Exploring the Antimicrobial and Antioxidant Activities of Streptomyces sp. EIZ2 Isolated from Moroccan Agricultural Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collecting Soil Samples
2.2. Physico-Chemical Soil Analysis
2.3. Pre-Treatment of Soil Samples and Isolation of Actinobacteria Strains
2.4. Preliminary Identification of Actinobacteria Isolates
2.5. Genotypic Identification and Phylogenetic Tree Construction
2.6. Evaluation of Antimicrobial Activity
2.6.1. Test Bacteria Used
2.6.2. Primary Screening of Actinobacteria Isolates for Antimicrobial Activity
2.6.3. Fermentation and Extraction of Secondary Metabolites
2.6.4. Evaluation of the Antimicrobial Activity of Organic Extracts
2.6.5. Cultural, Physiological, and Biochemical Characteristics of Actinobacteria Isolates
2.7. Determination of Total Phenolic and Flavonoid Contents
2.8. Evaluation of the In Vitro Antioxidant Activities
2.9. UV-Visible Analysis
2.10. Evaluation of Hemolytic Activity
2.11. GC–MS Analysis of EIZ2 Strain Crude Ethyl Acetate Extract
2.12. Statistical Analysis
3. Results
3.1. Physico-Chemical Analysis of Soil Samples
3.2. Isolation of Actinobacteria
3.3. Primary Screening of Actinobacteria Isolates
3.4. Secondary Screening of Actinobacteria Isolates
3.5. Micro-Morphological, Biochemical, and Physiological Characteristics of Isolates
3.6. Genotypic Characterization of EIZ2 Isolate and Construction of Phylogenetic Tree
3.7. Total Phenolic Content of Crude Extracts
3.8. In Vitro Antioxidant Activities
3.9. Correlation between Antioxidant Activities and Total Phenolic and Flavonoid Contents
3.10. Analysis of Ethyl Acetate Extract of EIZ2 Isolate Using UV-Visible Spectroscopy
3.11. Evaluation of the Toxicity of EIZ2 Isolate Ethyl Acetate Extract by Hemolysis Test
3.12. Identification of Bioactive Compounds Using GC–MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Courvalin, P. La Résistance des Bactéries aux Antibiotiques: Combinaisons de Mécanismes Biochimiques et Génétiques. Bull. Acad. Vet. Fr. 2008, 161, 7–12. [Google Scholar] [CrossRef]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.E.; Davies, D.K. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.L.; Baquero, F.; Andersson, D.I. Predicting Antibiotic Resistance. Nat. Rev. Microbiol. 2007, 5, 958–965. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B.; Marshall, B. Antibacterial Resistance Worldwide: Causes, Challenges and Responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef] [PubMed]
- CDC. Antibiotic Resistance Threats in The United States 2019; CDC: Atlanta, GA, USA, 2019; Volume 10. [CrossRef]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016.
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Aldosari, S.; Awad, M.; Harrington, E.O.; Sellke, F.W.; Abid, M.R. Subcellular Reactive Oxygen Species (ROS) in Cardiovascular Pathophysiology. Antioxidants 2018, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, X.; Huang, Y.; Liao, B.; Cheng, L.; Ren, B. Reactive Oxygen Species in Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects. Front. Microbiol. 2021, 11, 622534. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Gruber, C.C.; Yang, J.H.; Liu, X.; Braff, D.; Yashaswini, C.N. Lethality of MalE-LacZ Hybrid Protein Shares Mechanistic Attributes with Oxidative Component of Antibiotic Lethality. Proc. Natl. Acad. Sci. USA 2017, 114, 9164–9169. [Google Scholar] [CrossRef] [PubMed]
