CPCROK: A Communication-Efficient and Privacy-Preserving Scheme for Low-Density Vehicular Ad Hoc Networks
Abstract
:1. Introduction
- We propose CPCROK to protect vehicle privacy in VANET scenarios with minimal additional network overhead, even in low-vehicle-density and limited real-time vehicle information scenarios. CPCROK achieves this through a modular design, consisting of three modules: the IKF-CGTGM, an improved Kalman filter method to capture non-linear vehicle movements, providing real-time coarse-grained trajectory knowledge for the next phase; the RNN-FGTGM, a lightweight RNN model to capture intricate vehicle motion patterns and adjust predicted trajectories based on previous IKF results; and the FBG module, an iterator to generate a single, highly convincing fake trajectory outside the mix zone to deceive attackers. CPCROK minimizes the need to generate a large number of fake beacons by introducing an accurate hierarchical vehicle trajectory prediction approach and reducing the reliance on real-time vehicle state information.
- CPCROK outperforms the mix-zone scheme by over 90% in vehicle privacy protection. Compared to other fake beacon strategies, CPCROK shows an improvement of over 50%. Additionally, it reduces the transmission overhead of generating fake beacons by 67%, achieving a commendable level of protection.
2. Related Work
3. System and Threat Models
3.1. Mix-Zone Deployment in VANETs Using Fake Beacons
3.2. Threat Model Based on the Beacon Semantic Analysis
3.2.1. Trajectory Prediction
3.2.2. Victim Recognition
4. Proposed CPCROK Scheme
4.1. Overview of the CPCROK Scheme
4.2. IKF-CGTGM
4.3. RNN-FGTGM
- U: The weight matrix applied to the input vector ;
- W: The weight matrix applied to the previous hidden state ;
- V: The weight matrix that transforms the hidden state into the output .
4.4. FBG
5. Evaluation
5.1. Scenario Setting
5.2. CPCROK Implementation
5.2.1. Data Preparation
5.2.2. Model Setting
5.3. Comparison Schemes
- The plain mix-zone (MZ) scheme proposed in [30] changes the pseudonym of the vehicle when it enters the mix zone, but without any additional protection.
- The fake beacon (FB) scheme proposed in [24] generates a fake trajectory that directs the vehicle towards an alternative exit point within the mix zone, bewildering potential adversaries. This fake trajectory is carefully crafted based on the vehicle’s pre-entry state and the distance between the entrance and the selected exit.
- The advanced fake beacon (AFB) scheme [24] utilizes an approach similar to the FB scheme but enhances privacy protection by generating two distinct fake trajectories with different estimated states.
5.4. Evaluation Metrics
5.4.1. Success Rate
5.4.2. Minimal Number of Fake Trajectories
5.5. Visualization of Fake Beacon Trajectories
5.6. Vehicle Privacy-Preserving Evaluation
5.7. Communication Efficiency Evaluation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.; Bansal, M. A review on VANET security attacks and their countermeasure. In Proceedings of the 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 21–23 September 2017; pp. 580–585. [Google Scholar]
- Molina-Masegosa, R.; Gozalvez, J.; Sepulcre, M. Comparison of IEEE 802.11 p and LTE-V2X: An evaluation with periodic and aperiodic messages of constant and variable size. IEEE Access 2020, 8, 121526–121548. [Google Scholar] [CrossRef]
- Shahid, M.A.; Jaekel, A.; Ezeife, C.; Al-Ajmi, Q.; Saini, I. Review of potential security attacks in VANET. In Proceedings of the 2018 Majan International Conference (MIC), Muscat, Oman, 19–20 March 2018; pp. 1–4. [Google Scholar]
- Papathanassiou, A.; Khoryaev, A. Cellular V2X as the essential enabler of superior global connected transportation services. IEEE 5G Tech Focus 2017, 1, 1–2. [Google Scholar]
- Tan, H.; Zheng, W.; Vijayakumar, P. Secure and efficient authenticated key management scheme for UAV-assisted infrastructure-less IoVs. IEEE Trans. Intell. Transp. Syst. 2023, 24, 6389–6400. [Google Scholar] [CrossRef]
