Optimizing a Suspension Culture Method with a Decreased Cost to Detect Enteroviruses in Water to Increase Surveillance Access
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sample Time | Culture Type | Starting PFU/mL | |
---|---|---|---|
Ct Value | |||
35.5 | 32 h | Monolayer | 1 |
36.4 | Time 0 | Monolayer | 10 |
36.9 | 24 h | Monolayer | 1 |
37.2 | Time 40 | Suspension | 1 |
39.2 | 8 h | Monolayer | 100 |
39.4 | 32 h | Monolayer | 1 |
39.4 | 48 h | Suspension | 10 |
39.7 | 32 h | Suspension | 1 |
References
- Tiwari, S.; Dhole, T.N. Assessment of enteroviruses from sewage water and clinical samples during eradication phase of polio in north india. Virol. J. 2018, 15, 157. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.B.; Litaker, R.W.; Noble, R.T. Rapid one-step quantitative reverse transcriptase pcr assay with competitive internal positive control for detection of enteroviruses in environmental samples. Appl. Environ. Microbiol. 2006, 72, 3960–3967. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Poliomyelitis. Available online: https://www.who.int/news-room/fact-sheets/detail/poliomyelitis (accessed on 30 March 2020).
- World Health Organization. Global Polio Eradication Initiative: Annual Report 2018, WHO/Polio/19.07 ed.; Global Polio Eradication Initiative, Ed.; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Director General, W. Polio Eradication; World Health Organization: Seventy-Second World Health Assembly; World Health Organization: Geneva, Switzerland, 2019; p. 8. [Google Scholar]
- Cassidy, H.; Poelman, R.; Knoester, M.; Van Leer-Buter, C.C.; Niesters, H.G.M. Enterovirus d68—The new polio? Front. Microbiol. 2018, 9, 2677. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Rawlinson, W.D.; Andrews, P.I.; Stelzer-Braid, S. Global epidemiology of nonpolio enteroviruses causing severe neurological complications: A systematic review and meta-analysis. Rev. Med. Virol. 2020, 30, e2082. [Google Scholar] [CrossRef]
- Rajtar, B.; Majek, M.; Polański, Ł.; Polz-Dacewicz, M. Enteroviruses in water environment--a potential threat to public health. Ann. Agric. Environ. Med. 2008, 15, 199–203. [Google Scholar]
- Solomon, T.; Lewthwaite, P.; Perera, D.; Cardosa, M.J.; McMinn, P.; Ooi, M.H. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect. Dis. 2010, 10, 778–790. [Google Scholar] [CrossRef]
- Yoder, J.A.; Lloyd, M.; Zabrocki, L.; Auten, J. Pediatric acute flaccid paralysis: Enterovirus d68-associated anterior myelitis. J. Emerg. Med. 2017, 53, e19–e23. [Google Scholar] [CrossRef]
- Mehand, M.S.; Al-Shorbaji, F.; Millett, P.; Murgue, B. The who r&d blueprint: 2018 review of emerging infectious diseases requiring urgent research and development efforts. Antiviral Res. 2018, 159, 63–67. [Google Scholar]
- Ng, Y.; Li, Z.; Chua, Y.X.; Chaw, W.L.; Zhao, Z.; Er, B.; Pung, R.; Chiew, C.J.; Lye, D.C.; Heng, D.; et al. Evaluation of the effectiveness of surveillance and containment measures for the first 100 patients with covid-19 in singapore—January 2–February 29, 2020. Morb. Mortal. Wkly. Rep. 2020, 68. [Google Scholar] [CrossRef]
- Thompson, R.N. Novel coronavirus outbreak in wuhan, china, 2020: Intense surveillance is vital for preventing sustained transmission in new locations. J. Clin. Med. 2020, 9, 498. [Google Scholar] [CrossRef] [PubMed]