- Kohanski, M.A.; Depristo, M.A.; Collins, J.J. Article Sublethal Antibiotic Treatment Leads to Multidrug. Mol. Cell 2010, 37, 311–320. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J.; Engelstädter, J.; Zhang, S.; Bond, P.L.; Guo, J. Non-Antibiotic Pharmaceuticals Enhance the Transmission of Exogenous Antibiotic Resistance Genes through Bacterial Transformation. ISME J. 2020, 14, 2179–2196. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, A.; Rastogi, A.; Pandey, S.; Gupta, S.; Sohal, J.S. Multidrug-Resistant Bacteria: Their Mechanism of Action and Prophylaxis. Biomed Res. Int. 2022, 2022, 5419874. [Google Scholar] [CrossRef] [PubMed]
- Dancer, S.J. How Antibiotics Can Make Us Sick: The Less Obvious Adverse Effects of Antimicrobial Chemotherapy. Lancet Infect. Dis. 2004, 4, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Boughachiche, F.; Reghioua, S.; Zerizer, H.; Boulahrouf, A. Activité Antibactérienne d’espèces Rares de Streptomyces Contre des Isolats Cliniques Multirésistants. Ann. Biol. Clin. 2012, 70, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Ningthouja, D.S.; Sanasam, S.; Nimaichand, S. Screening of Actinomycete Isolates from Niche Habitats in Manipur for Antibiotic Activity. Am. J. Biochem. Biotechnol. 2009, 5, 221–225. [Google Scholar] [CrossRef]
- Rammali, S.; Hilali, L.; Dari, K.; Bencharki, B.; Rahim, A.; Timinouni, M.; Gaboune, F.; El Aalaoui, M.; Khattabi, A. Antimicrobial and Antioxidant Activities of Streptomyces Species from Soils of Three Different Cold Sites in the Fez-Meknes Region Morocco. Sci. Rep. 2022, 12, 17233. [Google Scholar] [CrossRef] [PubMed]
- De Lima Procópio, R.E.; da Silva, I.R.; Martins, M.K.; de Azevedo, J.L.; de Araújo, J.M. Antibiotics Produced by Streptomyces. Braz. J. Infect. Dis. 2012, 16, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; Sharma, R.K.; Arora, D.S. Antioxidant Compounds from Microbial Sources: A Review. Food Res. Int. 2020, 129, 108849. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.A.; Banat, A.M.; Abdelhameed, A.M.; Banat, I.M. Streptomyces from Traditional Medicine: Sources of New Innovations in Antibiotic Discovery. J. Med. Microbiol. 2020, 69, 1040. [Google Scholar] [CrossRef] [PubMed]
- Anandan, R.; Dharumadurai, D.; Manogaran, G.P. An Introduction to Actinobacteria. In Actinobacteria—Basics and Biotechnological Applications; IntechOpen: London, UK, 2016. [Google Scholar]
- Sengupta, S.; Pramanik, A.; Ghosh, A.; Bhattacharyya, M. Antimicrobial Activities of Actinomycetes Isolated from Unexplored Regions of Sundarbans Mangrove Ecosystem. BMC Microbiol. 2015, 15, 170. [Google Scholar] [CrossRef] [PubMed]
- Thirion-Merle, V. Spectrométrie de Fluorescence X. In Circulation et Provenance Des Matériaux Dans Les Sociétés Anciennes; Dillmann, P., Bellot-Gurlet, L., Eds.; Editions des archives contemporaines, Coll; Sciences archéologiques: Lyon, France, 2014; pp. 291–298. ISBN 978-2-8130-0163-4. [Google Scholar] [CrossRef]
- Li, Q.; Chen, X.; Jiang, Y.; Jiang, C. Morphological Identification of Actinobacteria. In Actinobacteria—Basics and Biotechnological Applications; IntechOpen: London, UK, 2016; pp. 59–86. [Google Scholar]
- Arasu, M.V.; Duraipandiyan, V.; Agastian, P.; Ignacimuthu, S. In Vitro Antimicrobial Activity of Streptomyces spp. ERI-3 Isolated from Western Ghats Rock Soil (India). J. Mycol. Med. 2009, 19, 22–28. [Google Scholar] [CrossRef]
- Lee, E.J.; Hwang, K.Y.; Lee, H.-S.; Chung, N. Characterization of a New Streptomyces Sp. A1022 as a Potential Biocontrol Agent. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 488–493. [Google Scholar] [CrossRef]
