Evaluation of Tumor Necrosis Factor-Alpha Gene (−308 G/A, −238 G/A and −857 C/T) Polymorphisms and the Risk of Gastric Cancer in Eastern Indian Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Patient Enrolment and Sample Collection
2.3. DNA Extraction and PCR-RFLP
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.Y.; Zhang, P.Y. Gastric cancer: Somatic genetics as a guide to therapy. J. Med. Genet. 2017, 54, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Machlowska, J.; Baj, J.; Sitarz, M.; Maciejewski, R.; Sitarz, R. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics, and treatment strategies. Int. J. Mol. Sci. 2020, 21, 4012. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef] [PubMed]
- Ang, T.L.; Fock, K.M. Clinical epidemiology of gastric cancer. Singap. Med. J. 2014, 55, 621. [Google Scholar] [CrossRef] [PubMed]
- Ilic, M.; Ilic, I. Epidemiology of stomach cancer. World J. Gastroenterol. 2022, 28, 1187. [Google Scholar] [CrossRef]
- Uthansingh, K.; Parida, P.K.; Pati, G.K.; Sahu, M.K.; Padhy, R.N. Evaluating the Association of Genetic Polymorphism of Cytochrome p450 (CYP2C9*3) in Gastric Cancer Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Cureus 2022, 14, e27220. [Google Scholar] [CrossRef]
- Muzaheed. Helicobacter pylori Oncogenicity: Mechanism, Prevention, and Risk Factors. Sci. World. J. 2020, 2020, 3018326. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Liu, C.; Lu, X. The correlation between TNF-α-308 gene polymorphism and susceptibility to cervical cancer. Oncol. Lett. 2018, 15, 7163–7167. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Bogra, J.; Chandra, G.; Ahmad, M.K.; Gupta, R.; Kumar, V.; Jain, A.; Ali Mahdi, A. Association of TNF-α (−238 and −308) promoter polymorphisms with susceptibility of oral squamous cell carcinoma in North Indian population. Cancer Biomark. 2015, 15, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Yao, H.; Huo, Y.; Li, N.; Cheng, Y. Association between TNF-α gene 308G>A polymorphism and lung cancer risk: A meta-analysis. Tumor Biol. 2014, 35, 9693–9699. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, L.; Liu, B.; Wang, Y.; Li, F.; Yu, H. An updated association between TNF-α-238G/A polymorphism and gastric cancer susceptibility in East Asians. Biosci. Rep. 2018, 38, BSR20181231. [Google Scholar] [CrossRef] [PubMed]
- Du, L.C.; Gao, R. Role of TNF-α -308G/A gene polymorphism in gastric cancer risk: A case control study and meta-analysis. Turk. J. Gastroenterol. 2017, 28, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Cho, S.I.; Yim, J.Y.; Kim, J.M.; Lee, D.H.; Park, J.H.; Kim, J.S.; Jung, H.C.; Song, I.S. The Effects of Genetic Polymorphisms of IL-1 and TNF-A on Helicobacter pylori-Induced Gastroduodenal Diseases in Korea. Helicobacter 2006, 11, 105–112. [Google Scholar] [CrossRef]
- Jang, W.H.; Yang, Y.I.; Yea, S.S.; Lee, Y.J.; Chun, J.H.; Kim, H.I.; Kim, M.S.; Paik, K.H. The −238 tumor necrosis factor-α promoter polymorphism is associated with decreased susceptibility to cancers. Cancer Lett. 2001, 166, 41–46. [Google Scholar] [CrossRef]
