Saps1–3 Antigens in Candida albicans: Differential Modulation Following Exposure to Soluble Proteins, Mammalian Cells, and Infection in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Growth Conditions
2.2. Effect of BSA Concentration on the Expression of Saps1–3 Antigens
2.3. Effect of Different Soluble Proteins on the Expression of Saps1–3 Antigens
2.4. Effect of the Interaction between Yeasts and Mammalian Cells on the Expression of Saps1–3 Antigens
2.4.1. Epithelial Cells
2.4.2. Macrophage Cells
2.4.3. Interaction Assay
2.5. Effect of Murine Infection on the Expression of Saps1–3
2.6. Evaluation of Saps1–3 Antigens
2.7. Statistical Analysis
3. Results and Discussion
3.1. Expression of Saps1–3 in C. albicans Yeasts Is Dependent on BSA Concentration
3.2. Soluble Proteins Differently Modulate the Expression of Saps1–3 in C. albicans Yeasts
3.3. C. albicans–Mammalian Cells Interactions Induce the Expression of Saps1–3 Antigens
3.4. In Vivo Mouse Infection Promotes Expression of Saps1–3 Antigens
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garbee, D.D.; Pierce, S.S.; Manning, J. Opportunistic fungal infections in critical care units. Crit. Care Nurs. Clin. N. Am. 2017, 29, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Suleyman, G.; Alangaden, G.J. Nosocomial fungal infections: Epidemiology, infection control, and prevention. Infect. Dis. Clin. N. Am. 2021, 35, 1027–1053. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Bing, J.; Hu, T.; Ennis, C.L.; Nobile, C.J.; Huang, G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020, 16, e1008921. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.; Richardson, M.; Vallabhaneni, S.; Jackson, B.R.; Chiller, T. Emerging issues, challenges, and changing epidemiology of fungal disease outbreaks. Lancet Infect. Dis. 2017, 17, e403–e411. [Google Scholar] [CrossRef] [PubMed]
- Calgin, M.K.; Cetinkol, Y. Distribution and antifungal susceptibility patterns of Candida species at a university hospital in Northern Turkey. J. Infect. Dev. Ctries 2018, 12, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Monika, S.; Malgorzata, B.; Zbigniew, O. Contribution of aspartic proteases in Candida virulence. Protease inhibitors against Candida infections. Curr. Protein Pept. Sci. 2017, 18, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Calderone, R.A.; Fonzi, W.A. Virulence factors of Candida albicans. Trends Microbiol. 2001, 9, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Ramos, L.S.; Oliveira, S.S.; Braga-Silva, L.A.; Branquinha, M.H.; Santos, A.L.S. Secreted aspartyl peptidases by the emerging, opportunistic and multidrug-resistant fungal pathogens comprising the Candida haemulonii complex. Fungal Biol. 2020, 124, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Pericolini, E.; Gabrielli, E.; Amacker, M.; Kasper, L.; Roselletti, E.; Luciano, E.; Sabbatini, S.; Kaeser, M.; Moser, C.; Hube, B.; et al. Secretory aspartyl proteinases cause vaginitis and can mediate vaginitis caused by Candida albicans in mice. mBio 2015, 6, e00724-15. [Google Scholar] [CrossRef]
- Mba, I.E.; Nweze, E.I. Mechanism of Candida pathogenesis: Revisiting the vital drivers. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1797–1819. [Google Scholar] [CrossRef]
- Schaller, M.; Bein, M.; Korting, H.C.; Baur, S.; Hamm, G.; Monod, M.; Beinhauer, S.; Hube, B. The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect. Immun. 2003, 71, 3227–3234. [Google Scholar] [CrossRef] [PubMed]