- Bouaziz, S.; Messis, A.; Bettache, A.; El Hadj, M.D.O.; Benallaoua, E.S. Antifungal Activity of Streptomyces sp. 14 Strain Isolated from Ouargla (Southeast of Algeria): Identification, Production and Characterization of the Active Substance. Int. J. Biosci. 2016, 9, 45–56. [Google Scholar]
- Thakur, D.; Yadav, A.; Gogoi, B.K.; Bora, T.C. Isolation and Screening of Streptomyces in Soil of Protected Forest Areas from the States of Assam and Tripura, India, for Antimicrobial Metabolites. J. Mycol. Med. 2007, 17, 242–249. [Google Scholar] [CrossRef]
- Das, R.; Romi, W.; Das, R.; Sharma, H.K.; Thakur, D. Antimicrobial Potentiality of Actinobacteria Isolated from Two Microbiologically Unexplored Forest Ecosystems of Northeast India. BMC Microbiol. 2018, 18, 71. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, S.; Karthic, C.; Mostafa, A.A.; Al-Enazi, N.M.; Abdel-Raouf, N.; Sholkamy, E.N. Antifungal Activity of Streptomyces sp. SLR03 against Tea Fungal Plant Pathogen Pestalotiopsis Theae. J. King Saud Univ. 2020, 32, 3258–3264. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S Ribosomal DNA Amplification for Phylogenetic Study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Badji, B.; Riba, A.; Mathieu, F.; Lebrihi, A.; Sabaou, N. Activité Antifongique d’une Souche d’Actinomadurad ’origine Saharienne sur Divers Champignons Pathogènes et Toxinogènes. J. Mycol. Med. 2005, 15, 211–219. [Google Scholar] [CrossRef]
- Boughachiche, F.; Reghioua, S.; Zerizer, H.; Oulmi, L.; Boudemagh, A.; Kitouni, M.; Boulahrouf, A. Production et Caractérisation Préliminaire des Antibiotiques Isolés d’une Actinomycetale Isolée de Sebkha de Ain Mlila (Algérie). Antibiotiques 2005, 7, 234–238. [Google Scholar] [CrossRef]
- Pare, A.; Mandhyan, B.L. Food Process Engineering and Technology; New India Publishing Agency: New Delhi, India, 2011. [Google Scholar]
- Zitouni, A.; Boudjella, H.; Lamari, L.; Badji, B.; Mathieu, F.; Lebrihi, A.; Sabaou, N. Nocardiopsis and Saccharothrix Genera in Saharan Soils in Algeria: Isolation, Biological Activities and Partial Characterization of Antibiotics. Res. Microbiol. 2005, 156, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Aouiche, A.; Sabaou, N.; Meklat, A.; Zitouni, A.; Mathieu, F.; Lebrihi, A. Activité Antimicrobienne de Streptomyces sp. PAL111 d’origine Saharienne Contre Divers Microorganismes Cliniques et Toxinogènes Résistants Aux Antibiotiques. J. Mycol. Med. 2012, 22, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Crawford, D.L.; Lynch, J.M.; Whipps, J.M.; Ousley, M.A. Isolation and Characterization of Actinomycete Antagonists of a Fungal Root Pathogen. Appl. Environ. Microbiol. 1993, 59, 3899–3905. [Google Scholar] [CrossRef] [PubMed]
- Tresner, H.D.; Hayes, J.A.; Backus, E.J. Differential Tolerance of Streptomycetes to Sodium Chloride as a Taxonomic Aid. Appl. Microbiol. 1968, 16, 1134–1136. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, S.; Taniguchi, M.; Suzuki, Y.; Shimura, M.; Kwon, M.-S.; Nakayama, T. Antioxidant Activity of Polyphenols in Carob Pods. J. Agric. Food Chem. 2002, 50, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Bahorun, T.; Gressier, B.; Trotin, F.; Brunet, C.; Dine, T.; Luyckx, M.; Vasseur, J.; Cazin, M.; Cazin, J.C.; Pinkas, M. Oxygen Species Scavenging Activity of Phenolic Extracts from Hawthorn Fresh Plant Organs and Pharmaceutical Preparations. Arzneimittelforschung 1996, 46, 1086–1089. [Google Scholar] [PubMed]
