Dynamic Resource Management in 5G-Enabled Smart Elderly Care Using Deep Reinforcement Learning
Abstract
1. Introduction
- Design of an MDP framework for dynamic resource allocation in 5G-enabled smart elderly care systems, with a customized reward function aimed at improving the packet delivery rate and the reducing loss rate.
- Implementation of two DRL algorithms, DQN and DDPG, to solve the MDP formulation for adaptive resource management.
- Evaluation of the customized DQN and DDPG algorithms to determine the most effective DRL-based strategy.
2. Related Work
3. DRL Based Resource Allocation in 5G-Enabled Elderly Care Home Network
3.1. Architecture of Smart Elderly Care Home Network
3.2. MDP Model for Resource Allocation in Smart Elderly Home Network
DRL Algorithms for Resource Management
Algorithm 1: DRA: DDPG-based Resource Allocation |
Algorithm 2: DRA: DQN-based Resource Allocation |
4. Performance Evaluation
4.1. Analysis 1: Evaluation of User and Edge Server Configurations on Model Learning
4.1.1. DDPG-Based DRA Algorithm
4.1.2. DQN-Based DRA Algorithm
4.2. Analysis 2: Evaluation of Throughput and Edge Capability Considering Varying User Demands and Resource Capacity
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Population Ageing 2020: Highlights: Living Arrangements of Older Persons; UN: New York, NY, USA, 2021.
- Mayhew, L.D. Health and Elderly Care Expenditure in an Aging World; IIASA Research Report; IIASA: Laxenburg, Austria, 2000. [Google Scholar]
- Ogura, S.; Jakovljevic, M.M. Global population aging-health care, social and economic consequences. Front. Public Health 2018, 6, 335. [Google Scholar] [CrossRef]
- Ahmed, S.; Irfan, S.; Kiran, N.; Masood, N.; Anjum, N.; Ramzan, N. Remote health monitoring systems for elderly people: A survey. Sensors 2023, 23, 7095. [Google Scholar] [CrossRef]
- Majumder, S.; Aghayi, E.; Noferesti, M.; Memarzadeh-Tehran, H.; Mondal, T.; Pang, Z.; Deen, M.J. Smart homes for elderly healthcare—Recent advances and research challenges. Sensors 2017, 17, 2496. [Google Scholar] [CrossRef]
- Hung, J. Smart elderly care services in China: Challenges, progress, and policy development. Sustainability 2022, 15, 178. [Google Scholar] [CrossRef]
- Kulurkar, P.; kumar Dixit, C.; Bharathi, V.; Monikavishnuvarthini, A.; Dhakne, A.; Preethi, P. AI based elderly fall prediction system using wearable sensors: A smart home-care technology with IOT. Meas. Sens. 2023, 25, 100614. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, N.; Wu, K.; Wang, Z. Application Status, Challenges, and Development Prospects of Smart Technologies in Home-Based Elder Care. Electronics 2025, 14, 2463. [Google Scholar] [CrossRef]
- Ji, Y.A.; Kim, H.S. Scoping review of the literature on smart healthcare for older adults. Yonsei Med. J. 2022, 63, S14. [Google Scholar] [CrossRef]
- Nedungadi, P.; Surendran, S.; Tang, K.Y.; Raman, R. Big data and AI algorithms for sustainable development goals: A topic modeling analysis. IEEE Access 2024, 12, 188519–188541. [Google Scholar] [CrossRef]
- Choukou, M.A.; Syed-Abdul, S. Smart Home Technologies and Services for Geriatric Rehabilitation; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Hoque, K.; Hossain, M.B.; Sami, A.; Das, D.; Kadir, A.; Rahman, M.A. Technological trends in 5G networks for IoT-enabled smart healthcare: A review. Int. J. Sci. Res. Arch. 2024, 12, 1399–1410. [Google Scholar] [CrossRef]
