Outcomes of Microbiological Challenges in Poultry Transport: A Mini Review of the Reasons for Effective Bacterial Control
Abstract
:1. Introduction
2. Transport: From Farm to Slaughterhouse
3. Bacterial Infection during Poultry Transport
4. Strategies to Prevent Microbial Contamination during Poultry Transport
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alders, R.G.; Dumas, S.E.; Rukambile, E.; Magoke, G.; Maulaga, W.; Jong, J.; Costa, R. Family poultry: Multiple roles, systems, challenges, and options for sustainable contributions to household nutrition security through a planetary health lens. Matern. Child Nutr. 2018, 14 (Suppl. 3), e12668. [Google Scholar] [CrossRef] [PubMed]
- Dal Bosco, A.; Mattioli, S.; Mancinelli, A.C.; Cotozzolo, E.; Castellini, C. Extensive Rearing Systems in Poultry Production: The Right Chicken for the Right Farming System. A Review of Twenty Years of Scientific Research in Perugia University, Italy. Animals 2021, 11, 1281. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Gulla, K.; Sattlegger, E.; Mutukumira, A.N. Persistent contamination of Salmonella, Campylobacter, Escherichia coli, and Staphylococcus aureus at a broiler farm in New Zealand. Can. J. Microbiol. 2020, 66, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.d.S.; McManus, C.; Vale, I.R.R.; Dos Santos, V.M. Obtaining Microbiologically Safe Hatching Eggs from Hatcheries: Using Essential Oils for Integrated Sanitization Strategies in Hatching Eggs, Poultry Houses and Poultry. Pathogens 2024, 13, 260. [Google Scholar] [CrossRef]
- Reid, W.M.; Maag, T.A.; Boyd, F.M.; Kleckner, A.L.; Schmittle, S.C. Embryo and baby chick mortality and morbidity induced by a strain of Escherichia coli. Poult. Sci. 1961, 40, 1497–1502. [Google Scholar] [CrossRef]
- Gast, R.K.; Guraya, R.; Jones, D.R.; Anderson, K.E.; Karcher, D.M. Colonization of internal organs by Salmonella Enteritidis in experimentally infected laying hens housed in enriched colony cages at different stocking densities. Poult. Sci. 2016, 95, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, E.S.; Cardozo, M.V.; Borzi, M.M.; Borges, C.A.; Guastalli, E.A.L.; Ávila, F.A. Highly Pathogenic and Multidrug Resistant Avian Pathogenic Escherichia coli in Free-Range Chickens from Brazil. Braz. J. Poult. Sci. 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Wlaźlak, S.; Pietrzak, E.; Biesek, J.; Dunisławska, A. Modulation of the immune system of chickens a key factor in maintaining poultry production—A review. Poult. Sci. 2023, 102, 102785. [Google Scholar] [CrossRef] [PubMed]
- Khatun, R.; Azam, M.G.; Islam, M.M.; Akther, M.; Rashid, S.M.H. Prevalence and pathology of colibacillosis in broiler farms at Dinajpur Sadar Upazila. Bangl. Vet. 2022, 38, 10–16. [Google Scholar] [CrossRef]
- Dantas, R.P. Avaliação das Condições Higiênico-Sanitárias de Frigoríficos do Sertão Paraibano; Trabalho de Conclusão de Curso; Universidade Federal de Campina Grande: Pombal, Brasil, 2017. [Google Scholar]
- Silva, I.A.A. Avaliação das Condições Higiênico-Sanitárias de um Abatedouro de Aves; Trabalho de Conclusão de Curso; Universidade Federal Rural do Semi-Árido: Mossoró, Brasil, 2019. [Google Scholar]
- De Quadros, T.A.; Bohnemberger, J.; Friebel, J.; Ebling, P.D. Principais Causas de Condenação Total de Frangos em Abatedouros de Santa Catarina. 6º AGROTEC—Simpósio de Agronomia e Tecnologia; Unidade Central de Educação Faem Faculdade: Itapiranga, Brasil, 2019. [Google Scholar]