- Blois, M.S. Comparison of Different Organic Solvents on Antioxidant Activity of Astaxanthin Extracted from Hematococcus pluvialis. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Nicoletta, P.; Anna, P.; Ananth, P.; Min, Y.; Catherine, R.-E. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Antioxidative Activities of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Chakraborty, B.; Kumar, R.S.; Almansour, A.I.; Perumal, K.; Nayaka, S.; Brindhadevi, K. Streptomyces filamentosus Strain KS17 Isolated from Microbiologically Unexplored Marine Ecosystems Exhibited a Broad Spectrum of Antimicrobial Activity against Human Pathogens. Process Biochem. 2022, 117, 42–52. [Google Scholar] [CrossRef]
- Rajendran, K.; Sen, S.; Suja, G.; Senthil, S.L.; Kumar, T.V. Evaluation of Cytotoxicity of Hematite Nanoparticles in Bacteria and Human Cell Lines. Colloids Surf. B Biointerfaces 2017, 157, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.Y.; Holt, R.R.; Lazarus, S.A.; Orozco, T.J.; Keen, C.L. Inhibitory Effects of Cocoa Flavanols and Procyanidin Oligomers on Free Radical-Induced Erythrocyte Hemolysis. Exp. Biol. Med. 2002, 227, 321–329. [Google Scholar] [CrossRef]
- Al-Mulla, A. A Review: Biological Importance of Heterocyclic Compounds. Pharma Chem. 2017, 9, 141–147. [Google Scholar]
- Baregama, L.K.; Ahmed, M.; Dak, G.; Sharma, K.; Talesara, G.L. Evaluation of the Antimicrobial Activity of Some Novel Alpha Substituted Hydroxylamine Derivatives. Indian J. Pharmacol. 2004, 36, 315. [Google Scholar]
- In, Y.-W.; Kim, J.-J.; Kim, H.-J.; Oh, S.-W. Antimicrobial Activities of Acetic Acid, Citric Acid and Lactic Acid against Shigella Species. J. Food Saf. 2013, 33, 79–85. [Google Scholar] [CrossRef]
- Devendran, G.; Sivamani, G. Phytochemical Analysis of Leaf Extract of Plant Costus spicatus By GCMS Method. J. Drug Deliv. Ther. 2015, 5, 24–26. [Google Scholar] [CrossRef]
- Sin, S.; Myint, K. Study on Traditional Medicine (Setkupala No. 2) for Eye Diseases. J. Myanmar Acad. Arts Sci. 2020, XVIII, 181–189. [Google Scholar]
- Itoh, T.; Muramatsu, M.; Miyazono, D.; Koketsu, M.; Fujita, S.; Hashizume, T. Phenolic Glycosides Citrulluside H and Citrulluside T Isolated from Young Watermelon (Citrullus Lanatus) Fruit Have Beneficial Effects against Cutibacterium Acnes-Induced Skin Inflammation. Nat. Prod. Commun. 2023, 18, 1934578X221143202. [Google Scholar] [CrossRef]
- Nahar, L.; Russell, W.R.; Middleton, M.; Shoeb, M.; Sarker, S.D. Antioxidant Phenylacetic Acid Derivatives from the Seeds of Ilex aquifolium. Acta Pharm. 2005, 55, 187–193. [Google Scholar] [PubMed]
- Kim, Y.; Cho, J.Y.; Kuk, J.H.; Moon, J.H.; Cho, J.I.; Kim, Y.C.; Park, K.H. Identification and Antimicrobial Activity of Phenylacetic Acid Produced by Bacillus licheniformis Isolated from Fermented Soybean, Chungkook-Jang. Curr. Microbiol. 2004, 48, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.K.; Lim, S.W.; Kim, B.S.; Lee, J.Y.; Moon, S.S. Isolation and in Vivo and in Vitro Antifungal Activity of Phenylacetic Acid and Sodium Phenylacetate from Streptomyces humidus. Appl. Environ. Microbiol. 2001, 67, 3739–3745. [Google Scholar] [CrossRef] [PubMed]
- Mangamuri, U.; Muvva, V.; Poda, S.; Naragani, K.; Munaganti, R.K.; Chitturi, B.; Yenamandra, V. Bioactive Metabolites Produced by Streptomyces Cheonanensis VUK-A from Coringa Mangrove Sediments: Isolation, Structure Elucidation and Bioactivity. 3 Biotech 2016, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Davet, P. Vie Microbienne du Sol et Production Végétale; Editions Quae: Versailles, France, 1996. [Google Scholar]
- Yang, C.; Wang, X.; Miao, F.; Zhenyi, L.; Tang, W.; Sun, J. Assessing the Effect of Soil Salinization on Soil Microbial Respiration and Diversities under Incubation Conditions. Appl. Soil Ecol. 2020, 155, 103671. [Google Scholar] [CrossRef]
