Design of Wireless Powered Communication Systems for Low-Altitude Economy
Abstract
1. Introduction
2. WPCSs for Low-Altitude Economy
2.1. Basic Principles of WPCSs
- (1)
- Energy Transfer Mode
- (2)
- Communication Model
2.2. Theoretical Analysis of Power Supply Schemes
- (1)
- Traditional Battery Power Supply Scheme
- (2)
- Simple Wireless Power Supply Scheme
- (3)
- Optimized Wireless Power Supply Scheme
- (4)
- Efficient WPCS (with Dynamic Adjustment)
3. System Performance Evaluation and Optimization
3.1. System Performance Evaluation Metrics
- (1)
- Transmission Distance
- (2)
- Communication Frequency
- (3)
- Weather Conditions
- (4)
- Flight Speed
- (5)
- Task Complexity
3.2. Comprehensive Performance Evaluation Model
3.3. System Optimization Strategies
- (1)
- Power Control
- (2)
- Frequency Adjustment
- (3)
- Antenna Optimization
3.4. Optimization Algorithm
- Transmission distance: Measured every 100 ms using ultrasonic or LiDAR sensors (accuracy ± 0.1 m).
- Communication frequency: Monitored in real time through software-defined radio (SDR) baseband processing.
- Weather conditions: Updated every 10 s via onboard weather sensor module (temperature, humidity, atmospheric pressure).
- Flight speed: Measured every 50 ms using GPS/IMU fusion algorithm.
- Task complexity: Calculated every 1 s based on current computational load and data queue length.
3.5. Implementation Requirements for Dynamic Adjustment
- (1)
- Measurement Acquisition Protocol
- (2)
- Parameter Update Rules
- (3)
- Computational Platform Requirements
- Minimum 1 GHz ARM Cortex-A53 CPU
- 2 GB RAM for real-time matrix operations
- Support for floating-point operations in optimization calculations
- <50 ms worst-case execution time for one optimization cycle
4. Experimental Simulation Result Analysis
5. Discussion
5.1. Critical Evaluation of Results Against Objectives and Hypotheses
5.2. Comparative Analysis with Prior Works
5.3. Novelty and Impact Justification
5.4. Limitations and Future Validation
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bi, S.; Ho, C.K.; Zhang, R. Wireless powered communication: Opportunities and challenges. IEEE Commun. Mag. 2015, 53, 117–125. [Google Scholar] [CrossRef]
- Bi, S.; Zeng, Y.; Zhang, R. Wireless powered communication networks: An overview. IEEE Wirel. Commun. 2016, 23, 10–18. [Google Scholar] [CrossRef]
- Cheng, G.; Song, X.; Lyu, Z.; Xu, J. Networked ISAC for Low-Altitude Economy: Coordinated Transmit Beamforming and UAV Trajectory Design. IEEE Trans. Commun. 2025, 73, 5832–5847. [Google Scholar] [CrossRef]
- Li, Z.; Gao, Z.; Wang, K.; Mei, Y.; Zhu, C.; Chen, L.; Wu, X.; Niyato, D. Unauthorized UAV Countermeasure for Low-Altitude Economy: Joint Communications and Jamming Based on MIMO Cellular Systems. IEEE Internet Things J. 2024, 12, 6659–6672. [Google Scholar] [CrossRef]
- Huang, H.; Su, J.; Wang, F.-Y. The Potential of Low-Altitude Airspace: The Future of Urban Air Transportation. IEEE Trans. Intell. Veh. 2024, 9, 5250–5254. [Google Scholar] [CrossRef]
- Zheng, B.; Liu, F. Random Signal Design for Joint Communication and SAR Imaging Towards Low-Altitude Economy. IEEE Wirel. Commun. Lett. 2024, 13, 2662–2666. [Google Scholar] [CrossRef]
