Characterization of Antimicrobial Resistance Mechanisms and Virulence Determinants in Colistin- and Carbapenem-Resistant Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pseudomonas aeruginosa Isolates
2.2. Transcriptional Analysis of pmrA, phoP, mexA, and mexC
2.3. Semi-Quantitative PCR of pmrB
2.4. DNA Extraction and 16SrRNA PCR
Gene | Left Primer (5′ to 3′) | Probe | Right Primer (5′ to 3′) | Reference |
---|---|---|---|---|
rpsL | CTTCCGGGTGTGCGTTAC | CTGGACAC | CCCTGCTTACGGTCTTTGAC | [29] |
pmrA | GTCGAGAGCAACGCCATC | CCACCACC | CAACTGGTTGCCGAGCTT | This study |
phoP | TGCTGGTAGTGGAAGACGAG | CCACCACC | GTTCACCCAGGCGGGTAT | This study |
mexA | CTGGAGGACGGTAGCCAATA | GCTGGAAG | GACGGAAACCTCGGAGAAT | [29] |
mexC | AGCCAGCAGGACTTCGATAC | CCTGGAGA | CAGTGACCGAGGCGTAGC | [29] |
2.5. Plasmid Extraction and MCR-1 PCR
2.6. Detection of Carbapenemases’ Genes
2.7. Virulence Assay
2.7.1. Quantitative Biofilm Assay
2.7.2. Alginate Production Assay
2.7.3. Pyocyanin Assay
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef]
- Fernández, L.; Álvarez-Ortega, C.; Wiegand, I.; Olivares, J.; Kocíncová, D.; Lam, J.S.; Martínez, J.L.; Hancock, R.E. Characterization of the polymyxin B resistome of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Howard-Anderson, J.; Davis, M.; Page, A.M.; Bower, C.W.; Smith, G.; Jacob, J.T.; Andersson, D.I.; Weiss, D.S.; Satola, S.W. Prevalence of colistin heteroresistance in carbapenem-resistant Pseudomonas aeruginosa and association with clinical outcomes in patients: An observational study. J. Antimicrob. Chemother. 2022, 77, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Chung, E.S.; Na, I.Y.; Kim, H.; Shin, D.; Ko, K.S. Development of colistin resistance in pmrA-, phoP-, parR- and cprR- inactivated mutants of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2014, 69, 2966–2971. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Ko, K.S. Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas aeruginosa clinical isolates. Diagn. Microbiol. Infect. Dis. 2014, 78, 271–276. [Google Scholar] [CrossRef] [PubMed]
- McPhee, J.B.; Bains, M.; Winsor, G.; Lewenza, S.; Kwasnicka, A.; Brazas, M.D.; Brinkman, F.S.; Hancock, R.E.W. Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory system to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J. Bacteriol. 2006, 188, 3995–4006. [Google Scholar] [CrossRef]
- Stojanoski, V.; Sankaran, B.; Prasad, B.V.; Poirel, L.; Nordmann, P.; Palzkill, T. Structure of the catalytic domain of the colistin resistance enzyme MCR-1. BMC Biol. 2016, 14, 81. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Kumar, M.; Saha, S.; Subudhi, E. More Furious than Ever: E. coli acquired Co-Resistance towards Colistin and Carbapenems. Clin. Infect. Dis. 2016, 63, 1267–1268. [Google Scholar]
- Karaiskos, I.; Souli, M.; Galani, I.; Giamarellou, H. Colistin: Still a lifesaver for the 21st century? Expert Opin. Drug Metab. Toxicol. 2017, 13, 59–71. [Google Scholar] [CrossRef]
- Stoesser, N.; Mathers, A.J.; Moore, C.E.; Day, N.P.; Crook, D.W. Colistin resistance gene mcr-1 and pHNSHP45 plasmid in human isolates of Escherichia coli and Klebsiella pneumoniae. Lancet Infect. Dis. 2016, 16, 285–286. [Google Scholar] [CrossRef] [PubMed]
- Amira, E.; Gamal, E.S. Screening of mcr-1 among Gram-Negative Bacteria from Different Clinical Samples from ICU Patients in Alexandria, Egypt: One-Year Study. Pol. J. Microbiol. 2022, 71, 83–90. [Google Scholar]