- Braga-Silva, L.A.; Santos, A.L.S. Aspartic protease inhibitors as potential anti-Candida albicans drugs: Impacts on fungal biology, virulence and pathogenesis. Curr. Med. Chem. 2011, 18, 2401–2419. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.C.; Nery, J.M.; Dias, A.L. Aspartic proteinases of Candida spp.: Role in pathogenicity and antifungal resistance. Mycoses 2014, 57, 1–11. [Google Scholar] [CrossRef]
- Santos, A.L.S.; Carvalho, I.M.; Silva, B.A.; Portela, M.B.; Alviano, C.S.; Soares, R.M.A. Secretion of serine peptidase by a clinical strain of Candida albicans: Influence of growth conditions and cleavage of human serum proteins and extracellular matrix components. FEMS Immunol. Med. Microbiol. 2006, 46, 209–220. [Google Scholar] [CrossRef]
- Samaranayake, Y.H.; Cheung, B.P.K.; Yau, J.Y.Y.; Yeung, S.K.W.; Samaranayake, L.P. Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS ONE 2013, 8, e62902. [Google Scholar] [CrossRef]
- Li, W.; Yu, D.; Gao, S.; Lin, J.; Chen, Z.; Zhao, W. Role of Candida albicans-secreted aspartyl proteinases (Saps) in severe early childhood caries. Int. J. Mol. Sci. 2014, 15, 10766–10779. [Google Scholar] [CrossRef]
- Braga-Silva, L.; Mesquita, D.; Ribeiro, M.D.; Carvalho, S.; Fracalanzza, S.; Santos, A.L.S. Trailing end-point phenotype antibiotic-sensitive strains of Candida albicans produce different amounts of aspartyl peptidases. Braz. J. Med. Biol. Res. 2009, 42, 765–770. [Google Scholar] [CrossRef] [PubMed]
- White, T.C.; Agabian, N. Candida albicans secreted aspartyl proteinases: Isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J. Bacteriol. 1995, 177, 5215–5221. [Google Scholar] [CrossRef]
- Valle, R.S.; Ramos, L.S.; Reis, V.J.; Ziccardi, M.; Dornelas-Ribeiro, M.; Sodré, C.L.; Branquinha, M.H.; Santos, A.L.S. Trichosporon asahii secretes a 30-kDa aspartic peptidase. Microbiol. Res. 2017, 205, 66–72. [Google Scholar] [CrossRef]
- Campbell, P.A.; Canono, B.P.; Cook, J.L. Mouse macrophages stimulated by recombinant gamma interferon to kill tumor cells are not bactericidal for the facultative intracellular bacterium Listeria monocytogenes. Infect. Immun. 1988, 56, 1371–1375. [Google Scholar] [CrossRef]
- Maggi, L.B.; Moran, J.M.; Buller, R.M.L.; Corbett, J.A. ERK Activation is required for double-stranded RNA- and virus-induced interleukin-1 expression by macrophages. J. Biol. Chem. 2003, 278, 16683–16689. [Google Scholar] [CrossRef] [PubMed]
- Capobianco, J.O.; Lerner, C.G.; Goldman, R.C. Application of a fluorogenic substrate in the assay of proteolytic activity and in the discovery of a potent inhibitor of Candida albicans aspartic proteinase. Anal. Biochem. 1992, 204, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Samaranayake, L.P. The expression of secreted aspartyl proteinases of Candida species in human whole saliva. J. Med. Microbiol. 1999, 48, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Zaugg, C.; Zepelin, M.B.-V.; Reichard, U.; Sanglard, D.; Monod, M. Secreted aspartic proteinase family of Candida tropicalis. Infect. Immun. 2001, 69, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Palmeira, V.F.; Kneipp, L.F.; Alviano, C.S.; Santos, A.L.S. Secretory aspartyl peptidase activity from mycelia of the human fungal pathogen Fonsecaea pedrosoi: Effect of HIV aspartyl proteolytic inhibitors. Res. Microbiol. 2006, 157, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Miranda, T.T.; Vianna, C.R.; Rodrigues, L.; Rosa, C.A.; Corrêa, A., Jr. Differential proteinase patterns among Candida albicans strains isolated from root canal and lingual dorsum: Possible roles in periapical disease. J. Endod. 2015, 41, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Li, S.; Bing, J.; Liao, W.; Tao, L. Phenotypic switching and filamentation in Candida haemulonii, an emerging opportunistic pathogen of humans. Microbiol. Spectr. 2021, 9, e0077921. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.L.S.; Braga-Silva, L.A.; Gonçalves, D.S.; Ramos, L.S.; Oliveira, S.S.C.; Souza, L.O.P.; Oliveira, V.S.; Lins, R.D.; Pinto, M.R.; Muñoz, J.E.; et al. Repositioning lopinavir, an HIV protease inhibitor, as a promising antifungal drug: Lessons learned from Candida albicans—In silico, in vitro and in vivo approaches. J. Fungi 2021, 7, 424. [Google Scholar] [CrossRef] [PubMed]