- Wichern, J.; Wichern, F.; Joergensen, R.G. Impact of Salinity on Soil Microbial Communities and the Decomposition of Maize in Acidic Soils. Geoderma 2006, 137, 100–108. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hwang, B.K. Diversity of Antifungal Actinomycetes in Various Vegetative Soils of Korea. Can. J. Microbiol. 2002, 48, 407–417. [Google Scholar] [CrossRef]
- Maldonado, L.A.; Stach, J.E.M.; Pathom-Aree, W.; Ward, A.C.; Bull, A.T.; Goodfellow, M. Diversity of Cultivable Actinobacteria in Geographically Widespread Marine Sediments. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2005, 87, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Del Giorgio, P.A.; Bouvier, T.C. Linking the Physiologic and Phylogenetic Successions in Free-Living Bacterial Communities along an Estuarine Salinity Gradient. Limnol. Oceanogr. 2002, 47, 471–486. [Google Scholar] [CrossRef]
- Ramos, I.; Guzmán, S.; Escalante, L.; Imriskova, I.; Rodríguez-Sanoja, R.; Sanchez, S.; Langley, E. Glucose Kinase Alone Cannot Be Responsible for Carbon Source Regulation in Streptomyces peucetius var. Caesius. Res. Microbiol. 2004, 155, 267–274. [Google Scholar] [CrossRef]
- Martín, J.F.; Liras, P.; Sánchez, S. Modulation of Gene Expression in Actinobacteria by Translational Modification of Transcriptional Factors and Secondary Metabolite Biosynthetic Enzymes. Front. Microbiol. 2021, 12, 630–694. [Google Scholar] [CrossRef]
- Burns, K.E.; Darwin, K.H. Pupylation versus Ubiquitylation: Tagging for Proteasome-Dependent Degradation. Cell. Microbiol. 2010, 12, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.-G.; Butler, M.J.; Chater, K.F.; Lee, K.J. Engineering of Primary Carbohydrate Metabolism for Increased Production of Actinorhodin in Streptomyces coelicolor. Appl. Environ. Microbiol. 2006, 72, 7132–7139. [Google Scholar] [CrossRef]
- Lewin, G.R.; Carlos, C.; Chevrette, M.G.; Horn, H.A.; McDonald, B.R.; Stankey, R.J.; Fox, B.G.; Currie, C.R. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Annu. Rev. Microbiol. 2016, 70, 235–254. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Xu, L. Actinomycete Diversity in Unusual Habitats. Actinomycetes 1993, 4, 47–57. [Google Scholar]
- Singh, A.P.; Singh, R.B.; Mishra, S. Microbial and Biochemical Aspects of Antibiotic Producing Microorganisms from Soil Samples of Certain Industrial Area of India—An Overview. Open Nutraceuticals J. 2012, 5, 107–112. [Google Scholar] [CrossRef]
- Choi, K.-Y. Bioprocess of Microbial Melanin Production and Isolation. Front. Bioeng. Biotechnol. 2021, 9, 765110. [Google Scholar] [CrossRef]
- Dastager, S.G.; Li, W.J.; Dayanand, A.; Tang, S.K.; Tian, X.P.; Zhi, X.Y.; Xu, L.H.; Jiang, C.L. Seperation, Identification and Analysis of Pigment (Melanin) Production in Streptomyces. Afr. J. Biotechnol. 2006, 5, 1131–1134. [Google Scholar]
- Pavan, M.E.; López, N.I.; Pettinari, M.J. Melanin Biosynthesis in Bacteria, Regulation and Production Perspectives. Appl. Microbiol. Biotechnol. 2020, 104, 1357–1370. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Y.; Li, Y. Metal Ions Driven Production, Characterization and Bioactivity of Extracellular Melanin from Streptomyces sp. ZL-24. Int. J. Biol. Macromol. 2019, 123, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Wibowo, J.T.; Kellermann, M.Y.; Petersen, L.E.; Alfiansah, Y.R.; Lattyak, C.; Schupp, P.J. Characterization of an Insoluble and Soluble Form of Melanin Produced by Streptomyces cavourensis SV 21, a Sea Cucumber Associated Bacterium. Mar. Drugs 2022, 20, 54. