Investigation of Alternative Therapeutic and Biocidal Options to Combat Antifungal-Resistant Zoonotic Fungal Pathogens Isolated from Companion Animals
Abstract
:1. Introduction
1.1. Mycosis Species
1.2. Human Mycosis
2. Results
3. Discussion
4. Methodology
4.1. Animal Morbidity and Clinical Symptoms
4.2. Fungal Isolation, Identification, Culture and Maintenance
4.3. Inoculum Preparation
4.4. Kirby–Bauer
4.5. Minimum Inhibitory Assay
4.6. Novel Biocidal Options
Kirby–Bauer Disk Diffusion Assay Using Novel Biocidal Solutions
4.7. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Ethical Review
Conflicts of Interest
References
- Day, M.J.; Breitschwerdt, E.; Cleaveland, S.; Karkare, U.; Khanna, C.; Kirpensteijn, J.; Kuiken, T.; Lappin, M.R.; McQuiston, J.; Mumford, E.; et al. Surveillance of Zoonotic Infectious Disease Transmitted by Small Companion Animals. Emerging Infect. Dis. 2012, 18. [Google Scholar] [CrossRef]
- Outerbridge, C.A. Mycologic Disorders of the Skin. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1096286706000338 (accessed on 11 April 2021).
- Arendrup, M.C.; Friberg, N.; Mares, M.; Kahlmeter, G.; Meletiadis, J.; Guinea, J.; Arendrup, M.C.; Meletiadis, J.; Guinea, J.; Friberg, N.; et al. How to: Interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European committee on antimicrobial susceptibility testing (EUCAST). Clin. Microbiol. Infect. 2020, 26, 1464–1472. [Google Scholar] [CrossRef]
- Enoch, D.A.; Yang, H.; Aliyu, S.H.; Micallef, C. The Changing Epidemiology of Invasive Fungal Infections. Methods Mol. Biol. 2017, 1508, 17–65. [Google Scholar] [CrossRef] [PubMed]
- Dutra, V.R.; Silva, L.; Oliveira, A.N.M.; Beirigo, E.F.; Arthur, V.M.; Da Silva, R.B.; Ferreira, T.B.; Andrade-Silva, L.; Silva, M.V.; Fonseca, F.M.; et al. Fatal Case of Fungemia by Wickerhamomyces anomalus in a Pediatric Patient Diagnosed in a Teaching Hospital from Brazil. J. Fungi 2020, 6, 147. [Google Scholar] [CrossRef] [PubMed]
- Pavelski, M.; Seixas, S.V.; Warth, J.F.G.; Souza, C.de.; Dittrich, R.L.; Froes, T.R. Fungal pneumonia in dogs and cats with pulmonary clinical signs in southern Brazil. Pesquisa Veterinária Brasileira 2018, 38, 696–702. [Google Scholar] [CrossRef]
- Garnacho-Montero, J.; Olaechea, P.; Alvarez-Lerma, F.; Alvarez-Rocha, L.; Blanquer, J.; Galván, B.; Rodriguez, A.; Zaragoza, R.; Aguado, J.M.; Mensa, J.; et al. Epidemiology, diagnosis and treatment of fungal respiratory infections in the critically ill patient. Revta. Esp. Quimioter. 2013, 26, 173–188, PMID:23817660. [Google Scholar]