- Hube, B.; Monod, M.; Schofield, D.A.; Brown, A.J.P.; Gow, N.A.R. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol. Microbiol. 1994, 14, 87–99. [Google Scholar] [CrossRef]
- Santos, A.L.S.; Braga-Silva, L.A. Aspartic protease inhibitors: Effective drugs against the human fungal pathogen Candida albicans. Mini Rev. Med. Chem. 2013, 13, 155–162. [Google Scholar] [CrossRef]
- Lerner, C.G.; Goldman, R.C. Stimuli that induce production of Candida albicans extracellular aspartyl proteinase. J. Gen. Microbiol. 1993, 139, 1643–1651. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Ganesan, K.; Datta, A. Induction of secretory acid proteinase in Candida albicans. J. Gen. Microbiol. 1991, 137, 2455–2461. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.; Fernandes, L.; Henriques, M.; Silva, S. Environmental pH modulates biofilm formation and matrix composition in Candida albicans and Candida glabrata. Biofouling 2020, 36, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.B. Aspartic proteinases in disease: A structural perspective. Curr. Drug Targets 2002, 3, 155–173. [Google Scholar] [CrossRef] [PubMed]
- Homma, M.; Chibana, H.; Tanaka, K. Induction of extracellular proteinase in Candida albicans. J. Gen. Microbiol. 1993, 139, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Hattori, M.; Yoshiura, K.; Negi, M.; Ogawa, H. Keratinolytic proteinase produced by Candida albicans. Sabouraudia 1984, 22, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Fleck, C.B.; Schöbel, F.; Brock, M. Nutrient acquisition by pathogenic fungi: Nutrient availability, pathway regulation, and differences in substrate utilization. Int. J. Med. Microbiol. 2011, 301, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Marzluf, G.A. Genetic regulation of nitrogen metabolism in the fungi. Microbiol. Mol. Biol. Rev. 1997, 61, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Ray, T.L.; Payne, C.D.; Morrow, B.J. Candida albicans acid proteinase: Characterization and role in candidiasis. Adv. Exp. Med. Biol. 1991, 306, 173–183. [Google Scholar] [CrossRef]
- Brinkworth, R.I.; Prociv, P.; Loukas, A.; Brindley, P.J. Hemoglobin-degrading, aspartic proteases of blood-feeding parasites: Substrate specificity revealed by homology models. J. Biol. Chem. 2001, 276, 38844–38851. [Google Scholar] [CrossRef]
- Naglik, J.R.; Challacombe, S.J.; Hube, B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 2003, 67, 400–428. [Google Scholar] [CrossRef] [PubMed]
- Staniszewska, M.; Bondaryk, M.; Malewski, T.; Kurzatkowski, W. Quantitative expression of Candida albicans aspartyl proteinase genes SAP7, SAP8, SAP9, SAP10 in human serum in vitro. Pol. J. Microbiol. 2014, 63, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhou, X.; Ren, B.; Cheng, L. The regulation of hyphae growth in Candida albicans. Virulence 2020, 11, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.; Markowitz, K.; Velliyagounder, K. Effect of human lactoferrin on Candida albicans infection and host response interactions in experimental oral candidiasis in mice. Arch. Oral Biol. 2022, 137, 105399. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive mycoses in North America. Crit. Rev. Microbiol. 2010, 36, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Rapala-Kozik, M.; Bochenska, O.; Zajac, D.; Karkowska-Kuleta, J.; Gogol, M.; Zawrotniak, M.; Kozik, A. Extracellular proteinases of Candida species pathogenic yeasts. Mol. Oral Microbiol. 2018, 33, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Kulshrestha, A.; Gupta, P. Secreted aspartyl proteases family: A perspective review on the regulation of fungal pathogenesis. Futur. Microbiol. 2023, 18, 295–309. [Google Scholar] [CrossRef] [PubMed]