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.; Singh, D.; Nigam, P. Solid-State Fermentation: A Promising Microbial Technology for Secondary Metabolite Production. Appl. Microbiol. Biotechnol. 2001, 55, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Bigelis, R.; He, H.; Yang, H.Y.; Chang, L.P.; Greenstein, M. Production of Fungal Antibiotics Using Polymeric Solid Supports in Solid-State and Liquid Fermentation. J. Ind. Microbiol. Biotechnol. 2006, 33, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Pattanaik, B.N.; Mandalia, H.C. Ethyl Acetate: Properties, Production Processes and Applications—A Review. Int. J. Curr. Res. Rev. 2011, 3, 23–40. [Google Scholar]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial by-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Manach, C.; Mazur, A.; Scalbert, A. Polyphenols and Prevention of Cardiovascular Diseases. Curr. Opin. Lipidol. 2005, 16, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Kofujita, H.; Yaguchi, M.; Doi, N.; Suzuki, K. A Novel Cytotoxic Prenylated Flavonoid from the Root of Morus Alba. J. Insect Biotechnol. Sericol. 2004, 73, 113–116. [Google Scholar]
- Tan, L.T.H.; Chan, K.G.; Khan, T.M.; Bukhari, S.I.; Saokaew, S.; Duangjai, A.; Pusparajah, P.; Lee, L.H.; Goh, B.H. Streptomyces sp. MUM212 as a Source of Antioxidants with Radical Scavenging and Metal Chelating Properties. Front. Pharmacol. 2017, 8, 276. [Google Scholar] [CrossRef] [PubMed]
- Yogeswari, S.; Ramalakshmi, S.; Neelavathy, R.; Muthumary, J. Identification and Comparative Studies of Different Volatile Fractions from Monochaetia kansensis by GCMS. Glob. J. Pharmacol. 2012, 6, 65–71. [Google Scholar]
- Bahorun, T.; Soobrattee, M.A.; Luximon-ramma, M.V.; Aruoma, P.O.I. Free Radicals and Antioxidants in Cardiovascular Health and Disease. Internet J. Med. Update—EJOURNAL 2006, 1, 25–41. [Google Scholar] [CrossRef]
- Droge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Kunwar, A.; Priyadarsini, K. Free Radicals, Oxidative Stress and Importance of Antioxidants in Human Health. J. Med. Allied Sci. 2011, 1, 53–60. [Google Scholar]
- Yilma, S.; Cannon-Sykora, J.; Samoylov, A.; Lo, T.; Liu, N.; Brinker, C.J.; Neely, W.C.; Vodyanoy, V. Large-Conductance Cholesterol—Amphotericin B Channels in Reconstituted Lipid Bilayers. Biosens. Bioelectron. 2007, 22, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Boeckler, G.A.; Gershenzon, J.; Unsicker, S.B. Phenolic Glycosides of the Salicaceae and Their Role as Anti-Herbivore Defenses. Phytochemistry 2011, 72, 1497–1509. [Google Scholar] [CrossRef] [PubMed]
Physico-Chemical Parameters | Site A | Site B |
---|---|---|
Textural soil types | Silty clay | Sandy |
Clay (%) | 33 | 9 |
Sand (%) | 28 | 75 |
Silt (%) | 39 | 14 |
pH | 8.08 | 7.79 |
Electrical conductivity (ds/m) | 0.004 | 0.003 |
Mg (%) | 0.448 | 0.327 |
Al (%) | 5.088 | 4.653 |
Si (%) | 16.769 | 21.229 |
P (%) | 0.265 | 0.360 |
S (%) | 0.068 | 0.138 |
Cl (%) | 0.013 | 0.038 |
K (%) | 3.233 | 2.103 |
Ca (%) | 1.220 | 0.901 |
Mn (%) | 0.087 | 0.039 |
Fe (%) | 6.501 | 3.129 |
Cu (%) | 0.008 | 0.004 |
Zn (%) | 0.021 | 0.006 |
Ga (%) | 0.004 | 0.002 |
Rb (%) | 0.028 | 0.013 |
Sr (%) | 0.018 | 0.007 |
Zr (%) | 0.045 | 0.063 |
Ag (%) | 0.095 | 0.084 |
Sampling Site for Soil Samples | The Count of Actinobacteria Colonies across Various Isolation Media (Expressed as × 102 CFU/mL) | The Total Number of Actinobacteria (Expressed × 102 CFU/mL) | Count of Colonies with Specific Morphological Characteristics in Each Medium | Total Number of Isolates | ||||||
---|---|---|---|---|---|---|---|---|---|---|
GA | GLM | M2 | Bennett | GA | GLM | M2 | Bennett | |||