- Li, Z.; Lu, G.; Meng, G. Pathogenic Fungal Infection in the Lung. Front. Immunol. 2019, 10, 1524. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Radentz, W.H. Fungal skin infections associated with animal contact. Am. Fam. Physician 1991, 43, 1253–1256. [Google Scholar]
- Elad, D.; Segal, E. Diagnostic Aspects of Veterinary and Human Aspergillosis. Front. Microbiol. 2018, 9, 1303. [Google Scholar] [CrossRef]
- Jin, Y.; Lin, D. Fungal Urinary Tract Infections in the Dog and Cat: A Retrospective Study (2001–2004). J. Am. Anim. Hosp. Assoc. 2005, 41, 373–381. [Google Scholar] [CrossRef]
- Bennett, P.F.; Talbot, J.J.; Martin, P.; Kidd, S.E.; Makara, M.; Barrs, V.R. Long term survival of a dog with disseminated Aspergillus deflectus infection without definitive treatment. Med. Mycol. Case Rep. 2018, 22, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Granato, M.Q.; Gonçalves, D.D.S.; Seabra, S.H.; McCann, M.; Devereux, M.; Dos Santos, A.L.S.; Kneipp, L.F. 1,10-Phenanthroline-5,6-Dione–Based Compounds Are Effective in Disturbing Crucial Physiological Events of Phialophora verrucosa. Front. Microbiol. 2017, 8, 76. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Viganor, L.; Galdino, A.C.M.; Nunes, A.P.F.; Santos, K.R.N.; Branquinha, M.H.; Devereux, M.; Kellett, A.; McCann, M.; Santos, A.L.S. Anti- Pseudomonas aeruginosa activity of 1,10-phenanthroline-based drugs against both planktonic- and biofilm-growing cells. J. Antimicrob. Chemother. 2015, 71, 128–134. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Meade, E.; Rawe, S.; Slattery, M.A.; Garvey, M. An Assessment of Alternative Therapeutic Options for the Treatment of Prolonged Zoonotic Fungal Infections in Companion Animals. J. Microbiol. Biotechnol. 2019, 4, 000149. [Google Scholar]
- Larsen, R.A.; Bauer, M.; Thomas, A.M.; Graybill, J.R. Amphotericin B and Fluconazole, a Potent Combination Therapy for Cryptococcal Meningitis. Antimicrob. Agents Chemother. 2004, 48, 985–991. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kofla, G.; Ruhnke, M. Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis—Review of the literature. Eur. J. Med Res. 2011, 16, 159–166. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bassetti, M.; Vena, A.; Bouza, E.; Peghin, M.; Muñoz, P.; Righi, E.; Pea, F.; Lackner, M.; Lass-Flörl, C. Antifungal susceptibility testing in Candida, Aspergillus and Cryptococcus infections: Are the MICs useful for clinicians? Clin. Microbiol. Infect. 2020, 26, 1024–1033. [Google Scholar] [CrossRef]
- Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Front. Microbiol. 2017, 7, 2173. [Google Scholar] [CrossRef][Green Version]