- Lei, H.; Yan, Y.; Liu, J.; Han, Q.; Li, Z. Hierarchical Multi-UAV Path Planning for Urban Low Altitude Environments. IEEE Access 2024, 12, 162109–162121. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, M.; Shao, Z.; Jiang, Y.; Xiong, Z. Intelligent Computation Offloading and Trajectory Planning for 3-D Target Search in Low-Altitude Economy Scenarios. IEEE Wirel. Commun. Lett. 2025, 14, 949–953. [Google Scholar] [CrossRef]
- Tang, J.; Yu, Y.; Pan, C.; Ren, H.; Wang, D.; Wang, J.; You, X. Cooperative ISAC-empowered Low-Altitude Economy. IEEE Trans. Wirel. Commun. 2025, 24, 3837–3853. [Google Scholar] [CrossRef]
- Yuan, L.; Bi, S.; Lin, X.; Wang, H. Throughput maximization of cluster-based cooperation in underlay cognitive WPCNs. Comput. Netw. 2020, 166, 106853. [Google Scholar] [CrossRef]
- Yuan, L.; Bi, S.; Lin, X.; Wang, H. Throughput Fairness Optimization for Cluster-Based Collaboration. IEEE Syst. J. 2024, 18, 551–559. [Google Scholar] [CrossRef]
- Poposka, M.; Pejoski, S.; Rakovic, V.; Denkovski, D.; Gjoreski, H.; Hadzi-Velkov, Z. Delay Minimization of Federated Learning Over Wireless Powered Communication Networks. IEEE Commun. Lett. 2024, 28, 108–112. [Google Scholar] [CrossRef]
- Zhu, G.; Mu, X.; Guo, L.; Huang, A.; Xu, S. Enhancing User Fairness in Wireless Powered Communication Networks with STAR-RIS. IEEE Internet Things J. 2025, 12, 2659–2673. [Google Scholar] [CrossRef]
- Hadzi-Velkov, Z.; Poposka, M.; Evgenidis, N.G.; Suraweera, H.A.; Karagiannidis, G.K. Throughput Maximization for Wireless-Powered Hybrid Bit-Semantic Communications. IEEE Wirel. Commun. Lett. 2025, 14, 445–449. [Google Scholar] [CrossRef]
- Yang, C.; Jin, K.; Zhou, W.; Hu, H.; Zhu, X. Efficiency Enhancement of Power Amplifier Using Power Pulsewidth Modulation for Wireless Power Transfer. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 1099–1102. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Z.; Zhang, C.; Dang, J.; Wu, L.; Zhu, B.; Wang, L. Analysis of a New Energy-Efficient Model for Future Wireless Communication Systems. IEEE Trans. Wirel. Commun. 2024, 23, 5503–5514. [Google Scholar] [CrossRef]
- Chen, J.; Cao, K.; Lv, L.; Ding, H.; Dong, R.; Cheng, T.; Diao, D. Ergodic Secrecy Capacity Analysis for RIS-Aided Wireless Powered Communication System Under Different Phase Shifting. IEEE Trans. Veh. Technol. 2024, 73, 17276–17289. [Google Scholar] [CrossRef]
- Guan, X.; Xue, J.; Jiang, H.; Tian, G. Multiobjective Optimization of Wireless Powered Communication Networks Assisted by Intelligent Reflecting Surface Based on Multiagent Reinforcement Learning. IEEE Trans. Antennas Propag. 2024, 72, 3274–3281. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Dai, X.; Gao, R.; He, M. A Dynamic Power Transfer Route Construction and Optimization Method Considering Random Node Distribution for Wireless Power Transfer Network. IEEE Trans. Power Electron. 2024, 39, 4858–4869. [Google Scholar] [CrossRef]
- Azarbahram, A.; López, O.L.A.; Latva-Aho, M. Waveform Optimization and Beam Focusing for Near-Field Wireless Power Transfer with Dynamic Metasurface Antennas and Non-Linear Energy Harvesters. IEEE Trans. Wirel. Commun. 2025, 24, 1031–1045. [Google Scholar] [CrossRef]
- Rao, B.; Hu, J.; Yang, K. Unmanned Aerial Vehicle-Based Hybrid Backscatter and Wireless Powered Communications: 3-D Trajectory Design and Resource Scheduling. IEEE Trans. Cogn. Commun. Netw. 2024, 10, 1678–1689. [Google Scholar] [CrossRef]