Site A | 0 | 3 | 20 | 15 | 38 | 0 | 4 | 15 | 10 | 29 |
Site B | 0 | 4 | 19 | 12 | 34 | 0 | 3 | 12 | 6 | 21 |
Total | 0 | 7 | 39 | 27 | 72 | 0 | 7 | 27 | 16 | 50 |
Actinobacteria Isolates | Antimicrobial Activity (mm) | |||
---|---|---|---|---|
Pseudomonas aeruginosa ATCC 27,853 | Staphylococcus aureus ATCC 25,923 | Escherichia coli ATCC 25,922 | Candida albicans ATCC 60,193 | |
EIZ1 | 30 | 20 | 31 | - |
EIZ2 | 32 | 40 | - | 41 |
EIZ3 | - | 57 | 30 | - |
EIZ4 | - | - | - | - |
EIZ5 | - | - | - | - |
EIZ6 | - | - | - | - |
EIZ7 | - | - | - | - |
EIZ8 | - | - | - | - |
EIZ9 | - | 30 | 20 | - |
EIZ10 | - | - | - | - |
EIZ11 | - | - | - | - |
EIZ12 | - | - | - | - |
EIZ13 | - | - | - | - |
EIZ14 | - | - | 30 | - |
EIZ15 | - | - | - | 24 |
EIZ16 | - | - | - | - |
EIZ17 | 20 | 20 | 20 | 25 |
EIZ18 | - | - | - | - |
EIZ19 | 45 | 40 | 20 | - |
EIZ20 | - | - | - | - |
EIZ21 | - | - | - | - |
EIZ22 | - | - | - | - |
EIZ23 | - | - | - | - |
EIZ24 | - | - | - | - |
EIZ25 | - | - | - | - |
EIZ26 | - | - | - | - |
EIZ27 | - | - | - | - |
EIZ28 | - | - | - | - |
EIZ29 | 15 | 40 | 15 | - |
EIZ30 | - | - | - | - |
EIZ31 | - | - | - | - |
EIZ32 | - | - | - | - |
EIZ33 | - | - | - | - |
EIZ34 | - | - | - | - |
EIZ35 | - | - | - | - |
EIZ36 | - | - | - | - |
EIZ37 | - | - | 28 | |
EIZ38 | - | 40 | - | - |
EIZ39 | - | 23 | - | - |
EIZ40 | - | 40 | - | - |
EIZ41 | - | 25 | - | - |
EIZ42 | 20 | 30 | 20 | 18 |
EIZ43 | - | - | - | - |
EIZ44 | - | - | - | - |
EIZ45 | 45 | 13 | - | 20 |
EIZ46 | - | - | - | - |
EIZ47 | - | - | - | - |
EIZ48 | - | - | - | - |
EIZ49 | - | - | - | - |
EIZ50 | - | - | - | - |
Multi-Drug-Resistant Bacteria (MDR) | PC BC | NC D | DM BA | EA A | RP D |
---|---|---|---|---|---|
Clinical Proteus sp. 19K1313 | - | - | 19.67 ± 1.53 | 20 ± 1.00 | - |
Clinical Proteus vulgaris 16C1737 | 25.5 ± 0.71 | - | 20 ± 1.00 | 15 ± 1.00 | - |
Clinical Klebsiella pneumonie 19K 929 | - | - | 16 ± 0.58 | 22.66 ± 1.53 | - |
Clinical Listeria monocytogenes | 25 ± 0.71 | - | - | 30 ± 2.08 | - |
Clinical Escherichia coli 19L2418 | - | - | - | 15.67 ± 1.15 | - |
Clinical Klebsiella pneumoniae 20B1572 | - | - | - | 40.67 ± 0.58 | - |
Candida albicans ATCC 60,193 | 27 ± 2.83 | - | - | 40.33 ± 0.57 | - |
Test | EIZ1 | EIZ2 |
---|---|---|
Carbon assimilation | ||
Amidon | - | 2+ |
Mannitol | + | 3+ |
Cellobiose | 3+ | 3+ |
Sucrose | + | + |
Xylose | + | 2+ |
Mannose | 3+ | 3+ |
Fructose | 3+ | 3+ |
Positive control (Glucose) | 3+ | 3+ |
pH tolerance | ||
4.02 | - | + |
5.02 | 3+ | 3+ |
6.45 | 3+ | 3+ |
7.28 | 3+ | 3+ |
8.02 | 3+ | 3+ |
9.06 | 3+ | 3+ |
10.02 | 2+ | 2+ |
NaCl tolerance | ||
1% | 3+ | 3+ |
2% | 3+ | 3+ |
3% | 3+ | 3+ |
4% | 3+ | 2+ |
5% | 3+ | 2+ |
7% | 2+ | 2+ |
10% | - | + |
Temperature growth | ||
4 °C | 3+ | 3+ |
28 °C | 3+ | 3+ |
37 °C | 3+ | 3+ |
45 °C | - | 2+ |
Growth on different ISP media | ||
ISP1 | 3+ | 3+ |
ISP2 | 3+ | 3+ |
ISP7 | 2+ | 2+ |
GYEA | 3+ | 3+ |
Bennett | 2+ | 3+ |
Concentration of EIZ2 Ethyl Acetate Extract (mg/mL) | Total Phenolic Contents (mg GAE/mg Extract) | Total Flavonoids Contents (mg QE/mg Extract) |
---|---|---|
0.2 | 0.261 ± 0.003 | ND |
0.3 | 0.309 ± 0.010 | ND |
0.4 | 0.361 ± 0.005 | 0.006 ± 0.005 |
0.5 | 0.395 ± 0.002 | 0.024 ± 0.003 |
0.6 | 0.430 ± 0.004 | 0.053 ± 0.006 |
0.7 | 0.464 ± 0.002 | 0.080 ± 0.006 |
0.8 | 0.470 ± 0.013 | 0.114 ± 0.007 |
0.9 | 0.492 ± 0.019 | 0.156 ± 0.005 |
1 | 0.546 ± 0.013 | 0.1929 ± 0.02 |
Concentrations (mg/mL) | Antioxidant Activities | ||||
---|---|---|---|---|---|
EIZ2 Ethyl Acetate Extract | Trolox (PC) | Ascorbic Acid (PC) | |||