- Luo, G.; Yuan, Q.; Zhou, H.; Cheng, N.; Liu, Z.; Yang, F.; Shen, X.S. Cooperative vehicular content distribution in edge computing assisted 5G-VANET. China Commun. 2018, 15, 1–17. [Google Scholar] [CrossRef]
- Tanuja, K.; Sushma, T.M.; Bharathi, M.; Arun, K.H. A survey on VANET technologies. Int. J. Comput. Appl. 2015, 121, 1–9. [Google Scholar]
- Molina-Masegosa, R.; Sepulcre, M.; Gozalvez, J.; Berens, F.; Martinez, V. Empirical models for the realistic generation of cooperative awareness messages in vehicular networks. IEEE Trans. Veh. Technol. 2020, 69, 5713–5717. [Google Scholar] [CrossRef]
- Chen, J.; Lu, H.; Xu, W.; Yang, Y.; Amoon, M.; Kumari, S. A blockchain-based trusted vehicle service recommendation scheme in intelligent transport systems. Secur. Priv. 2025, 8, e452. [Google Scholar] [CrossRef]
- Chen, C.M.; Hao, Y.; Kumari, S.; Amoon, M. An Intelligent Blockchain-Enabled Authentication Protocol for Transportation Cyber-Physical Systems. IEEE Trans. Intell. Transp. Syst. 2025; early access. [Google Scholar]
- Sheikh, M.S.; Liang, J. A comprehensive survey on VANET security services in traffic management system. Wirel. Commun. Mob. Comput. 2019, 2019, 2423915. [Google Scholar] [CrossRef]
- Kaur, R.; Singh, T.P.; Khajuria, V. Security Issues in Vehicular Ad-Hoc Network (VANET). In Proceedings of the 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 11–12 May 2018; pp. 884–889. [Google Scholar]
- Bellatti, J.; Brunner, A.; Lewis, J.; Annadata, P.; Eltarjaman, W.; Dewri, R.; Thurimella, R. Driving habits data: Location privacy implications and solutions. IEEE Secur. Priv. 2017, 15, 12–20. [Google Scholar] [CrossRef]
- Hahn, D.; Munir, A.; Behzadan, V. Security and privacy issues in intelligent transportation systems: Classification and challenges. IEEE Intell. Transp. Syst. Mag. 2019, 13, 181–196. [Google Scholar] [CrossRef]
- Manivannan, D.; Moni, S.S.; Zeadally, S. Secure authentication and privacy-preserving techniques in Vehicular Ad-hoc NETworks (VANETs). Veh. Commun. 2020, 25, 100247. [Google Scholar] [CrossRef]
- European Telecommunication Standard Institute (ETSI). ETSI TS 102 941 Version 2.1.1—Intelligent Transport Systems (ITS); Security; Trust and Privacy Management; ETSI: Valbonne, France, 2021. [Google Scholar]
- European Telecommunications Standards Institute (ETSI). ETSI TS 102 867 v1.1—Intelligent Transport Systems (ITS), Security, Stage 3 Mapping for IEEE 1609.2; ETSI: Valbonne, France, 2012. [Google Scholar]
- Wiedersheim, B.; Ma, Z.; Kargl, F.; Papadimitratos, P. Privacy in inter-vehicular networks: Why simple pseudonym change is not enough. In Proceedings of the 2010 Seventh International Conference on Wireless On-Demand Network Systems and Services (WONS), Kranjska Gora, Slovenia, 3–5 February 2010; pp. 176–183. [Google Scholar]
- Boualouache, A.; Senouci, S.M.; Moussaoui, S. A survey on pseudonym changing strategies for vehicular ad-hoc networks. IEEE Commun. Surv. Tutor. 2017, 20, 770–790. [Google Scholar] [CrossRef]
- Buttyán, L.; Holczer, T.; Vajda, I. On the effectiveness of changing pseudonyms to provide location privacy in VANETs. In Proceedings of the European Workshop on Security in Ad-Hoc and Sensor Networks, Cambridge, UK, 2–3 July 2007; pp. 129–141. [Google Scholar]
- Beresford, A.R.; Stajano, F. Location privacy in pervasive computing. IEEE Pervasive Comput. 2003, 2, 46–55. [Google Scholar] [CrossRef]
- Guo, N.; Ma, L.; Gao, T. Independent mix zone for location privacy in vehicular networks. IEEE Access 2018, 6, 16842–16850. [Google Scholar] [CrossRef]
- Svaigen, A.R.; Boukerche, A.; Ruiz, L.B.; Loureiro, A.A. BioMixD: A bio-inspired and traffic-aware mix zone placement strategy for location privacy on the internet of drones. Comput. Commun. 2022, 195, 111–123. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Phillips, C. Fake Beacon: A Pseudonym Changing Scheme for Low Vehicle Density in VANETs. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023; pp. 1–7. [Google Scholar]