- Gibson, K.E.; Opryszko, M.C.; Schissler, J.T.; Guo, Y.; Schwab, K.J. Evaluation of human enteric viruses in surface water and drinking water resources in southern ghana. Am. J. Trop. Med. Hyg. 2011, 84, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Hamza, I.A.; Bibby, K. Critical issues in application of molecular methods to environmental virology. J. Virol. Methods 2019, 266, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Lee-Montiel, F.T.; Reynolds, K.A.; Riley, M.R. Detection and quantification of poliovirus infection using ftir spectroscopy and cell culture. J. Biol. Eng. 2011, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Hsu, B.-M.; Chen, C.-H.; Wan, M.-T.; Chang, P.-J.; Fan, C.-W. Detection and identification of enteroviruses from various drinking water sources in taiwan. J. Hydrol. 2009, 365, 134–139. [Google Scholar] [CrossRef]
- Saeed, A.; Abd, H.; Sandstrom, G. Microbial aetiology of acute diarrhoea in children under five years of age in khartoum, sudan. J. Med Microbiol. 2015, 64, 432–437. [Google Scholar] [CrossRef]
- Kotloff, K.L. The burden and etiology of diarrheal illness in developing countries. Pediatric Clin. N. Am. 2017, 64, 799–814. [Google Scholar] [CrossRef]
- Cashdollar, J.L.; Brinkman, N.E.; Griffin, S.M.; McMinn, B.R.; Rhodes, E.R.; Varughese, E.A.; Grimm, A.C.; Parshionikar, S.U.; Wymer, L.; Fout, G.S. Development and evaluation of epa method 1615 for detection of enterovirus and norovirus in water. Appl. Environ. Microbiol. 2013, 79, 215–223. [Google Scholar] [CrossRef]
- Fout, G.; Brinkman, N.; Cashdollar, J.; Griffin, S.; McMinn, B.; Rhodes, E.; Varughese, E.; Karim, M.; Grimm, A.; Spencer, S.A.; et al. Method 1615: Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and rt-qpcr; Version 1.1; U.S. Environmental Protection Agency, Ed.; U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2012; p. 102.
- Haramoto, E.; Kitajima, M.; Hata, A.; Torrey, J.R.; Masago, Y.; Sano, D.; Katayama, H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. Water Res. 2018, 135, 168–186. [Google Scholar] [CrossRef]
- Reynolds, K.A.; Gerba, C.P.; Pepper, I.L. Detection of infectious enteroviruses by an integrated cell culture-pcr procedure. Appl. Environ. Microbiol. 1996, 62, 1424–1427. [Google Scholar] [CrossRef]
- Gallagher, E.M.; Margolin, A.B. Development of an integrated cell culture—Real-time rt-pcr assay for detection of reovirus in biosolids. J. Virol. Methods 2007, 139, 195–202. [Google Scholar] [CrossRef]
- Botes, M.; de Kwaadsteniet, M.; Cloete, T.E. Application of quantitative pcr for the detection of microorganisms in water. Anal. Bioanal. Chem. 2013, 405, 91–108. [Google Scholar] [CrossRef]
- Reynolds, K.A. Integrated cell culture/pcr for detection of enteric viruses in environmental samples. Methods Mol. Biol. 2004, 268, 69–78. [Google Scholar] [PubMed]
- Balkin, H.B.; Margolin, A.B. Detection of poliovirus by icc/qpcr in concentrated water samples has greater sensitivity and is less costly using bgm cells in suspension as compared to monolayers. Virol. J. 2010, 7, 282. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Blackmer, F.; Reynolds, K.A.; Gerba, C.P.; Pepper, I.L. Use of integrated cell culture-pcr to evaluate the effectiveness of poliovirus inactivation by chlorine. Appl. Environ. Microbiol. 2000, 66, 2267–2268. [Google Scholar] [CrossRef] [PubMed]