DPPH Free Radical Scavenging Activity (%) | ABTS Free Radical Scavenging Activity (%) | FRAP (mg AAE/mg Extract) | ABTS Free Radical Scavenging Activity (%) | DPPH Free Radical Scavenging Activity (%) | |
0.2 | 2.91 ± 0.92 **** | ND | 0.43 ± 0.01 | 27.54 ± 0.94 | 33.13 ± 1.12 |
0.3 | 7.10 ± 0.83 **** | 1.32 ± 1.96 **** | 0.49 ± 0.01 | 33.09 ± 1.18 | 39.09 ± 0.70 |
0.4 | 11.12 ± 0.86 **** | 2.56 ± 0.42 **** | 0.55 ± 0.01 | 37.64 ± 0.86 | 42.14 ± 0.61 |
0.5 | 18.19 ± 0.26 **** | 6.92 ± 0.35 **** | 0.61 ± 0.01 | 41.06 ± 0.71 | 46.86 ± 0.58 |
0.6 | 22.04 ± 0.35 **** | 10.47 ± 0.80 **** | 0.66 ± 0.01 | 45.85 ± 1.29 | 51.55 ± 1.31 |
0.7 | 25.92 ± 0.26 **** | 15.41 ± 1.00 **** | 0.72 ± 0.01 | 49.78 ± 0.56 | 56.28 ± 0.53 |
0.8 | 30.45 ± 0.46 **** | 19.67 ± 2.91 **** | 0.76 ± 0.01 | 54.19 ± 0.65 | 59.49 ± 0.75 |
0.9 | 34.63 ± 0.90 **** | 25.69 ± 0.99 **** | 0.81 ± 0.01 | 58.22 ± 0.71 | 62.24 ± 0.76 |
1 | 37.78 ± 1.93 **** | 30.58 ± 1.78 **** | 0.89 ± 0.02 | 63.44 ± 0.85 | 65.32 ± 1.01 |
RT (Time) | Area (%) | M.W. (g/mol) | Molecular Formula | Compound Name | NIST Database Similarity (%) | Reported Bioactivities |
---|---|---|---|---|---|---|
1.669 | 1.08 | 124.18 | C7H12N2 | 2,3-Diazabicyclo [2.2.1] hept-2-ene,1,4-dimethyl- | 43 | Antifungal activity, anti-inflammation, anti-bacterial, antioxidants, anticonvulsant, antiallergic, herbicidal activity, and anticancer [50] |
1.725 | 0.52 | 103.16 | C5H13NO | Hydroxylamine, O-pentyl- | 9 | Antimicrobial activity [51] |
2.795 | 37.30 | 60.05 | C2H4O2 | Acetic acid | 91 | Antimicrobial activity [52] |
2.931 | 1.81 | 104.10 | C4H8O3 | 1,2-Ethanediol, monoacetate | 45 | Antioxidant activities [53] |
4.418 | 4.15 | 106.12 | C4H10O3 | Ethanol, 2,2’-oxybis- | 40 | Antimicrobial and antioxidant [54] |
5.883 | 3.53 | 118.13 | C5H10O3 | Butanoic acid, 3-hydroxy-3-methyl- | 72 | Anti-inflammatory, antioxidant [55] |
13.782 | 22.94 | 136.14 | C8H8O2 | Benzeneacetic acid | 94 | Antifungal, Antimicrobial, and Antioxidant [56,57,58] |
21.963 | 9.69 | 222.24 | C12H14O4 | Diethyl phthalate | 97 | Antimicrobial, Antifungal [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rammali, S.; Kamal, F.Z.; El Aalaoui, M.; Rahim, A.; Baidani, A.; Dari, K.; Khattabi, A.; Ciobică, A.; Novac, B.; Petroaie, A.; et al. Exploring the Antimicrobial and Antioxidant Activities of Streptomyces sp. EIZ2 Isolated from Moroccan Agricultural Soil. Microbiol. Res. 2024, 15, 762-786. https://doi.org/10.3390/microbiolres15020050
Rammali S, Kamal FZ, El Aalaoui M, Rahim A, Baidani A, Dari K, Khattabi A, Ciobică A, Novac B, Petroaie A, et al. Exploring the Antimicrobial and Antioxidant Activities of Streptomyces sp. EIZ2 Isolated from Moroccan Agricultural Soil. Microbiology Research. 2024; 15(2):762-786. https://doi.org/10.3390/microbiolres15020050
Chicago/Turabian StyleRammali, Said, Fatima Zahra Kamal, Mohamed El Aalaoui, Abdellatif Rahim, Aziz Baidani, Khadija Dari, Abdelkrim Khattabi, Alin Ciobică, Bogdan Novac, Antoneta Petroaie, and et al. 2024. "Exploring the Antimicrobial and Antioxidant Activities of Streptomyces sp. EIZ2 Isolated from Moroccan Agricultural Soil" Microbiology Research 15, no. 2: 762-786. https://doi.org/10.3390/microbiolres15020050
APA StyleRammali, S., Kamal, F. Z., El Aalaoui, M., Rahim, A., Baidani, A., Dari, K., Khattabi, A., Ciobică, A., Novac, B., Petroaie, A., Lefter, R., & Bencharki, B. (2024). Exploring the Antimicrobial and Antioxidant Activities of Streptomyces sp. EIZ2 Isolated from Moroccan Agricultural Soil. Microbiology Research, 15(2), 762-786. https://doi.org/10.3390/microbiolres15020050