- Wang, J.; Sun, Y.; Phillips, C. Enhanced Pseudonym Changing in VANETs: How Privacy is Impacted Using factitious Beacons. In Proceedings of the 2023 Wireless Telecommunications Symposium (WTS), Boston, MA, USA, 19–21 April 2023; pp. 1–6. [Google Scholar]
- Vaas, C.; Khodaei, M.; Papadimitratos, P.; Martinovic, I. Nowhere to hide? Mix-Zones for Private Pseudonym Change using Chaff Vehicles. In Proceedings of the 2018 IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan, 5–7 December 2018; pp. 1–8. [Google Scholar]
- Khodaei, M.; Papadimitratos, P. Cooperative location privacy in vehicular networks: Why simple mix zones are not enough. IEEE Internet Things J. 2020, 8, 7985–8004. [Google Scholar] [CrossRef]
- Weinfeld, A. Methods to reduce DSRC channel congestion and improve V2V communication reliability. In Proceedings of the 17th ITS World CongressITS JapanITS AmericaERTICO, Tokyo, Japan, 7–11 September 2010. [Google Scholar]
- Sarkar, N. The impact of transmission overheads on IEEE 802.11 throughput: Analysis and simulation. J. Sel. Areas Telecommun. (JSAT) 2011, 2, 49–55. [Google Scholar]
- Freudiger, J.; Raya, M.; Félegyházi, M.; Papadimitratos, P.; Hubaux, J.P. Mix-zones for location privacy in vehicular networks. In Proceedings of the ACM Workshop on Wireless Networking for Intelligent Transportation Systems (WiN-ITS), Number CONF, Vancouver, BC, Canada, 14 August 2007. [Google Scholar]
- Sampigethaya, K.; Li, M.; Huang, L.; Poovendran, R. AMOEBA: Robust location privacy scheme for VANET. IEEE J. Sel. Areas Commun. 2007, 25, 1569–1589. [Google Scholar] [CrossRef]
- Emara, K.; Woerndl, W.; Schlichter, J. CAPS: Context-aware privacy scheme for VANET safety applications. In Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks, New York, NY, USA, 22–26 June 2015; p. 21. [Google Scholar]
- Lefevre, S.; Petit, J.; Bajcsy, R.; Laugier, C.; Kargl, F. Impact of v2x privacy strategies on intersection collision avoidance systems. In Proceedings of the 2013 IEEE Vehicular Networking Conference, Boston, MA, USA, 16–18 December 2013; pp. 71–78. [Google Scholar]
- Humbert, M.; Manshaei, M.H.; Freudiger, J.; Hubaux, J.P. On the optimal placement of mix zones: A game-theoretic approach. In Proceedings of the 16th ACM Conference on Computer and Communications Security P. Citeseer, Chicago IL, USA, 9–13 November 2009; pp. 324–337. [Google Scholar]
- Sun, Y.; Zhang, B.; Zhao, B.; Su, X.; Su, J. Mix-zones optimal deployment for protecting location privacy in VANET. Peer- Netw. Appl. 2015, 8, 1108–1121. [Google Scholar] [CrossRef]
- Palanisamy, B.; Liu, L. Mobimix: Protecting location privacy with mix-zones over road networks. In Proceedings of the 2011 IEEE 27th International Conference on Data Engineering, Hannover, Germany, 11–16 April 2011; pp. 494–505. [Google Scholar]
- Lu, R.; Lin, X.; Luan, T.H.; Liang, X.; Shen, X. Pseudonym changing at social spots: An effective strategy for location privacy in vanets. IEEE Trans. Veh. Technol. 2011, 61, 86–96. [Google Scholar] [CrossRef]
- Boualouache, A.; Senouci, S.M.; Moussaoui, S. PRIVANET: An Efficient Pseudonym Changing and Management Framework for Vehicular Ad-Hoc Networks. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3209–3218. [Google Scholar] [CrossRef]
- Khodaei, M.; Papadimitratos, P. Poster: Mix-Zones everywhere: A dynamic cooperative location privacy protection scheme. In Proceedings of the 2018 IEEE Vehicular Networking Conference (VNC), Taipei, Taiwan, 5–7 December 2018; pp. 1–2. [Google Scholar]
- Song, J.H.; Wong, V.W.; Leung, V.C. Wireless location privacy protection in vehicular ad-hoc networks. Mob. Netw. Appl. 2010, 15, 160–171. [Google Scholar] [CrossRef]
- Wang, S.; Yao, N.; Gong, N.; Gao, Z. A trigger-based pseudonym exchange scheme for location privacy preserving in VANETs. Peer- Netw. Appl. 2018, 11, 548–560. [Google Scholar] [CrossRef]