- Lee, S.G.; Kim, B.; Yook, J.H.; Oh, S.T.; Lee, I.; Song, K. TNF/LTA polymorphisms and risk for gastric cancer/duodenal ulcer in the Korean population. Cytokine 2004, 28, 75–82. [Google Scholar] [CrossRef]
- Bhayal, A.C.; Krishnaveni, D.; RangaRao, K.P.; Bogadi, V.; Suman, C.; Jyothy, A.; Nallari, P.; Venkateshwari, A. Role of tumor necrosis factor-α-308 G/A promoter polymorphism in gastric cancer. Saudi J. Gastroenterol. 2013, 19, 182–186. [Google Scholar] [PubMed]
- Lahiri, D.K.; Nurnberger, J.I., Jr. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991, 19, 5444. [Google Scholar] [CrossRef] [PubMed]
- Ota, M.; Fukushima, H.; Kulski, J.K.; Inoko, H. Single nucleotide polymorphism detection by polymerase chain reaction-restriction fragment length polymorphism. Nat. Protoc. 2007, 2, 2857–2864. [Google Scholar] [CrossRef] [PubMed]
- Oshima, H.; Ishikawa, T.; Yoshida, G.J.; Naoi, K.; Maeda, Y.; Naka, K.; Ju, X.; Yamada, Y.; Minamoto, T.; Mukaida, N.; et al. TNF-α/TNFR1 signaling promotes gastric tumorigenesis through induction of Noxo1 and Gna14 in tumor cells. Oncogene 2014, 33, 3820–3829. [Google Scholar] [CrossRef]
- Arnott, C.H.; Scott, K.A.; Moore, R.J.; Robinson, S.C.; Thompson, R.G.; Balkwill, F.R. Expression of both TNF-α receptor subtypes is essential for optimal skin tumour development. Oncogene 2004, 23, 1902–1910. [Google Scholar] [CrossRef] [PubMed]
- Popivanova, B.K.; Kitamura, K.; Wu, Y.; Kondo, T.; Kagaya, T.; Kaneko, S.; Oshima, M.; Fujii, C.; Mukaida, N. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Investig. 2008, 118, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.I.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Maloy, S.; Hughes, K. (Eds.) Brenner’s Encyclopedia of Genetics; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Mier-Cabrera, J.; Cruz-Orozco, O.; de la Jara-Díaz, J.; Galicia-Castillo, O.; Buenrostro-Jáuregui, M.; Parra-Carriedo, A.; Hernández-Guerrero, C. Polymorphisms of TNF-alpha (−308), IL-1beta (+3954) and IL1-Ra (VNTR) are associated to severe stage of endometriosis in Mexican women: A case control study. BMC Women’s Health 2022, 22, 356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Lu, X.; Bu, X.; Zhang, N.; Wang, W. Involvement of tumor necrosis factor-α in the upregulation of CXCR4 expression in gastric cancer induced by Helicobacter pylori. BMC Cancer 2010, 10, 419. [Google Scholar] [CrossRef]
- Cen, G.; Wu, W. Association between tumor necrosis factor-alpha 857C/T polymorphism and gastric cancer: A meta-analysis. Tumour Biol. 2013, 34, 3383–3388. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Yu, M.; Li, Z. Tumor necrosis factor-α T-857C (rs1799724) polymorphism and risk of cancers: A meta-analysis. Dis. Markers 2016, 2016, 4580323. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.P.; Hyun, M.H.; Yoon, J.M.; Park, M.J.; Kim, D.; Park, S. Association between TNF-α-308 G/A gene polymorphism and gastric cancer risk: A systematic review and meta-analysis. Cytokine 2014, 70, 104–114. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, S.; Zhang, S.; Min, L.; Wang, Y.; Xie, J.; Hou, Y.; Tian, X.; Cheng, J.; Liu, K.; et al. The relationship between tumor necrosis factor-α polymorphisms and gastric cancer risk: An updated meta-analysis. Biomed. Rep. 2017, 7, 133–142. [Google Scholar] [CrossRef][Green Version]