- de Repentigny, L.; Aumont, F.; Bernard, K.; Belhumeur, P. Characterization of binding of Candida albicans to small intestinal mucin and its role in adherence to mucosal epithelial cells. Infect. Immun. 2000, 68, 3172–3179. [Google Scholar] [CrossRef] [PubMed]
- Arevalo, A.V.; Nobile, C.J. Interactions of microorganisms with host mucins: A focus on Candida albicans. FEMS Microbiol. Rev. 2020, 44, 645–654. [Google Scholar] [CrossRef]
- Carraway, K.L.; Ramsauer, V.P.; Haq, B.; Carraway, C.A.C. Cell signaling through membrane mucins. BioEssays 2003, 25, 66–71. [Google Scholar] [CrossRef]
- Naglik, J.; Albrecht, A.; Bader, O.; Hube, B. Candida albicans proteinases and host/pathogen interactions. Cell. Microbiol. 2004, 6, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Bras, G.; Satala, D.; Juszczak, M.; Kulig, K.; Wronowska, E.; Bednarek, A.; Zawrotniak, M.; Rapala-Kozik, M.; Karkowska-Kuleta, J. Secreted aspartic proteinases: Key factors in Candida infections and host-pathogen interactions. Int. J. Mol. Sci. 2024, 25, 4775. [Google Scholar] [CrossRef] [PubMed]
- Braga-Silva, L.A.; Mogami, S.S.; Valle, R.S.; Silva-Neto, I.D.; Santos, A.L.S. Multiple effects of amprenavir against Candida albicans. FEMS Yeast Res. 2010, 10, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Plebani, M.; Banfi, G.; Bernardini, S.; Bondanini, F.; Conti, L.; Dorizzi, R.; Ferrara, F.E.; Mancini, R.; Trenti, T. Serum or plasma? An old question looking for new answers. Clin. Chem. Lab. Med. 2020, 58, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.B.; Gulati, M.; Johnson, A.D.; Nobile, C.J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 2018, 16, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Bliss, J.M.; Laforce-Nesbitt, S.S. Toxicity to Candida albicans mediated by human serum and peripheral blood mononuclear cells. FEMS Immunol. Med. Microbiol. 2006, 46, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Rogers, T.; Balish, E. Experimental Candida albicans infection in conventional mice and germfree rats. Infect. Immun. 1976, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Liu, Z.; Su, J.; Yan, D. Human serum inhibits adhesion and biofilm formation in Candida albicans. BMC Microbiol. 2014, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Hirakura, Y.; Carreras, I.; Sipe, J.D.; Kagan, B.L. Channel formation by serum amyloid A: A potential mechanism for amyloid pathogenesis and host defense. Amyloid 2002, 9, 13–23. [Google Scholar] [CrossRef]
- Badolato, R.; Wang, J.M.; Stornello, S.-L.; Ponzi, A.N.; Duse, M.; Musso, T. Serum amyloid A is an activator of PMN antimicrobial functions: Induction of degranulation, phagocytosis, and enhancement of anti-Candida activity. J. Leukoc. Biol. 2000, 67, 381–386. [Google Scholar] [CrossRef]
- Gong, J.; Wu, J.; Ikeh, M.; Tao, L.; Zhang, Y.; Bing, J.; Nobile, C.J.; Huang, G. Antifungal activity of mammalian serum amy-loid a1 against Candida albicans. Antimicrob. Agents Chemother. 2019, 64, e01975–e02019. [Google Scholar] [CrossRef] [PubMed]