- Pissolitto, R.M.; Piassa, M.M.C. Índice de condenações de carcaças de frango em frigorífico sob Inspeção Federal localizado na região oeste do Paraná. Arq. Bras. Med. Veterinária FAG 2023, 6, 108–117. [Google Scholar]
- Oliveira, A.L.; Oliveira, R.B.P. Enumeração de Campylobacter spp. e presença de Campylobacter jejuni em carcaças de frango no estado de Minas Gerais. Ciência Rural 2013, 43, 480–484. [Google Scholar] [CrossRef]
- Zanatta, G.; Cardoso, A.L.; Tessari, E.; Luciano, R.L.; Kanashiro, A.M. Salmonella spp. Em Produtos Avícolas De Abatedouros. Enciclopedia Biosf. 2023, 20, 231–239. [Google Scholar]
- Tegegne, H.; Filie, K.; Tolosa, T.; Debelo, M.; Ejigu, E. Isolation, and Identification of Escherichia coli O157: H7 Recovered from Chicken Meat at Addis Ababa Slaughterhouses. Infect. Drug Resist. 2024, 17, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Dzieciolowski, T.; Boqvist, S.; Rydén, J.; Hansson, I. Cleaning and disinfection of transport crates for poultry–comparison of four treatments at slaughter plant. Poult. Sci. 2022, 101, 101521. [Google Scholar] [CrossRef] [PubMed]
- Racicot, M.; Kocher, A.; Beauchamp, G.; Letellier, A.; Vaillancourt, J.P. Assessing most practical and effective protocols to sanitize hands of poultry catching crew members. Prev. Vet. Med. 2013, 111, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Huneau-Salaün, A.; Scoizec, A.; Thomas, R.; Martenot, C.; Schmitz, A.; Pierre, I.; Allée, C.; Busson, R.; Massin, P.; Briand, F.X.; et al. Avian influenza outbreaks: Evaluating the efficacy of cleaning and disinfection of vehicles and transport crates. Poult. Sci. 2022, 101, 101569. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Ha, J.S.; Kim, B.Y.; Lee, D.H.; Park, J.K.; Youn, H.N.; Hong, Y.H.; Lee, S.B.; Lee, J.B.; Park, S.Y.; et al. Prevalence and characterization of Salmonella species in entire steps of a single integrated broiler supply chain in Korea. Poult. Sci. 2014, 93, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, V.M.; Dallago, B.S.L.; Racanicci, A.M.C.; Santana, Â.P.; Bernal, F.E.M. Effects of season and distance during transport on broiler chicken meat. Poult. Sci. 2017, 96, 4270–4279. [Google Scholar] [CrossRef]
- Dos Santos, V.M.; Dallago, B.S.L.; Racanicci, A.M.C.; Santana, Â.P.; Cue, R.I.; Bernal, F.E.M. Effect of transportation distances, seasons and crate microclimate on broiler chicken production losses. PLoS ONE 2020, 15, e0232004. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; et al. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J. 2022, 20, e07586. [Google Scholar] [PubMed]
- Dianin, K.C.S. Indicadores de Higiene e Pesquisa de Salmonella spp. em Linha de abate e Processamento de Frango de Corte. Master’s Thesis, Universidade Federal do Paraná, Palotina, Brasil, 2016. [Google Scholar]
- Sampaio, L.N.S. Pesquisa de Salmonella spp. e Caracterização Microbiológica de Caixas de Transporte de Frangos de corte no Distrito Federal e Entorno. Master’s Thesis, Universidade de Brasília, Brasília, Brasil, 2018. [Google Scholar]
- Hosseinnezhad, N.; Ahari, H.; Akhondzadeh, A. Effect of four chicken carcass transportation methods at selected room temperatures on the bacterial load of Staphylococcus aureus, Salmonella species, and Escherichia coli. Arch. Razi Inst. 2018, 73, 95–106. [Google Scholar] [PubMed]
- Marin, C.; Lainez, M. Salmonella detection in feces during broiler rearing and after live transport to the slaughterhouse. Poult. Sci. 2009, 88, 1999–2005. [Google Scholar] [CrossRef]