- Mdee, A.P.; Saad, M.M.; Khan, M.; Khan, M.T.R.; Kim, D. Impacts of location-privacy preserving schemes on vehicular applications. Veh. Commun. 2022, 36, 100499. [Google Scholar] [CrossRef]
- Al-Marshoud, M.S.; Al-Bayatti, A.H.; Kiraz, M.S. Improved Chaff-Based CMIX for Solving Location Privacy Issues in VANETs. Electronics 2021, 10, 1302. [Google Scholar] [CrossRef]
- Zhang, S.; Li, M.; Liang, W.; Sandor, V.K.A.; Li, X. A Survey of Dummy-Based Location Privacy Protection Techniques for Location-Based Services. Sensors 2022, 22, 6141. [Google Scholar] [CrossRef]
- Huang, R.; Wei, C.; Wang, B.; Yang, J.; Xu, X.; Wu, S.; Huang, S. Well performance prediction based on Long Short-Term Memory (LSTM) neural network. J. Pet. Sci. Eng. 2022, 208, 109686. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Y.; Chen, X.; Wan, J.; Jia, G.; Sha, K. A secure dynamic mix zone pseudonym changing scheme based on traffic context prediction. IEEE Trans. Intell. Transp. Syst. 2021, 23, 9492–9505. [Google Scholar] [CrossRef]
- Zhang, Z.; Wong, W.C.; Sikdar, B. A Hybrid Reinforcement Learning-Based Method for Generating Privacy-Preserving Trajectories in Low-Density Traffic Environments. IEEE Trans. Intell. Transp. Syst. 2024, 25, 14740–14757. [Google Scholar] [CrossRef]
- Reid, D. An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 1979, 24, 843–854. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Hoboken, NJ, USA, 1998. [Google Scholar]
- Connor, J.T.; Martin, R.D.; Atlas, L.E. Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Netw. 1994, 5, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari, S.; Al-Jarrah, O.Y.; Dianati, M.; Jennings, P.; Mouzakitis, A. Deep learning-based vehicle behavior prediction for autonomous driving applications: A review. IEEE Trans. Intell. Transp. Syst. 2020, 23, 33–47. [Google Scholar] [CrossRef]
- Zyner, A.; Worrall, S.; Nebot, E. A recurrent neural network solution for predicting driver intention at unsignalized intersections. IEEE Robot. Autom. Lett. 2018, 3, 1759–1764. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Zyner, A.; Worrall, S.; Nebot, E. Naturalistic driver intention and path prediction using recurrent neural networks. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1584–1594. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Li, J.; Sun, Q.; Wang, H. NGCU: A new RNN model for time-series data prediction. Big Data Res. 2022, 27, 100296. [Google Scholar] [CrossRef]
- Emara, K. Poster: Prext: Privacy extension for veins vanet simulator. In Proceedings of the 2016 IEEE Vehicular Networking Conference (VNC), Columbus, OH, USA, 8–10 December 2016; pp. 1–2. [Google Scholar]
Module | Parameter | Value |
---|---|---|
RNN | Learning rate | 0.001 |
Number of epochs | 50 | |
Number of training vehicles | 5000 | |
Number of inference vehicles | 250 | |
Traffic | Maximum speed | 8 m/s |
Minimum speed | 2 m/s | |
Maximum acceleration | m/s2 | |
Maximum deceleration | m/s2 | |
VANET | Mix-zone radius | 10 m |
Beacon interval | s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, H.; Sun, Y.; Phillips, C.; Mylonas, A.; Gritzalis, D. CPCROK: A Communication-Efficient and Privacy-Preserving Scheme for Low-Density Vehicular Ad Hoc Networks. Future Internet 2025, 17, 165. https://doi.org/10.3390/fi17040165
Wang J, Li H, Sun Y, Phillips C, Mylonas A, Gritzalis D. CPCROK: A Communication-Efficient and Privacy-Preserving Scheme for Low-Density Vehicular Ad Hoc Networks. Future Internet. 2025; 17(4):165. https://doi.org/10.3390/fi17040165
Chicago/Turabian StyleWang, Junchao, Honglin Li, Yan Sun, Chris Phillips, Alexios Mylonas, and Dimitris Gritzalis. 2025. "CPCROK: A Communication-Efficient and Privacy-Preserving Scheme for Low-Density Vehicular Ad Hoc Networks" Future Internet 17, no. 4: 165. https://doi.org/10.3390/fi17040165
APA StyleWang, J., Li, H., Sun, Y., Phillips, C., Mylonas, A., & Gritzalis, D. (2025). CPCROK: A Communication-Efficient and Privacy-Preserving Scheme for Low-Density Vehicular Ad Hoc Networks. Future Internet, 17(4), 165. https://doi.org/10.3390/fi17040165