- Ben-Ami, R.; Olshtain-Pops, K.; Krieger, M.; Oren, I.; Bishara, J.; Dan, M.; Wiener-Well, Y.; Weinberger, M.; Zimhony, O.; Chowers, M.; et al. Antibiotic Exposure as a Risk Factor for Fluconazole-Resistant Candida Bloodstream Infection. Antimicrob. Agents Chemother. 2012, 56, 2518–2523. [Google Scholar] [CrossRef][Green Version]
- Robbins, N.; Caplan, T.; Cowen, L.E. Molecular Evolution of Antifungal Drug Resistance. Annu. Rev. Microbiol. 2017, 71, 753–775. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hokken, M.W.; Zwaan, B.; Melchers, W.; Verweij, P. Facilitators of adaptation and antifungal resistance mechanisms in clinically relevant fungi. Fungal Genet. Biol. 2019, 132, 103254. [Google Scholar] [CrossRef]
- Tucker, D.L.; Beresford, C.H.; Sigler, L.; Rogers, K. Disseminated Beauveria bassiana Infection in a Patient with Acute Lymphoblastic Leukemia. J. Clin. Microbiol. 2004, 42, 5412–5414. [Google Scholar] [CrossRef][Green Version]
- Roman, J.; Bagla, P.; Ren, P.; Blanton, L.S.; Berman, M.A. Malassezia pachydermatis fungemia in an adult with multibacillary leprosy. Med. Mycol. Case Rep. 2016, 12, 1–3. [Google Scholar] [CrossRef]
- Angileri, M.; Pasquetti, M.; De Lucia, M.; Peano, A. Azole resistance of Malassezia pachydermatis causing treatment failure in a dog. Med. Mycol. Case Rep. 2019, 23, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz-Semerci, S.; Demirel, G.; Tastekin, A. Wickerhamomyces anomalus blood stream infection in a term newborn with pneumonia. Turk. J. Pediatr. 2017, 59, 349–351. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mehta, V.; Mohanty, A.; Meena, S.; Rahul, J.S.; Kumar, N.U.; Chattopadhyay, D.; Bakliwal, A.; Choudhary, R.; Gupta, P. Wickerhamomyces anomalous: A Rare Cause of Fungemia Causing Febrile Neutropenia in Acute Lymphoblastic Leukemia. Case Rep. Infect. Dis. 2020, 2020, 1–4. [Google Scholar] [CrossRef]
- Fan, Y.-M.; Huang, W.-M.; Li, S.-F.; Wu, G.-F.; Lai, K.; Chen, R.-Y. Granulomatous Skin Infection Caused by Malassezia pachydermatis in a Dog Owner. Arch. Dermatol. 2006, 142, 1181–1184. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bajwa, J. Canine Malassezia dermatitis. Can. Vet. J. 2017, 58, 1119–1121. [Google Scholar] [PubMed]
Drug Class | Aminoglycoside | Glycopeptide | Macrolide | Penicillin | Penicillin-Like | Cephalosporins | Carbapenems | Quinolones | Tetracycline | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotic | Streptomycin | Vancomycin | Azithromycin | Erythromycin | Penicillin | Ampicillin | Amox/clav | Cefpodoxime | Cefotaxime | Ceftriaxone | Doripenem | Meropenem | Imipenem | Ciprofloxacin | Levofloxacin | Doxycycline |