- Cottier, F.; Pavelka, N. Complexity and dynamics of host–fungal interactions. Immunol. Res. 2012, 53, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Filler, S.G. Interactions of Candida albicans with epithelial cells. Cell. Microbiol. 2010, 12, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.; Ferreira, C.; Alves, C.T.; Henriques, M.; Azeredo, J.; Silva, S. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit. Rev. Microbiol. 2016, 42, 905–927. [Google Scholar] [CrossRef] [PubMed]
- D’Enfert, C.; Kaune, A.-K.; Alaban, L.-R.; Chakraborty, S.; Cole, N.; Delavy, M.; Kosmala, D.; Marsaux, B.; Fróis-Martins, R.; Morelli, M.; et al. The impact of the fungus-host-microbiota interplay upon Candida albicans infections: Current knowledge and new perspectives. FEMS Microbiol. Rev. 2021, 45, fuaa060. [Google Scholar] [CrossRef]
- Schaller, M.; Schackert, C.; Korting, H.C.; Januschke, E.; Hube, B. Invasion of Candida albicans correlates with expression of secreted aspartic proteinases during experimental infection of human epidermis. J. Investig. Dermatol. 2000, 114, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Schaller, M.; Korting, H.C.; Schäfer, W.; Bastert, J.; Chen, W.; Hube, B. Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol. Microbiol. 1999, 34, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Rüchel, R.; Zimmermann, F.; Böning-Stutzer, B.; Helmchen, U. Candidiasis visualised by proteinase-directed immunofluorescence. Virchows Arch. A Pathol. Anat. Histopathol. 1991, 419, 199–202. [Google Scholar] [CrossRef]
- Hernández-Chávez, M.J.; Pérez-García, L.A.; Niño-Vega, G.A.; Mora-Montes, H.M. Fungal strategies to evade the host immune recognition. J. Fungi 2017, 3, 51. [Google Scholar] [CrossRef]
- Gropp, K.; Schild, L.; Schindler, S.; Hube, B.; Zipfel, P.F.; Skerka, C. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol. Immunol. 2009, 47, 465–475. [Google Scholar] [CrossRef]
- Valand, N.; Brunt, E.; Gazioglu, O.; Yesilkaya, H.; Mitchell, D.; Horley, N.; Arroo, R.; Kishore, U.; Wallis, R.; Girija, U.V. Inactivation of the complement lectin pathway by Candida tropicalis secreted aspartyl protease-1. Immunobiology 2022, 227, 152263. [Google Scholar] [CrossRef] [PubMed]
- Corzo-Leon, D.E.; Alvarado-Matute, T.; Colombo, A.L.; Cornejo-Juarez, P.; Cortes, J.; Echevarria, J.I.; Guzman-Blanco, M.; Macias, A.E.; Nucci, M.; Ostrosky-Zeichner, L.; et al. Surveillance of Candida spp. bloodstream infections: Epidemiological trends and risk factors of death in two mexican tertiary care hospitals. PLoS ONE 2014, 9, e97325. [Google Scholar] [CrossRef] [PubMed]
- Staniszewska, M. Virulence Factors in Candida species. Curr. Protein Pept. Sci. 2020, 21, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Selmecki, A.; Forche, A.; Berman, J. Genomic plasticity of the human fungal pathogen Candida albicans. Eukaryot. Cell 2010, 9, 991–1008. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.; Lermann, U.; Teixeira, L.; Cerca, F.; Botelho, S.; Gil da Costa, R.M.; Sampaio, P.; Gärtner, F.; Morschhäuser, J.; Vilanova, M.; et al. Limited role of secreted aspartyl proteinases sap1 to sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infect. Immun. 2010, 78, 4839–4849. [Google Scholar] [CrossRef] [PubMed]
- Hube, B.; Sanglard, D.; Odds, F.C.; Hess, D.; Monod, M.; Schäfer, W.; Brown, A.J.; Gow, N.A. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect. Immun. 1997, 65, 3529–3538. [Google Scholar] [CrossRef] [PubMed]
- Naglik, J.R.; Moyes, D.; Makwana, J.; Kanzaria, P.; Tsichlaki, E.; Weindl, G.; Tappuni, A.R.; Rodgers, C.A.; Woodman, A.J.; Challacombe, S.J.; et al. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology 2008, 154 Pt 11, 3266–3280. [Google Scholar] [CrossRef]