- Elnahriry, S.S.; Khalifa, H.O.; Soliman, A.M.; Ahmed, A.M.; Hussein, A.M.; Shimamoto, T.; Shimamoto, T. Emergence of plasmid-mediated colistin resistance gene mcr-1 in a clinical Escherichia coli isolate from Egypt. Antimicrob. Agents Chemother. 2016, 60, 3249. [Google Scholar] [CrossRef] [PubMed]
- Queenan, A.M.; Bush, K. Carbapenemases: The versatile β-lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [PubMed]
- Sacha, P.; Wieczorek, P.; Hauschild, T.; Zórawski, M.; Olszańska, D.; Tryniszewska, E. Metallo-beta-lactamases of Pseudomonas aeruginosa-a novel mechanism resistance to beta-lactam antibiotics. Folia Histochem. Cytobiol. 2008, 46, 137–142. [Google Scholar] [CrossRef]
- Walther-Rasmussen, J.; Høiby, N. OXA-type carbapenemases. J. Antimicrob. Chemother. 2006, 57, 373–383. [Google Scholar] [CrossRef]
- Turton, J.F.; Woodford, N.; Glover, J.; Yarde, S.; Kaufmann, M.E.; Pitt, T.L. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J. Clin. Microbiol. 2006, 44, 2974–2976. [Google Scholar] [CrossRef]
- Fernández, L.; Hancock, R.E. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 2013, 26, 163. [Google Scholar] [CrossRef]
- Poole, K. Efflux-mediated multiresistance in Gram-negative bacteria. Clin. Microbiol. Infect. 2004, 10, 12–26. [Google Scholar] [CrossRef]
- Köhler, T.; Michea-Hamzehpour, M.; Plesiat, P.; Kahr, A.L.; Pechere, J.C. Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1997, 41, 2540–2543. [Google Scholar] [CrossRef]
- Köhler, T.; Michéa-Hamzehpour, M.; Henze, U.; Gotoh, N.; Kocjancic Curty, L.; Pechère, J.C. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol. Microbiol. 1997, 23, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Huang, X.; Wang, Q.; Yao, D.; Lu, W. Virulence factors of Pseudomonas aeruginosa and antivirulence strategies to combat its drug resistance. Front. Cell. Infect. Microbiol. 2022, 12, 926758. [Google Scholar] [CrossRef] [PubMed]
- Shree, P.; Singh, C.K.; Sodhi, K.K.; Surya, J.N.; Singh, D.K. Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Med. Microecol. 2023, 30, 100084. [Google Scholar] [CrossRef]
- Tan, Q.; Qing, A.; Qi, X.; Fang, L.; Jialin, Y. Polymorphonuclear leukocytes or hydrogen peroxide enhance biofilm development of mucoid Pseudomonas aeruginosa. Mediat. Inflam. 2018, 2018, 8151362. [Google Scholar] [CrossRef]
- Hentzer, M.; Teitzel, G.M.; Balzer, G.J.; Heydorn, A.; Molin, S.; Givskov, M.; Parsek, M.R. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol. 2001, 183, 5395–5401. [Google Scholar] [CrossRef]
- Mudaliar, S.B.; Bharath Prasad, A.S. A biomedical perspective of pyocyanin from Pseudomonas aeruginosa: Its applications and challenges. World J. Microbiol. Biotechnol. 2024, 40, 90. [Google Scholar] [CrossRef]
- Wayne, P.A.; Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 24th Informational Supplement; CLSI Document M100-S24; Clinical and Laboratory Standards Institute (CLSI): Berwyn, PA, USA, 2014. [Google Scholar]
- Igbinosa, I.H.; Nwodo, U.U.; Sosa, A.; Tom, M.; Okoh, A.I. Commensal Pseudomonas species isolated from wastewater and freshwater milieus in the Eastern Cape Province, South Africa as reservoir of antibiotic resistant determinants. Int. J. Environ. Res. Public Health 2012, 9, 2537–2549. [Google Scholar] [CrossRef] [PubMed]
- Ellappan, K.; Narasimha, H.B.; Kumar, S. Coexistence of multidrug resistance mechanisms and virulence genes in carbapenem-resistant Pseudomonas aeruginosa strains from a tertiary care hospital in South India. J. Glob. Antimicrob. Resist. 2018, 12, 37–43. [Google Scholar] [CrossRef]
- Ghadaksaz, A.; Fooladi, A.A.I.; Hosseini, H.M.; Amin, M. The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. J. Appl. Biomed. 2015, 13, 61–68. [Google Scholar] [CrossRef]