- Peralta-Ochoa, A.M.; Chaca-Asmal, P.A.; Guerrero-Vásquez, L.F.; Ordoñez-Ordoñez, J.O.; Coronel-González, E.J. Smart healthcare applications over 5G networks: A systematic review. Appl. Sci. 2023, 13, 1469. [Google Scholar] [CrossRef]
- Reddy, A.P.K.; Kumari, M.S.; Dhanwani, V.; Bachkaniwala, A.K.; Kumar, N.; Vasudevan, K.; Selvaganapathy, S.; Devar, S.K.; Rathod, P.; James, V.B. 5G new radio key performance indicators evaluation for IMT-2020 radio interface technology. IEEE Access 2021, 9, 112290–112311. [Google Scholar] [CrossRef]
- Li, C.; Zheng, J.; Zhang, X.; Luo, L.; Chu, G.; Zhao, J.; Zhang, Z.; Wang, H.; Qin, F.; Zhou, G.; et al. Telemedicine network latency management system in 5G telesurgery: A feasibility and effectiveness study. Surg. Endosc. 2024, 38, 1592–1599. [Google Scholar] [CrossRef]
- Aswanth, A.; Manoj, E.; Rajendran, K.; EM, S.K.; Duttagupta, S. Meeting Delay guarantee in Telemedicine service using SDN framework. In Proceedings of the 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), Bangalore, India, 30 September–2 October 2021; IEEE: New York, NY, USA, 2021; pp. 1–5. [Google Scholar]
- Nayak, S.; Patgiri, R. 6G communication technology: A vision on intelligent healthcare. In Health Informatics: A Computational Perspective in Healthcare; Springer: Singapore, 2021; pp. 1–18. [Google Scholar]
- Ahad, A.; Tahir, M.; Aman Sheikh, M.; Ahmed, K.I.; Mughees, A.; Numani, A. Technologies trend towards 5G network for smart health-care using IoT: A review. Sensors 2020, 20, 4047. [Google Scholar] [CrossRef]
- Mamdiwar, S.D.; Shakruwala, Z.; Chadha, U.; Srinivasan, K.; Chang, C.Y. Recent advances on IoT-assisted wearable sensor systems for healthcare monitoring. Biosensors 2021, 11, 372. [Google Scholar] [CrossRef]
- Abdulmalek, S.; Nasir, A.; Jabbar, W.A.; Almuhaya, M.A.; Bairagi, A.K.; Khan, M.A.M.; Kee, S.H. IoT-based healthcare-monitoring system towards improving quality of life: A review. Healthcare 2022, 10, 1993. [Google Scholar] [CrossRef]
- Bisht, N.S.; Duttagupta, S. Deploying a Federated Learning Based AI Solution in a Hierarchical Edge Architecture. In Proceedings of the 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC), Hyderabad, India, 16–18 September 2022; IEEE: New York, NY, USA, 2022; pp. 247–252. [Google Scholar]
- Surendran, S.; Montresor, A.; Vinodini Ramesh, M. A Reinforcement Learning Approach for Routing in Marine Communication Network of Fishing Vessels. SN Comput. Sci. 2025, 6, 62. [Google Scholar] [CrossRef]
- Surendran, S.; Montresor, A.; Ramesh, M.V.; Casari, P. Reinforcement Learning-Based Connectivity Restoration in an Ocean Network of Fishing Vessels. In Proceedings of the 2022 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Gandhinagar, India, 18–21 December 2022; IEEE: New York, NY, USA, 2022; pp. 1–6. [Google Scholar]
- Gopalakrishnan, A.; Duttagupta, S. Scheduling in time-sensitive networks using deep reinforcement learning. In Proceedings of the International Conference on Applied Soft Computing and Communication Networks, Chennai, India, 14–17 October 2020; Springer: Berlin/Heidelberg, Germany, 2023; pp. 193–207. [Google Scholar]