- Perri, F.; Piepoli, A.; Bonvicini, C.; Gentile, A.; Quitadamo, M.; Di Candia, M.; Cotugno, R.; Cattaneo, F.; Zagari, M.R.; Ricciardiello, L.; et al. Cytokine gene polymorphisms in gastric cancer patients from two Italian areas at high and low cancer prevalence. Cytokine 2005, 30, 293–302. [Google Scholar] [CrossRef]
- Garza-González, E.; Hold, G.; Pérez-Pérez, G.I.; Bosques-Padilla, F.J.; Tijerina-Menchaca, R.; Maldonado-Garza, H.J.; el-Omar, E. Role of polymorphism of certain cytokines in gastric cancer in Mexico. Preliminary results. Rev. Gastroenterol. 2003, 68, 107–112. [Google Scholar]
- Sugimoto, M.; Furuta, T.; Shirai, N.; Nakamura, A.; Xiao, F.; Kajimura, M.; Sugimura, H.; Hishida, A. Different effects of polymorphisms of tumor necrosis factor-alpha and interleukin-1 beta on development of peptic ulcer and gastric cancer. J. Gastroenterol. Hepatol. 2007, 22, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Sultana, Z.; Bankura, B.; Pattanayak, A.K.; Sengupta, D.; Sengupta, M.; Saha, M.L.; Panda, C.K.; Das, M. Association of Interleukin-1 beta and tumor necrosis factor-alpha genetic polymorphisms with gastric cancer in India. Environ. Mol. Mutagen. 2018, 59, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Naikoo, N.A.; Gao, S. A meta-analysis of tumor necrosis factor-α-308 G>A polymorphism in gastric cancer. Asian Biomed. 2020, 14, 91–96. [Google Scholar] [CrossRef]
- Rokkas, T.; Sechopoulos, P.; Pistiolas, D.; Kothonas, F.; Margantinis, G.; Koukoulis, G. Population differences concerning TNF-α gene polymorphisms in gastric carcinogenesis based on meta-analysis. Annals of gastroenterology: Quarterly publication of the Hellenic Society of Gastroenterology. Ann. Gastroenterol. 2014, 27, 139–148. [Google Scholar] [PubMed]
- Guo, X.F.; Wang, J.; Yu, S.J.; Song, J.; Ji, M.Y.; Cao, Z.; Zhang, J.X.; Wang, J.; Dong, W.G. TNF-α-308 polymorphism and risk of digestive system cancers: A meta-analysis. World. J. Gastroenterol. 2013, 19, 9461–9471. [Google Scholar] [CrossRef] [PubMed]
- Barua, R.R.; Barua, S.; Barua, H.R.; Barua, A.K.; Ansari, M.J.; Chong, J.M.; Uozaki, H.; Fukayama, M. Tumor necrosis factor-α polymorphism in Helicobacter pylori associated gastric carcinoma. Bangladesh Med. Res. Counc. Bull. 2019, 45, 170–174. [Google Scholar] [CrossRef]
Gene Name | Nucleotides/Sequences | Product Size (in bp) | Annealing Temp (in °C) | Digestive Enzyme | Allele Phenotype (in bp) |
---|---|---|---|---|---|
TNF-α−308 G/A | Forward: 5′-TCCTCCCTGCTCCGATTCCG-3′ Reverse: 5′-AGGCAATAGGTTTTGAGGGCCAT-5′ | 107 | 58 °C | Nco I | A: 107; G: 87 + 20 |
TNF-α−238 G/A | Forward: 5′-AGAAGACCCCCCTCGGAACC-5′ Reverse: 5′-ATCTGGAGGAAGCGGTAGTG-3′ | 152 | 60 °C | Msp I | A: 152; G: 132 + 20 |
TNF-α-T−857C | Forward: 5′-AAGTCGAGTATGGGGACCCCCCGTTAA-3′ Reverse: 5′-CCCCAGTGTGTGGCCATATCTTCTT-3′ | 133 | 58 °C | Hinc II | C: 108 + 25; T: 133 |
Cases (N1 = 95) | Controls (N0 = 61) | p-Value | |
---|---|---|---|
Age (Mean ± SD) | 57 ± 12.4 | 57.3 ± 13.3 | 0.86 |
Gender (Males, %, n) | 52 (54.7%) | 35 (57.3%) | 0.74 |
BMI | 20.4 ± 3.4 | 20.6 ± 3.5 | 0.61 |
Dietary habits | Cases (N1 = 95) | Controls (N0 = 61) | p-Value |