- Kalaiarasan, E.; Thirumalaswamy, K.; Harish, B.N.; Gnanasambandam, V.; Sali, V.K.; John, J. Inhibition of quorum sensing-controlled biofilm formation in Pseudomonas aeruginosa by quorum-sensing inhibitors. Microb. Pathog. 2017, 111, 99–107. [Google Scholar] [CrossRef]
- Mathee, K.; Ciofu, O.; Sternberg, C.; Lindum, P.W.; Campbell, J.I.; Jensen, P.; Johnsen, A.H.; Givskov, M.; Ohman, D.E.; Søren, M.; et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: A mechanism for virulence activation in the cystic fibrosis lung. Microbiology 1999, 145, 1349–1357. [Google Scholar] [CrossRef]
- May, T.B.; Chakrabarty, A.M. Isolation and assay of Pseudomonas aeruginosa alginate. Methods Enzymol. 1994, 235, 295–304. [Google Scholar] [PubMed]
- Wagner, T.; Soong, G.; Sokol, S.; Saiman, L.; Prince, A. Effects of azithromycin on clinical isolates of Pseudomonas aeruginosa from cystic fibrosis patients. Chest 2005, 128, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, M.; Shukla, S.; Petersson, A.C.; Segelmark, M.; Hellmark, T. Pseudomonas aeruginosa in cystic fibrosis: Pyocyanin negative strains are associated with BPI-ANCA and progressive lung disease. J. Cyst. Fibros. 2011, 10, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Jafari-Ramedani, S.; Nazari, M.; Arzanlou, M.; Peeri-Dogaheh, H.; Sahebkar, A.; Khademi, F. Prevalence and molecular characterization of colistin resistance in Pseudomonas aeruginosa isolates: Insights from a study in Ardabil hospitals. BMC Microbiol. 2024, 24, 152. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.S.; Lee, J.Y.; Rhee, J.Y.; Ko, K.S. Colistin resistance in Pseudomonas aeruginosa that is not linked to arnB. J. Med. Microbiol. 2017, 66, 833–841. [Google Scholar] [CrossRef]
- Mohit Kumar, M.K. Colistin and Tigecycline Resistance in Carbapenem-Resistant Enterobacteriaceae: Checkmate to Our Last Line Of Defense. Infect. Control Hosp. Epidemiol. 2016, 37, 624–625. [Google Scholar] [CrossRef]
- Kumar, M.; Gupta, A.; Sahoo, R.K.; Jena, J.; Debata, N.K.; Subudhi, E. Functional Genome Screening to Elucidate the Colistin Resistance Mechanism. Sci. Rep. 2016, 6, 23156. [Google Scholar] [CrossRef]
- Ghafur, A.; Lakshmi, V.; Kannain, P.; Murali, A.; Ma, T. Emergence of Pan-drug resistance amongst gram negative bacteria! The First case series from India. J. Microbiol. Infect. Dis. 2014, 4, 86–91. [Google Scholar] [CrossRef]
- McGann, P.; Snesrud, E.; Maybank, R.; Corey, B.; Ong, A.C.; Clifford, R.; Hinkle, M.; Whitman, T.; Lesho, E.; Schaecher, K.E. Escherichia coli Harboring mcr-1 and blaCTX-M on a Novel IncF Plasmid: First report of mcr-1 in the USA. Antimicrob. Agents Chemother. 2016, 60, 4420–4421. [Google Scholar] [CrossRef]
- Zelendova, M.; Papagiannitsis, C.C.; Valcek, A.; Medvecky, M.; Bitar, I.; Hrabak, J.; Gelbicova, T.; Barakova, A.; Kutilova, I.; Karpiskova, R.; et al. Characterization of the complete nucleotide sequences of mcr-1-encoding plasmids from Enterobacterales isolates in retailed raw meat products from the Czech Republic. Front. Microbiol. 2021, 11, 604067. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Poirel, L. Plasmid-mediated colistin resistance: An additional antibiotic resistance menace. Clin. Microbiol. Infect. 2016, 22, 398–400. [Google Scholar] [CrossRef]
- Vatansever, C.; Menekse, S.; Dogan, O.; Gucer, L.S.; Ozer, B.; Ergonul, O.; Can, F. Co-existence of OXA-48 and NDM-1 in colistin resistant Pseudomonas aeruginosa ST235. Emerg. Microbes Infect. 2020, 9, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Mulcahy, H.; Charron-Mazenod, L.; Lewenza, S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 2008, 4, e1000213. [Google Scholar] [CrossRef] [PubMed]