- Köhler, J.R.; Hube, B.; Puccia, R.; Casadevall, A.; Perfect, J.R. Fungi that infect humans. Microbiol. Spectr. 2017, 5, 813–843. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, S.; Selvadoss, P.P.; Manoharan, S.S. Anti-fungal potential of structurally diverse FDA-approved therapeutics targeting secreted aspartyl proteinase (SAP) of Candida albicans: An in silico drug repurposing approach. Appl. Biochem. Biotechnol. 2022, 195, 1983–1998. [Google Scholar] [CrossRef]
- Bein, M.; Schaller, M.; Korting, H. The secreted aspartic proteinases as a new target in the therapy of candidiasis. Curr. Drug Targets 2002, 3, 351–357. [Google Scholar] [CrossRef]
- Akhtar, N.; Magdaleno, J.S.L.; Ranjan, S.; Wani, A.K.; Grewal, R.K.; Oliva, R.; Shaikh, A.R.; Cavallo, L.; Chawla, M. Secreted aspartyl proteinases targeted multi-epitope vaccine design for Candida dubliniensis using immunoinformatics. Vaccines 2023, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.R.; Jesuíno, R.S.A.; de Aquino Lemos, J.; de Fátima Lisboa Fernandes, O.; Hasimoto e Souza, L.K.; Passos, X.S.; do Rosário Rodrigues Silva, M. Effects of antifungal agents in sap activity of Candida albicans isolates. Mycopathologia 2010, 169, 91–98. [Google Scholar] [CrossRef] [PubMed]
YCB Medium + | % Fluorescent Cells | Mean of Fluorescence Intensity |
---|---|---|
Bovine serum albumin | 29.3 ± 2.5 | 50.9 ± 1.4 |
Immunoglobulin G | 11.6 ± 1.9 * | 59.0 ± 0.4 |
Total bovine serum | 15.0 ± 3.3 * | 29.3 ± 8.3 ** |
Total human serum | 18.1 ± 3.2 * | 28.2 ± 6.1 ** |
Gelatin | 19.1 ± 2.4 * | 89.0 ± 0.6 ** |
Laminin | 40.5 ± 0.6 * | 48.5 ± 0.6 |
Human serum albumin | 40.6 ± 1.2 * | 97.1 ± 0.2 ** |
Fibrinogen | 43.7 ± 1.3 * | 62.4 ± 0.6 |
Hemoglobin | 49.5 ± 2.0 * | 144.5 ± 6.4 ** |
Mucin | 50.2 ± 1.3 * | 118.4 ± 2.4 ** |
Systems | % Fluorescent Cells | Mean of Fluorescence Intensity |
---|---|---|
YCB-BSA | 29.3 ± 2.5 | 50.9 ± 1.4 |
Epithelial cells (HEp-2) | 78.0 ± 4.3 * | 152.1 ± 21.5 ** |
Murine macrophage cells | 82.7 ± 2.1 * | 178.2 ± 10.8 ** |
Kidney (mouse infection) | 95.5 ± 3.6 ** | 246.6 ± 25.5 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, P.F.; Gonçalves, D.S.; Ramos, L.S.; Mello, T.P.; Braga-Silva, L.A.; Pinto, M.R.; Taborda, C.P.; Branquinha, M.H.; Santos, A.L.S. Saps1–3 Antigens in Candida albicans: Differential Modulation Following Exposure to Soluble Proteins, Mammalian Cells, and Infection in Mice. Infect. Dis. Rep. 2024, 16, 572-586. https://doi.org/10.3390/idr16040043
Barbosa PF, Gonçalves DS, Ramos LS, Mello TP, Braga-Silva LA, Pinto MR, Taborda CP, Branquinha MH, Santos ALS. Saps1–3 Antigens in Candida albicans: Differential Modulation Following Exposure to Soluble Proteins, Mammalian Cells, and Infection in Mice. Infectious Disease Reports. 2024; 16(4):572-586. https://doi.org/10.3390/idr16040043
Chicago/Turabian StyleBarbosa, Pedro F., Diego S. Gonçalves, Lívia S. Ramos, Thaís P. Mello, Lys A. Braga-Silva, Marcia R. Pinto, Carlos P. Taborda, Marta H. Branquinha, and André L. S. Santos. 2024. "Saps1–3 Antigens in Candida albicans: Differential Modulation Following Exposure to Soluble Proteins, Mammalian Cells, and Infection in Mice" Infectious Disease Reports 16, no. 4: 572-586. https://doi.org/10.3390/idr16040043
APA StyleBarbosa, P. F., Gonçalves, D. S., Ramos, L. S., Mello, T. P., Braga-Silva, L. A., Pinto, M. R., Taborda, C. P., Branquinha, M. H., & Santos, A. L. S. (2024). Saps1–3 Antigens in Candida albicans: Differential Modulation Following Exposure to Soluble Proteins, Mammalian Cells, and Infection in Mice. Infectious Disease Reports, 16(4), 572-586. https://doi.org/10.3390/idr16040043