- Khani, M.; Jamali, S.; Sohrabi, M.K.; Sadr, M.M.; Ghaffari, A. Resource allocation in 5G cloud-RAN using deep reinforcement learning algorithms: A review. Trans. Emerg. Telecommun. Technol. 2024, 35, e4929. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Yuan, Y.; Guan, X. Distributed Real-Time and Fair Resource Allocation for 5G Dense Cellular Networks Based on Deep Reinforcement Learning. IEEE Internet Things J. 2025. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, Y.; Niyato, D.; Deng, R.; Wang, P.; Wang, L.C. Deep reinforcement learning for mobile 5G and beyond: Fundamentals, applications, and challenges. IEEE Veh. Technol. Mag. 2019, 14, 44–52. [Google Scholar] [CrossRef]
- Rafique, W.; Barai, J.R.; Fapojuwo, A.O.; Krishnamurthy, D. A survey on beyond 5g network slicing for smart cities applications. IEEE Commun. Surv. Tutor. 2024, 27, 595–628. [Google Scholar] [CrossRef]
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The road towards 6G: A comprehensive survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- Sami, H.; Otrok, H.; Bentahar, J.; Mourad, A. AI-based resource provisioning of IoE services in 6G: A deep reinforcement learning approach. IEEE Trans. Netw. Serv. Manag. 2021, 18, 3527–3540. [Google Scholar] [CrossRef]
- Wei, P.; Guo, K.; Li, Y.; Wang, J.; Feng, W.; Jin, S.; Ge, N.; Liang, Y.C. Reinforcement learning-empowered mobile edge computing for 6G edge intelligence. IEEE Access 2022, 10, 65156–65192. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, Z. Task migration for mobile edge computing using deep reinforcement learning. Future Gener. Comput. Syst. 2019, 96, 111–118. [Google Scholar] [CrossRef]
- Lu, S.; Wu, J.; Shi, J.; Lu, P.; Fang, J.; Liu, H. A dynamic service placement based on deep reinforcement learning in mobile edge computing. Network 2022, 2, 106–122. [Google Scholar] [CrossRef]
- Rui, L.; Zhang, M.; Gao, Z.; Qiu, X.; Wang, Z.; Xiong, A. Service migration in multi-access edge computing: A joint state adaptation and reinforcement learning mechanism. J. Netw. Comput. Appl. 2021, 183, 103058. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Wang, C.; Taleb, T. Dynamic task allocation and service migration in edge-cloud iot system based on deep reinforcement learning. IEEE Internet Things J. 2022, 9, 16742–16757. [Google Scholar] [CrossRef]
- Liu, F.; Yu, H.; Huang, J.; Taleb, T. Joint service migration and resource allocation in edge IoT system based on deep reinforcement learning. IEEE Internet Things J. 2023, 11, 11341–11352. [Google Scholar] [CrossRef]
- Chen, M.; Wang, T.; Zhang, S.; Liu, A. Deep reinforcement learning for computation offloading in mobile edge computing environment. Comput. Commun. 2021, 175, 1–12. [Google Scholar] [CrossRef]
- Chen, J.; Xing, H.; Xiao, Z.; Xu, L.; Tao, T. A DRL agent for jointly optimizing computation offloading and resource allocation in MEC. IEEE Internet Things J. 2021, 8, 17508–17524. [Google Scholar] [CrossRef]
- Hortelano, D.; de Miguel, I.; Barroso, R.J.D.; Aguado, J.C.; Merayo, N.; Ruiz, L.; Asensio, A.; Masip-Bruin, X.; Fernández, P.; Lorenzo, R.M.; et al. A comprehensive survey on reinforcement-learning-based computation offloading techniques in Edge Computing Systems. J. Netw. Comput. Appl. 2023, 216, 103669. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X. Decentralized computation offloading for multi-user mobile edge computing: A deep reinforcement learning approach. Eurasip J. Wirel. Commun. Netw. 2020, 2020, 188. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, Y.; Nallanathan, A.; Yuan, J. Machine learning for 6G enhanced ultra-reliable and low-latency services. IEEE Wirel. Commun. 2023, 30, 48–54. [Google Scholar] [CrossRef]