- Ren, R.B.; Costantini, F.; Gorgacz, E.J.; Lee, J.J.; Racaniello, V.R. Transgenic mice expressing a human poliovirus receptor: A new model for poliomyelitis. Cell 1990, 63, 353–362. [Google Scholar] [CrossRef]
- Reynolds, K.A.; Gerba, C.P.; Abbaszadegan, M.; Pepper, L.L. Icc/pcr detection of enteroviruses and hepatitis a virus in environmental samples. Can. J. Microbiol. 2001, 47, 153–157. [Google Scholar] [CrossRef]
- Fuhrman, J.A.; Liang, X.; Noble, R.T. Rapid detection of enteroviruses in small volumes of natural waters by real-time quantitative reverse transcriptase pcr. Appl. Environ. Microbiol. 2005, 71, 4523–4530. [Google Scholar] [CrossRef][Green Version]
- Ryu, H.; Schrantz, K.A.; Brinkman, N.E.; Boczek, L.A. Applicability of integrated cell culture reverse transcriptase quantitative pcr (icc-rtqpcr) for the simultaneous detection of the four human enteric enterovirus species in disinfection studies. J. Virol. Methods 2018, 258, 35–40. [Google Scholar] [CrossRef]
PFU/mL | Mean Ct (Standard Deviation) |
---|---|
105 | 34.4 (4.8) |
106 | 21.2 (0.4) |
107 | 18.1 (0.1) |
Time (Hours) | Overall N (%) | Suspension N (%) | Monolayer N (%) |
---|---|---|---|
0 | 4 (28.6%) | 2 (25.0%) | 2 (33.3%) |
8 | 12 (70.6%) | 7 (87.5%) | 5 (55.6%) |
16 | 10 (58.8%) | 7 (87.5%) | 3 (33.3%) |
24 | 14 (73.7%) | 8 (80.0%) | 6 (66.7%) |
32 | 14 (73.7%) | 7 (70.0%) | 7 (77.8%) |
40 | 16 (88.9%) | 9 (90.0%) | 7 (87.5%) |
48 | 14 (87.5%) | 6 (75.0%) | 8 (100%) |
Overall (N = 84) | Suspension (N = 46) | Monolayer (N = 38) | |
---|---|---|---|
Mean Ct (standard deviation) | 23.3 (7.4) | 23.37 (6.7) | 23.3 (8.2) |
PFU/mL | |||
1 | 28.2 (5.7) | 29.9 (3.7) | 27.4 (6.4) |
10 | 21.3 (5.6) | 22.0 (5.9) | 20.4 (6.3) |
100 | 20.3 (5.4) | 21.3 (4.5) | 18.8 (6.3) |
Incubation Time (hours) | |||
0 | 27.4 (2.5) | 29.4 (1.6) | 29.0 (6.4) |
8 | 28.6 (4.5) | 29.3 (3.8) | 29.5 (7.0) |
16 | 26.8 (4.0) | 25.7 (3.8) | 29.5 (3.4) |
24 | 21.7 (4.2) | 20.9 (3.0) | 24.7 (7.4) |
32 | 19.3 (5.4) | 21.0 (7.8) | 24.1 (10.1) |
40 | 17.7 (3.0) | 20.6 (6.5) | 16.3 (2.2) |
48 | 18.9 (6.6) | 22.8 (9.8) | 18.1 (6.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tornberg-Belanger, S.N.; Sreter, J.A.; Margolin, A.B. Optimizing a Suspension Culture Method with a Decreased Cost to Detect Enteroviruses in Water to Increase Surveillance Access. Microbiol. Res. 2020, 11, 35-44. https://doi.org/10.3390/microbiolres11020008
Tornberg-Belanger SN, Sreter JA, Margolin AB. Optimizing a Suspension Culture Method with a Decreased Cost to Detect Enteroviruses in Water to Increase Surveillance Access. Microbiology Research. 2020; 11(2):35-44. https://doi.org/10.3390/microbiolres11020008
Chicago/Turabian StyleTornberg-Belanger, Stephanie N., Jonathan A. Sreter, and Aaron B. Margolin. 2020. "Optimizing a Suspension Culture Method with a Decreased Cost to Detect Enteroviruses in Water to Increase Surveillance Access" Microbiology Research 11, no. 2: 35-44. https://doi.org/10.3390/microbiolres11020008
APA StyleTornberg-Belanger, S. N., Sreter, J. A., & Margolin, A. B. (2020). Optimizing a Suspension Culture Method with a Decreased Cost to Detect Enteroviruses in Water to Increase Surveillance Access. Microbiology Research, 11(2), 35-44. https://doi.org/10.3390/microbiolres11020008