Conc. µg/disc | 10 | 30 | 15 | 15 | 10 | 10 | 20:10 | 10 | 5 | 30 | 10 | 10 | 10 | 5 | 5 | 30 |
P. mirabilis | 16 | R | 10 | R | 16 | 17 | 20 | 28 | 28 | 33 | 21 | 25 | 20 | 31 | 33 | R |
Staphylococcus sp. | 20 | 13 | 25 | 30 | 20 | 19 | 23 | 34 | 29 | 33 | 33 | 28 | 45 | 30 | 31 | 31 |
Streptococcus canis | 15 | 26 | 25 | 24 | 49 | 32 | 40 | 33 | 30 | 35 | 30 | 30 | 45 | 21 | 25 | 28 |
Enterobacter asburiae | 17 | R | 10 | R | R | R | 11 | 26 | 27 | 27 | 25 | 27 | 30 | 33 | 29 | 19 |
Staphylococcus hominis | 23 | 20 | R | R | 40 | 35 | 37 | 29 | 20 | 28 | 38 | 35 | 50 | 35 | 29 | 35 |
E. faecium | 12 | 18 | 12 | 15 | 11 | 18 | 23 | 8 | 7 | 14 | 7 | 20 | 7 | 14 | 14 | 23 |
E. hirae | R | 20 | 20 | 24 | 18 | 17 | 24 | R | R | R | R | R | 22 | 17 | 17 | 22 |
Phendione (µg/mL) | Zone of Inhibition(m) | ||||||
---|---|---|---|---|---|---|---|
P. mirabilis | S. aureus | S. canis | E. asburiae | S. hominis | E. faecium | E. hirae | |
5.00 | 0.00 | 12.8(±0.3)C | 0.00 | 0.00 | 11.0(±0.4)B | 0.00 | 0.00 |
10.00 | 8.00(±0.4)A | 15.0(±0.4)D | 7.0(±0.4)E | 8.0(±0.4)A | 12.4(±0.2)C | 7.3(±0.3)E | 7.0(±0.4)E |
20.00 | 10.8(±0.3)B | 18.0(±0.3)F | 8.3(±0.3)A | 9.3(±0.4)I | 17.6(±0.4)F | 8.4(±0.3)A | 8.3(±0.2)A |
50.00 | 12.8(±0.4)C | 21.3(±0.6)G | 11.3(±0.5)B | 12.8(±0.6)C | 21.0(±0.2)G | 12.5(±0.5)C | 11.0(±0.5)B |
100.00 | 15.3(±0.4)D | 24.3(±0.4)H | 15.3(±0.4)D | 16.8(±0.6)J | 24.8(±0.4)H | 13.8(±0.4)K | 15.0(±0.6)D |
MIC(µg/mL) | 3.13 | 0.78 | 1.56 | 1.56 | 1.56 | 6.25 | 3.13 |
Fungal Isolate | Fluconazole | Amp B | Caspofungin | Phendione |
---|---|---|---|---|
µg/mL | µg/mL | |||
C. parapsilosis | 8 R | 4 R | R | 1000 |
C. famata (a) | 8 | R | R | 500 |
C. famata (b) | 2 S | R | 0.5 | 500 |
W. anomalus | R | 1 | 1.5 | 5 |
C. neoformans | 6 | R | R | 250 |
M. pachydermatis (a) | 12 | R | R | 31.25 |
M. pachydermatis (b) | 8 | R | R | 31.25 |
A. niger (bobby) | R | 0.19 S | 1.5 | 62.5 |
B. pseudobassiana | R | R | R | 250 |
Fungal Isolate | BSA (g/L) | Biocide Test Substance | ||||||
---|---|---|---|---|---|---|---|---|
Peracetic Acid | Triameen | IPA | ||||||
0.01% | 0.1% | 1% | 0.01% | 0.1% | 1% | 70% | ||
C. parapsilosis | 0 | 7.0(±0.1)A | 10.0(±0.4)E | 25.0(±1.4)I | 7.0(±0.1)A | 11.8(±0.3)C | 16.3(±0.4)N | 11.5(±0.4)G |
3 | 7.0(±0.6)A | 8.5(±0.2)B | 22.5(±1.6)J | 7.5(±0.2)A | 11.8(±0.4)C | 12.8(±0.5)H | 11.5(±0.1)G | |
10 * | 7.0(±0.2)A | 8.0(±1.1)B | 20.8(±1.2)K | 7.0(±0.1)A | 11.0(±0.1)G | 15.5(±0.2)N | 11.5(±0.2)G | |
C. famata (a) | 0 | 7.8 (±0.6)B | 12.5(±0.7)C | 26.8(±1.4)II | 8.8(±0.3)F | 18.5 (±1.0)X | 25.5(±0.3)I | 9.0(±0.4)Y |
3 | 12.0(±1.4)C | 13.8(±1.0)D | 32.3(±1.9)C | 9.5(±0.2)Y | 18.7(±0.6)X | 25.8(±1.0)L | 9.0(±0.7)Y | |