Rice based | 90 (94.7%) | 57 (93.4%) | 0.73 |
Wheat based | 39 (41.0%) | 18 (29.5%) | 0.14 |
Spicy food | 58 (61.0%) | 29 (47.5%) | 0.09 |
Alcohol | 19 (20.0%) | 14 (22.9%) | 0.66 |
Smoking | 27 (28.4%) | 10 (16.3%) | 0.08 |
Socioeconomic status | 0.45 | ||
Low | 48 (50.5%) | 36 (59%) | |
Middle | 46 (48.4%) | 25 (41%) | |
Higher | 1 (1.1%) | 0 | |
H. pylori positive | 33 (34.7%) | 13 (21.3%) | 0.07 |
Polymorphisms | Cases (n = 95) | Controls (n = 61) | Odds Ratio (95% CI) | p-Value |
---|---|---|---|---|
TNF-α−308 G/A | ||||
GG | 74 (77.9%) | 52 (85.2%) | Ref. | |
GA | 12 (12.6%) | 6 (9.8%) | 1.4 (0.5–8.1) | 0.2 |
AA | 9 (9.5%) | 3 (5%) | 2.1 (0.5–3.9) | 0.5 |
GA/AA | 21 (22.1%) | 9 (14.8%) | 1.6 (0.6–3.8) | 0.2 |
TNF-α−238 G/A | Cases (n = 95) | Controls (n = 61) | Odds Ratio (95% CI) | p-Value |
GG | 75 (78.9%) | 49 (80.3%) | Ref. | |
GA | 13 (13.7%) | 7 (11.5%) | 1.2 (0.4–3.2) | 0.7 |
AA | 7 (7.4%) | 5 (8.2%) | 0.9 (0.2–3.1) | 0.8 |
GA/AA | 20 (21.1%) | 12 (19.7%) | 1.09 (0.4–2.4) | 0.8 |
TNF-α-T−857C | Cases (n = 95) | Controls (n = 61) | Odds Ratio (95% CI) | p-Value |
CC | 71 (74.7%) | 54 (88.5%) | Ref. | |
CT | 16 (16.8%) | 4 (6.5%) | 3.0 (0.9–9.6) | 0.06 |
TT | 8 (8.4%) | 3 (5%) | 2.0 (0.5–8) | 0.3 |
CT/TT | 24 (25.2%) | 7 (11.5%) | 0.7 (0.2–2.1) | 0.5 |
H. pylori positive subjects | Cases (n = 33) | Controls (n = 13) | ||
TNF-α−308 | ||||
GG | 18 (54.5%) | 10 (77%) | Ref. | |
GA/AA | 15 (45.5%) | 3 (23%) | 2.7 (0.6–11.9) | 0.17 |
TNF-α−238 | ||||
GG | 21 (63.6%) | 11 (84.6%) | Ref. | |
GA/AA | 12 (36.4%) | 2 (15.4%) | 3.1 (0.5–16.6) | 0.17 |
TNF-α−857 | ||||
CC | 20 (60.6%) | 11 (84.6%) | Ref. | |
CT/TT | 13 (39.4%) | 2 (15.4%) | 3.5 (0.6–18.8) | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uthansingh, K.; Pati, G.K.; Parida, P.K.; Narayan, J.; Pradhan, S.; Sahu, M.K.; Padhy, R.N. Evaluation of Tumor Necrosis Factor-Alpha Gene (−308 G/A, −238 G/A and −857 C/T) Polymorphisms and the Risk of Gastric Cancer in Eastern Indian Population. Gastroenterol. Insights 2022, 13, 340-348. https://doi.org/10.3390/gastroent13040034
Uthansingh K, Pati GK, Parida PK, Narayan J, Pradhan S, Sahu MK, Padhy RN. Evaluation of Tumor Necrosis Factor-Alpha Gene (−308 G/A, −238 G/A and −857 C/T) Polymorphisms and the Risk of Gastric Cancer in Eastern Indian Population. Gastroenterology Insights. 2022; 13(4):340-348. https://doi.org/10.3390/gastroent13040034
Chicago/Turabian StyleUthansingh, Kanishka, Girish Kumar Pati, Prasanta Kumar Parida, Jimmy Narayan, Subhasis Pradhan, Manoj Kumar Sahu, and Rabindra Nath Padhy. 2022. "Evaluation of Tumor Necrosis Factor-Alpha Gene (−308 G/A, −238 G/A and −857 C/T) Polymorphisms and the Risk of Gastric Cancer in Eastern Indian Population" Gastroenterology Insights 13, no. 4: 340-348. https://doi.org/10.3390/gastroent13040034
APA StyleUthansingh, K., Pati, G. K., Parida, P. K., Narayan, J., Pradhan, S., Sahu, M. K., & Padhy, R. N. (2022). Evaluation of Tumor Necrosis Factor-Alpha Gene (−308 G/A, −238 G/A and −857 C/T) Polymorphisms and the Risk of Gastric Cancer in Eastern Indian Population. Gastroenterology Insights, 13(4), 340-348. https://doi.org/10.3390/gastroent13040034