- Cantos, L.; Choi, J.; Kim, Y.H. Active Intelligent Reflecting Surface for MISO Wireless Powered Communication: NOMA or TDMA? IEEE Trans. Wirel. Commun. 2024, 23, 17698–17713. [Google Scholar] [CrossRef]
- Rappaport, T. Wireless Communications: Principles and Practice; Prentice Hall: Hoboken, NJ, USA, 1996. [Google Scholar]
- Xu, J.; Zhang, R. Energy Beamforming with One-Bit Feedback. IEEE Trans. Signal Process. 2014, 62, 5370–5381. [Google Scholar] [CrossRef]
- Sample, A.P.; Meyer, D.T.; Smith, J.R. Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer. IEEE Trans. Ind. Electron. 2011, 58, 544–554. [Google Scholar] [CrossRef]
- Yuan, L.; Chen, H.; Dai, M. Energy-autonomous communication framework for implantable devices using WPT in medical IoT systems. AIP Adv. 2025, 15, 125013. [Google Scholar] [CrossRef]
- ITU-R P.837-7; Characteristics of Precipitation for Propagation Modelling. International Telecommunication Union: Geneva, Switzerland, 2017. Available online: https://www.itu.int/rec/R-REC-P.837-7-201706-S/en (accessed on 16 December 2025).





| Research Focus | Representative Works | Key Limitations | This Paper’s Contribution |
|---|---|---|---|
| Static WPCN Optimization | [3,4,5] | Fixed topology, no mobility modeling | Dynamic multi-parameter coupling model |
| UAV Power Transfer | [6,7,8] | Open-field only, no urban channel effects | ITU-R P.1411 low-altitude channel integration |
| Adaptive Protocols | [9,10,11,12,13] | No computational complexity bounds | O (n log n) algorithm with MATLAB proof |
| Energy Modeling | [14,15,16,17] | Linear assumptions, single-factor analysis | Non-linear MDECM with coefficient range validation |
| Parameter | Sensor/Method | Measurement Range | Update Frequency | Accuracy Requirement |
|---|---|---|---|---|
| Transmission Distance (d) | Ultrasonic sensor (HC-SR04; Elecfreaks, Shenzhen, China) or LiDAR module (TFmini; Benewake Co., Ltd., Beijing, China) | 0–100 m | 100 ms | ±0.1 m |
| Communication Frequency (f) | Software-Defined Radio (USRPN210, UHD version 4.2.0.0 and GNU Radio 3.10.5.1 on Ubuntu 20.04 LTS) | 1–10 Hz | Real-time (per frame) | ±0.01 Hz |
| Weather Conditions (w) | Integrated weather station-BME280 sensor (Adafruit Industries, New York, NY, USA) | 0–1 (normalized) | 10 s | ±0.05 |
| Flight Speed (v) | Pixhawk 4 flight controller (Holybro, Shanghai, China) | 0–10 m/s | 50 ms | ±0.05 m/s |
| Task Complexity (C) | CPU load monitor & data queue analysis | 1–10 (normalized) | 1 s | ±0.1 |
| RF power detector (AD8318, Analog Devices, Wilmington, MA, USA) | 0.1–100 mW | 100 ms | ±0.5 dBm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chen, H.; Xiao, Z.; Dai, M.; Yuan, L. Design of Wireless Powered Communication Systems for Low-Altitude Economy. Future Internet 2026, 18, 22. https://doi.org/10.3390/fi18010022
Chen H, Xiao Z, Dai M, Yuan L. Design of Wireless Powered Communication Systems for Low-Altitude Economy. Future Internet. 2026; 18(1):22. https://doi.org/10.3390/fi18010022
Chicago/Turabian StyleChen, Huajun, Zhengguo Xiao, Ming Dai, and Lina Yuan. 2026. "Design of Wireless Powered Communication Systems for Low-Altitude Economy" Future Internet 18, no. 1: 22. https://doi.org/10.3390/fi18010022
APA StyleChen, H., Xiao, Z., Dai, M., & Yuan, L. (2026). Design of Wireless Powered Communication Systems for Low-Altitude Economy. Future Internet, 18(1), 22. https://doi.org/10.3390/fi18010022