- Ellerbroek, L.I.; Lienau, J.A.; Klein, G. Campylobacter spp. in broiler flocks at farm level and the potential for cross-contamination during slaughter. Zoonoses Public Health 2010, 57, e81–e88. [Google Scholar] [CrossRef] [PubMed]
- Perez-Arnedo, I.; Gonzalez-Fandos, E. Prevalence of Campylobacter spp. in poultry in three Spanish farms, a slaughterhouse and a further processing plant. Foods 2019, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.B.; Sierra–Arguello, Y.M.; Perdoncini, G.; Borges, K.A.; Furian, T.Q.; Gomes, M.J.P.; Lima, D.; Salle, C.T.P.; Moraes, H.L.S.; Nascimento, V.P. Comparison of transport crates contamination with Campylobacter spp. before and after the cleaning and disinfection procedure in broiler slaughterhouses. Poult. Sci. 2022, 101, 101909. [Google Scholar] [CrossRef]
- Anushri, T.; Madhu, S.; Amita, D.; Yamini, V. Pathological alterations in commercial chicken affected with Salmonella infection. Indian J. Vet. Pathol. 2021, 45, 109–115. [Google Scholar]
- Surjagade, S.; Joshi, B.P.; Mathakiya, R.A.; Kapadiya, B.; Bansod, A.P.; Jadhao, A.D.; Prajapati, R.; Ghodasara, D.J.; Dave, C.J.; Jani, P. Mortality pattern and pathological study of E. coli infection in broiler chickens. J. Entomol. Zool. Stud. 2020, 8, 867–872. [Google Scholar]
- Mollenkopf, D.F.; De Wolf, B.; Feicht, S.M.; Cenera, J.K.; King, C.A.; van Balen, J.C.; Wittum, T.E. Salmonella spp. and extended-spectrum cephalosporin-resistant Escherichia coli frequently contaminate broiler chicken transport cages of an organic production company. Foodborne Pathog. Dis. 2018, 15, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Durmuşoğlu, H.; İncili, G.K.; Demir, P.; İlhak, O.İ. Effects of workers’ hand washing and knife disinfection practices on microbiological quality of small animal carcasses in slaughterhouse environment. J. Food Process. Preserv. 2020, 44, e14918. [Google Scholar] [CrossRef]
- Berrang, M.E.; Meinersmann, R.J.; Cox, N.A.; Adams, E.S. Water rinse and flowing steam to kill Campylobacter on broiler transport coop flooring. Food Control 2020, 114, 107214. [Google Scholar] [CrossRef]
- Moazzami, M.; Fernström, L.L.; Hansson, I. Reducing Campylobacter jejuni, Enterobacteriaceae and total aerobic bacteria on transport crates for chickens by irradiation with 265-nm ultraviolet light (UV–C LED). Food Control 2021, 119, 107424. [Google Scholar]
- Zang, Y.T.; Li, B.M.; Bing, S.; Cao, W. Modeling disinfection of plastic poultry transport cages inoculated with Salmonella Enteritids by slightly acidic electrolyzed water using response surface methodology. Poult. Sci. 2015, 94, 2059–2065. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa, C.; Caldwell, D.; Byrd, J.; Droleskey, R.; Lee, J.; Stayer, P.; Resendiz, E.; Garcia, J.; Klein, S.; Caldwell, D.; et al. Use of foaming disinfectants and cleaners to reduce aerobic bacteria and Salmonella on poultry transport coops. Animals 2018, 8, 195. [Google Scholar] [CrossRef]
- Da Rosa, M.C.O. Avaliação da Contaminação por Salmonella spp. em Gaiolas de Transporte de Frango Vivo Após a Etapa de Higienização; Trabalho de Conclusão de Curso; Universidade Federal do Rio Grande do Sul: Porto Alegre, Brasil, 2010. [Google Scholar]
- Kraszczuk, V. Verificação do Processo de Higienização Pré-Operacional de um Abatedouro de Aves; Trabalho de Conclusão de Curso; Universidade Federal do Rio Grande do Sul: Porto Alegre, Brasil, 2010. [Google Scholar]
- Dvorak, G. Disinfection 101 “Key Principles of Cleaning and Disinfection for Animal Settings”. 2023. Available online: http://www.cfsph.iastate.edu/Disinfection/Assets/Disinfection101.pdf (accessed on 22 May 2024).
