Wt. | [M-H] + Measured | Chemical Structure | |
---|---|---|---|---|---|---|
1 | Ibuprofen | 13.17 | C13H18O2 | 206.2808 | 205.2113 | |
2 | 1-hydroxyibuprofen | 11.58 | C13H18O3 | 222.2802 | 221.1386 | |
3 | 2-hydroxyibuprofen 2-[4-(2-hydroxy-2-methylpropyl)phenyl] propionic acid | 11.58 | C13H18O3 | 222.2802 | 221.1386 | |
4 | 1,2-Dihydroxyibuprofen 2-[4-(1,2-dihydroxy-2-methylpropyl) phenyl] propionic acid | 19.44 | C13H18O4 | 238.2796 | 237.0482 | |
5 | 4-(2-formyl-1,1-dihydroxy-4-oxobutyl)phenyl] (hydroxy)acetic acid | 22.42 | C13H14O7 | 282 | 281 | |
6 | Trihydroxyibuprofen 2-[4-(1,2-dihydroxy-2-methylpropyl)-3-hydroxyphenyl] propanoic acid | 23.17 | C13H18O5 | 254.279 | 253.2053 | |
7 | 2-ethyl-5-methylbenzene-1,4-diol | 26.84 | C9H12O2 | 152.19 | 151.075 | |
8 | (5-ethyl-4-hydroxy-2-methylphenyl)oxidanyl | 23.25 | C9H11O2 | 151.182 | 150.06 | |
9 | (5-ethyl-4-hydroxy-2-methylphenyl)oxidanyl | 23.46 | C8H9O2+ | 137.155 | 136.05 | |
10 | (4-ethenylcyclohexa-1,3-dien-1-yl) methylium | 27.45 | C9H9+ | 117.167 | 116.89 | |
11 | (3,4-dihydroxyphenyl)acetic acid | C8H8O4 | 168.146 | 167.033 | ||
12 | benzene-1,2,4-triol | 22.69 | C6H6O3 | 126.11 | 125.896 | |
13 | (2E,4Z)-3-hydroxyhexa-2,4-dienedioic acid | 17.9 | C6H6O5 | 158.108 | 157.1706 | |
14 | 2-methylpentanoic acid | 23.63 | C6H12O2 | 116 | 115.08 | |
15 | (2S)-2,3-dihydroxybutanedioic acid | 28.69 | C4H6O6 | 150.09 | 149.95 |
Specific Enzyme Activity (U/mg Protein) | ||
---|---|---|
Enzyme | Control * | MMS+ Ibuprofen ** |
Laccase | 0.098 ± 0.013 | 2.001 ± 0.215 |
Catechol 1,2-Dioxygenase | 0.655 ± 0.064 | 4.230 ± 0.026 |
Catechol 2,3-Dioxygenase | 0.002 ± 0.006 | 0.016 ± 0.004 |
Catechol 4,5-Dioxygenase | 0.000 ± 0.00 | 0.000 ± 0.00 |
Peroxidase | 0.0184 ± 0.022 | 0.255 ± 0.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fetyan, N.A.H.; Asair, A.A.; Ismail, I.M.; Elsakhawy, T.A.; Elnagdy, S.M.; Mohamed, M.S.M. Bacterial Degradation of Ibuprofen: Insights into Metabolites, Enzymes, and Environmental Fate Biodegradation of Ibuprofen by Achromobacter Species. Microbiol. Res. 2024, 15, 2298-2315. https://doi.org/10.3390/microbiolres15040154
Fetyan NAH, Asair AA, Ismail IM, Elsakhawy TA, Elnagdy SM, Mohamed MSM. Bacterial Degradation of Ibuprofen: Insights into Metabolites, Enzymes, and Environmental Fate Biodegradation of Ibuprofen by Achromobacter Species. Microbiology Research. 2024; 15(4):2298-2315. https://doi.org/10.3390/microbiolres15040154
Chicago/Turabian StyleFetyan, Nashwa A. H., Ayan A. Asair, Ismail M. Ismail, Tamer A. Elsakhawy, Sherif M. Elnagdy, and Mahmoud S. M. Mohamed. 2024. "Bacterial Degradation of Ibuprofen: Insights into Metabolites, Enzymes, and Environmental Fate Biodegradation of Ibuprofen by Achromobacter Species" Microbiology Research 15, no. 4: 2298-2315. https://doi.org/10.3390/microbiolres15040154
APA StyleFetyan, N. A. H., Asair, A. A., Ismail, I. M., Elsakhawy, T. A., Elnagdy, S. M., & Mohamed, M. S. M. (2024). Bacterial Degradation of Ibuprofen: Insights into Metabolites, Enzymes, and Environmental Fate Biodegradation of Ibuprofen by Achromobacter Species. Microbiology Research, 15(4), 2298-2315. https://doi.org/10.3390/microbiolres15040154