- Kabir, R.B.; Ahsan, T.; Rahman, M.F.; Jobayer, M.; Shamsuzzaman, S.M. Biofilm-Producing and Specific Antibiotic Resistance Genes in Pseudomonas aeruginosa Isolated from Patients Admitted to a Tertiary Care Hospital, Bangladesh. Bangladesh J. Microbiol. 2023, 40, 60–65. [Google Scholar] [CrossRef]
- Azimi, L.; Lari, A.R. Colistin-resistant Pseudomonas aeruginosa clinical strains with defective biofilm formation. GMS Hyg. Infect. Control 2019, 14, Doc12. [Google Scholar]
- Heidari, R.; Farajzadeh Sheikh, A.; Hashemzadeh, M.; Farshadzadeh, Z.; Salmanzadeh, S.; Saki, M. Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran. Mol. Biol. Rep. 2022, 49, 3811–3822. [Google Scholar] [CrossRef]
- Davarzani, F.; Saidi, N.; Besharati, S.; Saderi, H.; Rasooli, I.; Owlia, P. Evaluation of antibiotic resistance pattern, alginate and biofilm production in clinical isolates of Pseudomonas aeruginosa. Iran. J. Public. Health 2021, 50, 341. [Google Scholar] [CrossRef]
Isolate | Specimen | Age/Sex | Year | Colistin (µg/mL) | Polymyxin B (µg/mL) | MBLs | Biofilms | Alginate | Pyocyanin |
---|---|---|---|---|---|---|---|---|---|
PA456 | Blood | 24/M | 2016 | 8 | 12 | - | - | + | + |
PA330 | WS | 46/M | 2015 | 8 | 12 | blaIMP | + | + | - |
PA306 | WS | 59/M | 2015 | 8 | 12 | - | - | + | - |
PA282 | WS | 45/F | 2015 | 8 | 12 | - | + | + | - |
PA461 | Pus | 56/M | 2016 | 6 | 12 | - | - | - | + |
PA405 | WS | 65/F | 2015 | 6 | 8 | - | - | + | + |
PA399 | WS | 60/F | 2015 | 6 | 8 | blaVIM | + | - | - |
PA419 | WS | 32/F | 2015 | 4 | 8 | - | - | + | + |
PA397 | WS | 48/F | 2015 | 4 | 12 | blaVIM | + | + | - |
PA312 | WS | 51/M | 2015 | 4 | 8 | - | + | + | - |
PA305 | WS | 39/M | 2015 | 4 | 12 | - | + | - | - |
PA298 | Blood | 56/F | 2015 | 4 | 8 | blaVIM | - | + | - |
PA280 | WS | 55/F | 2015 | 4 | 12 | blaVIM | + | + | - |
PA246 | WS | 65/M | 2014 | 4 | 6 | blaVIM | - | - | - |
PA56 | Urine | 52/F | 2014 | 4 | 8 | - | - | + | - |
PA120 | WS | 27/M | 2014 | 4 | 8 | - | - | + | + |
PA167 | WS | 60/M | 2014 | 4 | 6 | - | - | + | - |
PA186 | WS | 61/M | 2014 | 4 | 8 | blaVIM | - | + | - |
PA201 | WS | 37/F | 2014 | 4 | 6 | - | + | + | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaiarasan, E.; Alex, A.; Narasimha, H.B.; Sehgal, R. Characterization of Antimicrobial Resistance Mechanisms and Virulence Determinants in Colistin- and Carbapenem-Resistant Pseudomonas aeruginosa. Microbiol. Res. 2024, 15, 1814-1825. https://doi.org/10.3390/microbiolres15030121
Kalaiarasan E, Alex A, Narasimha HB, Sehgal R. Characterization of Antimicrobial Resistance Mechanisms and Virulence Determinants in Colistin- and Carbapenem-Resistant Pseudomonas aeruginosa. Microbiology Research. 2024; 15(3):1814-1825. https://doi.org/10.3390/microbiolres15030121
Chicago/Turabian StyleKalaiarasan, Ellappan, Anoop Alex, Harish Belgode Narasimha, and Rakesh Sehgal. 2024. "Characterization of Antimicrobial Resistance Mechanisms and Virulence Determinants in Colistin- and Carbapenem-Resistant Pseudomonas aeruginosa" Microbiology Research 15, no. 3: 1814-1825. https://doi.org/10.3390/microbiolres15030121
APA StyleKalaiarasan, E., Alex, A., Narasimha, H. B., & Sehgal, R. (2024). Characterization of Antimicrobial Resistance Mechanisms and Virulence Determinants in Colistin- and Carbapenem-Resistant Pseudomonas aeruginosa. Microbiology Research, 15(3), 1814-1825. https://doi.org/10.3390/microbiolres15030121