- Doke, A.R.; Sangeeta, K. Deep reinforcement learning based load balancing policy for balancing network traffic in datacenter environment. In Proceedings of the 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT), Bangalore, India, 16–18 August 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Ullah, I.; Lim, H.K.; Seok, Y.J.; Han, Y.H. Optimizing task offloading and resource allocation in edge-cloud networks: A DRL approach. J. Cloud Comput. 2023, 12, 112. [Google Scholar] [CrossRef]
- Pradhan, R.; Dash, A.K.; Jena, B. Resource management challenges in IoT based healthcare system. In Smart Healthcare Analytics: State of the Art; Springer: Berlin/Heidelberg, Germany, 2021; pp. 31–41. [Google Scholar]
- Mutlag, A.A.; Ghani, M.K.A.; Mohammed, M.A. A healthcare resource management optimization framework for ECG biomedical sensors. In Efficient Data Handling for Massive Internet of Medical Things: Healthcare Data Analytics; Springer: Berlin/Heidelberg, Germany, 2021; pp. 229–244. [Google Scholar]
- Lv, J.; Chen, C.M.; Kumari, S.; Li, K. Resource allocation for AI-native healthcare systems in 6G dense networks using deep reinforcement learning. Digit. Commun. Netw. 2025; in press. [Google Scholar] [CrossRef]
- Su, X.; Fang, X.; Cheng, Z.; Gong, Z.; Choi, C. Deep reinforcement learning based latency-energy minimization in smart healthcare network. Digit. Commun. Netw. 2025, 11, 795–805. [Google Scholar] [CrossRef]
- Naseer, F.; Addas, A.; Tahir, M.; Khan, M.N.; Sattar, N. Integrating generative adversarial networks with IoT for adaptive AI-powered personalized elderly care in smart homes. Front. Artif. Intell. 2025, 8, 1520592. [Google Scholar] [CrossRef]
- Rhee, I.; Shin, M.; Hong, S.; Lee, K.; Kim, S.; Chong, S. CRAWDAD ncsu/mobilitymodels. IEEE Dataport. 2022. Available online: https://ieee-dataport.org/open-access/crawdad-ncsumobilitymodels (accessed on 29 July 2025). [CrossRef]
Service | Bandwidth | Latency |
---|---|---|
Wearable devices | <1 Mbps | <1 s |
Remote patient monitoring | <1 Mbps | <500 ms |
Telemedicine | 5–10 Mbps | <150 ms |
Emergency services | <5 Mbps | ≤100 ms |
Clinical monitoring | <1 Mbps | <100 ms |
Entertainment | 5–10 Mbps | 250–500 ms |
Cases | #Users | #Edge Servers | Evaluation Criteria |
---|---|---|---|
Case 1 | 10 | 10 | Balanced resource distribution |
Case 2 | 15 | 10 | Higher resource demands |
Case 3 | 10 | 15 | Demand exceeds resource availability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaji, K.V.; Rethy, S.S.; Surendran, S.; George, L.; Suresh, N.; Dayan, H. Dynamic Resource Management in 5G-Enabled Smart Elderly Care Using Deep Reinforcement Learning. Future Internet 2025, 17, 402. https://doi.org/10.3390/fi17090402
Shaji KV, Rethy SS, Surendran S, George L, Suresh N, Dayan H. Dynamic Resource Management in 5G-Enabled Smart Elderly Care Using Deep Reinforcement Learning. Future Internet. 2025; 17(9):402. https://doi.org/10.3390/fi17090402
Chicago/Turabian StyleShaji, Krishnapriya V., Srilakshmi S. Rethy, Simi Surendran, Livya George, Namita Suresh, and Hrishika Dayan. 2025. "Dynamic Resource Management in 5G-Enabled Smart Elderly Care Using Deep Reinforcement Learning" Future Internet 17, no. 9: 402. https://doi.org/10.3390/fi17090402
APA StyleShaji, K. V., Rethy, S. S., Surendran, S., George, L., Suresh, N., & Dayan, H. (2025). Dynamic Resource Management in 5G-Enabled Smart Elderly Care Using Deep Reinforcement Learning. Future Internet, 17(9), 402. https://doi.org/10.3390/fi17090402