10 * | 7.3(±0.4)A | 10.5(±0.7)E | 26.3(±0.4)II | 18.3(±0.7)X | 20.0(±1.1)K | 25.3(±0.2)I | 8.5(±0.8)B | |
C. famata (b) | 0 | 0(±0.0) | 7.5(±0.8)A | 22.5(±0.8)J | 0.0(±0.0) | 11.0(±0.4)G | 20.8(±1.2)K | 7.0(±0.4)A |
3 | 0.0(±0.0) | 8.0(±0.4)B | 26.0(±0.5)L | 7.0(±0.1)A | 11.0(±1.0)G | 22.0(±0.5)J | 7.0(±0.4)A | |
10 * | 0.0(±0.0) | 7.5(±0.6)A | 23.3(±0.4)M | 7.0(±0.2)A | 11.0(±0.5)G | 23.5(±0.2)M | 7.0(±0.2)A | |
W. anomalus | 0 | 0 (±0) | 8.0(±0.1)B | 16.0(±0.4)N | 0 (±0) | 15.0 (±0.3)F | 24.0(±1.1)M | 10.0(±0.4)E |
3 | 0 (±0) | 8.0(±0.1)B | 14.3(±0.5)F | 0 (±0) | 14.0(±0.1)D | 22.5(±0.2)J | 9.3(±0.1)Y | |
10 * | 0 (±0) | 8.0(±0.2)B | 11.3(±0.4)G | 0 (±0) | 14.0(±0.2)D | 17.5(±0.5)X | 9.3(±0.4)Y | |
C. neoformans | 0 | 13.0 (±0.8)D | 14.5(±0.2)F | 31.5(±0.4)O | 12.5(±0.2)C | 24.0(±0.5)Z | 33.0(±0.7)P | 8.0 (±0.4)B |
3 | 12.0(±0.4)C | 13.8(±0.4)D | 32.3(±1.1)P | 14.0(±0.2)F | 20.3(±0.6)K | 29.8(±1.3)Q | 9.8(±0.3)E | |
10 * | 13.5(±0.2)D | 15.0(±1.0)F | 29.8(±0.4)Q | 13.0(±0.2)D | 20.0(±0.2)K | 30.0(±1.4)Q | 9.0(±0.2)Y | |
M. pachydermatis (a) | 0 | 0 (±0) | 9.8(±0.3)E | 39.5(±1.5)R | 7.5(±0.4)A | 14.0(±0.1)F | 24.0(±0.5)M | 8.0(±0.7)B |
3 | 0(±0) | 11.8(±0.4)C | 42.5(±1.1)S | 8.0(±1.0)B | 14.0(±0.1)F | 24.8(±0.3)I | 8.0(±0.6)B | |
10 * | 0(±0) | 11.3(±0.3)G | 43.5(±1.8)T | 8.2(±0.2)B | 14.5(±0.2)F | 25.0(±0.4)I | 9.3(±0.3)Y | |
M. pachydermatis (b) | 0 | 0.0(±0.0) | 9.8(±0.4)E | 43.5(±1.3)T | 7.8(+/0.4)B | 15.0(±0.4)F | 27.1(±1.1)II | 8.5(±0.4)B |
3 | 0.0(±0.0) | 12.8(±0.4)H | 46.3(±1.1)V | 8.8(±0.3)Y | 22.0(±1.1)J | 30.0(±1.4)Q | 8.0(±0.4)B | |
10 * | 0.0(±0.0) | 10.5(±0.7)E | 49.8(±1.5)W | 12.8(±0.4)H | 16.0(±0.5)N | 29.5(±0.8)Q | 7.5(±0.6)A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meade, E.; Savage, M.; Slattery, M.; Garvey, M. Investigation of Alternative Therapeutic and Biocidal Options to Combat Antifungal-Resistant Zoonotic Fungal Pathogens Isolated from Companion Animals. Infect. Dis. Rep. 2021, 13, 348-366. https://doi.org/10.3390/idr13020034
Meade E, Savage M, Slattery M, Garvey M. Investigation of Alternative Therapeutic and Biocidal Options to Combat Antifungal-Resistant Zoonotic Fungal Pathogens Isolated from Companion Animals. Infectious Disease Reports. 2021; 13(2):348-366. https://doi.org/10.3390/idr13020034
Chicago/Turabian StyleMeade, Elaine, Micheal Savage, Mark Slattery, and Mary Garvey. 2021. "Investigation of Alternative Therapeutic and Biocidal Options to Combat Antifungal-Resistant Zoonotic Fungal Pathogens Isolated from Companion Animals" Infectious Disease Reports 13, no. 2: 348-366. https://doi.org/10.3390/idr13020034