- Hirakawa, R.; Nurjanah, S.; Furukawa, K.; Murai, A.; Kikusato, M.; Nochi, T.; Toyomizu, M. Heat stress causes immune abnormalities via massive damage to effect proliferation and differentiation of lymphocytes in broiler chickens. Front. Vet. Sci. 2020, 7, 46. [Google Scholar] [CrossRef] [PubMed]
Washing Protocol | Findings | Reference |
---|---|---|
1. Pre-wash carried out with a set of spray nozzles. 2. Immersion for 90 s in a tank with cold water and 0.5% sodium hypochlorite. 3. The main wash with high-pressure nozzles that spray cold water on all surfaces of the crate. 4. Removing excess water with channel blowers. 5. Disinfection with 0.5% sodium hypochlorite. 6. Drying with a dehumidifier. | The washing protocol has the potential to reduce the microbial load in chicken transport crates, potentially mitigating the risk of introducing Campylobacter spp. into broilers. | [17] |
1. Physical removal with water spray of fecal material, dirt, and debris. 2. Water spray. 3. Application of chlorinated alkaline detergent. 4. Rinsing with water spray. 5. Application of 1% benzalkonium chloride-based disinfectant. The water used in the tunnel was pumped at a pressure of 10 kg/cm2 with an average temperature of 45 to 50 °C, pH 6.75 to 7.02, and chlorination at 0.3 to 2 ppm. | The cleaning and sanitization protocol was ineffective in reducing Campylobacter spp. | [30] |
Rinse with tap water followed by steam flow at ambient pressure at 100 °C. | The combined application of rinsing and steam has been shown to be very effective, reducing the number of Campylobacter spp. on the crate floor by more than 99.9%. | [35] |
Irradiation with 265 nm UV-C light. | The antibacterial protocol significantly reduced the number of C. jejuni, Enterobacteriaceae, and total aerobic bacteria in chicken transport crates. | [36] |
1. Cleaning with tap water (5 to 15 s). 2. Spraying with slightly acidic electrolyzed water (pH 5.85 to 6.53/20 to 40 s) with chlorine concentrations ranging from 30 to 70 mg/L. | The maximum reduction of 3.12 log10 CFU/cm2 of S. Enteritidis was achieved in crates treated with 15 s of tap water, followed by a 40 s treatment with slightly acidic electrolyzed water containing 50 mg/L of chlorine. | [37] |
(1) Low-pressure water rinse, (2) peroxyacetic acid + foaming agent, or (3) high-pressure water rinse followed by peroxyacetic acid + foaming agent. Contact time of 10 min followed by a rinsing with low-pressure water. | Reduction of 2.32 log10 of aerobic bacteria and 4.48 log10 of S. Typhimurium was observed on the surfaces of broiler transport crates treated with high-pressure water rinse followed by peroxyacetic acid plus foaming agent. | [38] |
1. Immersion in a tank with continuous water renewal.
| All four samples that tested positive for Salmonella spp. were negative after the application of Protocol 2. No samples presented Salmonella spp. before and after the application of Protocol 3. | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, V.M.; Oliveira, G.d.S.; Salgado, C.B.; Pires, P.G.d.S.; Santos, P.H.G.d.S.; McManus, C. Outcomes of Microbiological Challenges in Poultry Transport: A Mini Review of the Reasons for Effective Bacterial Control. Microbiol. Res. 2024, 15, 962-971. https://doi.org/10.3390/microbiolres15020063
dos Santos VM, Oliveira GdS, Salgado CB, Pires PGdS, Santos PHGdS, McManus C. Outcomes of Microbiological Challenges in Poultry Transport: A Mini Review of the Reasons for Effective Bacterial Control. Microbiology Research. 2024; 15(2):962-971. https://doi.org/10.3390/microbiolres15020063
Chicago/Turabian Styledos Santos, Vinícius Machado, Gabriel da Silva Oliveira, Cristiane Batista Salgado, Paula Gabriela da Silva Pires, Pedro Henrique Gomes de Sá Santos, and Concepta McManus. 2024. "Outcomes of Microbiological Challenges in Poultry Transport: A Mini Review of the Reasons for Effective Bacterial Control" Microbiology Research 15, no. 2: 962-971. https://doi.org/10.3390/microbiolres15020063
APA Styledos Santos, V. M., Oliveira, G. d. S., Salgado, C. B., Pires, P. G. d. S., Santos, P. H. G. d. S., & McManus, C. (2024). Outcomes of Microbiological Challenges in Poultry Transport: A Mini Review of the Reasons for Effective Bacterial Control. Microbiology Research, 15(2), 962-971. https://doi.org/10.3390/microbiolres15020063