Multi-User Optimal Load Scheduling of Different Objectives Combined with Multi-Criteria Decision Making for Smart Grid
Abstract
:1. Introduction
- First is a triple-objective LS, which utilizes dominant rank and is based on the artificial hummingbird algorithm (AHA) to realize end-user inconvenience, peak demand, and optimal cost. The given objectives are combined using multi-objective AHA (MAHA) to produce all sets of solutions with the considered criteria.
- A hybrid multi-criteria decision making technique is considered to select the dominance solutions. This method is based on the removal effect of criteria (MEREC) and used for deriving appropriate weights for various criteria. After that, the VIKOR method is applied to find the best solution of load scheduling among a set of solutions produced by AHA.
- Synchronized multi-user cooperative load scheduling (SMUCLS) is covered to overcome the issue of generating peak time caused by shifting user load away for minimum energy cost.
- ToU and the adaptive consumption level pricing scheme (ACLPS) are applied to validate the proposed system against different price rates.
2. Related Works
2.1. Single-User Load Management Systems
2.2. Multi-User Load Management Systems
3. Mathematical Model
4. Proposed Load Scheduling Model
4.1. Artificial Hummingbird Optimization Algorithm
Algorithm 1. Pseudo-code of the proposed MAHA algorithm |
Input: , , Output: Global minimum solution Initialization: For hummingbird from 1 to Do End For For food source from 1 to , Do If Then Else End If End For While Do For hummingbird from 1 to , Do If Then perform Equation (7) Else If Then perform Equation (7) Else Perform Equation (9) End If If Guided foraging: Then perform Equation (10) Specify If For food source from 1 to , Do End For For food source from 1 to , Do End For Else For food source from 1 to , Do End For End If Else Territorial foraging Perform Equation (12) If For food source from 1 to , Do End For For food source from 1 to , Do End For Else For food source from 1 to , Do End For End If End If End For Dominance rank Initiate 1 × 2 vector () to show the dominance rank value of every solution in . Set the 2 elements of to zero. For = 1 to 2 do For = 1 to (2 − 1) do If solution () is dominated by solution () where, then () = () + 1. End for End for Sort the elements of vector in ascending form. Sort the solutions in based on . Select the first solutions from to form the new population for next generation. Migration foraging If mod () = 0 Then perform Equation (5) For food source from 1 to , Do End For For food source from 1 to , Do End For End If End While |
4.2. MEREC-Weighting Method
4.3. VIKOR Method
5. Experimental Results
6. Validating the Proposed Load Scheduling Optimization Problem
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
1st User | 2nd User | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ToU | ACLPS | ToU | ACLPS | ||||||||
Cost | I | Peak | Cost | I | Peak | Cost | I | Peak | Cost | I | Peak |
9.4450 | 63 | 6420 | 3.0310 | 62 | 5045 | 5.9438 | 54 | 2510 | 0.9720 | 31 | 3220 |
7.6185 | 45 | 4310 | 0.6656 | 40 | 2310 | 5.9438 | 49 | 2510 | 0.5268 | 56 | 2510 |
14.2658 | 44 | 4110 | 0.6656 | 40 | 2310 | 5.9438 | 54 | 2510 | 0.5268 | 56 | 2510 |
9.7235 | 50 | 4110 | 0.6656 | 40 | 2310 | 6.4827 | 85 | 4110 | 0.5268 | 56 | 2510 |
10.7026 | 85 | 4110 | 0.6656 | 40 | 2310 | 6.9498 | 84 | 2510 | 0.5268 | 56 | 2510 |
7.6185 | 95 | 4310 | 0.6656 | 40 | 2310 | 5.9438 | 92 | 2510 | 0.5268 | 56 | 2510 |
7.6485 | 95 | 6420 | 0.6656 | 40 | 2310 | 5.9438 | 56 | 3220 | 0.5268 | 56 | 2510 |
9.4151 | 76 | 6420 | 0.6656 | 40 | 2310 | 5.9438 | 96 | 2510 | 0.5268 | 56 | 2510 |
10.3927 | 50 | 4110 | 0.6656 | 40 | 2310 | 6.8480 | 108 | 2510 | 0.5268 | 56 | 2510 |
9.3118 | 65 | 4110 | 0.6656 | 40 | 2310 | 6.3689 | 93 | 3610 | 0.5268 | 56 | 2510 |
10.3852 | 68 | 4110 | 0.6656 | 40 | 2310 | 5.9438 | 84 | 2510 | 0.5268 | 56 | 2510 |
7.8910 | 87 | 4110 | 0.6656 | 40 | 2310 | 5.9438 | 71 | 2510 | 0.5268 | 56 | 2510 |
15.1760 | 83 | 2310 | 0.6656 | 40 | 2310 | 9.1626 | 52 | 2510 | 0.5268 | 56 | 2510 |
10.3852 | 57 | 4110 | 0.6656 | 40 | 2310 | 6.9648 | 87 | 2535 | 0.5268 | 56 | 2510 |
7.8910 | 89 | 4110 | 0.6656 | 40 | 2310 | 5.9438 | 53 | 2510 | 0.5268 | 56 | 2510 |
7.6185 | 63 | 4420 | 0.6656 | 40 | 2310 | 5.9438 | 53 | 2510 | 0.5268 | 56 | 2510 |
9.3193 | 56 | 4110 | 0.6656 | 40 | 2310 | 5.9438 | 52 | 2510 | 0.5268 | 56 | 2510 |
14.8047 | 96 | 2335 | 0.6656 | 40 | 2310 | 5.9438 | 53 | 2510 | 0.5268 | 56 | 2510 |
9.4151 | 89 | 4110 | 0.6656 | 40 | 2310 | 10.8453 | 36 | 2825 | 0.5268 | 56 | 2510 |
7.6185 | 52 | 4310 | 0.6656 | 40 | 2310 | 6.9648 | 90 | 2535 | 0.5268 | 56 | 2510 |
14.2059 | 61 | 3020 | 0.6656 | 40 | 2310 | 5.9438 | 106 | 2510 | 0.5268 | 56 | 2510 |
7.6185 | 56 | 4310 | 0.6656 | 40 | 2310 | 5.9438 | 47 | 2510 | 0.5268 | 56 | 2510 |
8.2174 | 76 | 4310 | 0.6656 | 40 | 2310 | 5.9438 | 49 | 2510 | 0.5268 | 56 | 2510 |
7.6634 | 78 | 4310 | 0.6656 | 40 | 2310 | 5.9438 | 50 | 2510 | 0.5268 | 56 | 2510 |
7.6185 | 63 | 4445 | 0.6656 | 40 | 2310 | 5.9438 | 97 | 2510 | 0.5268 | 56 | 2510 |
7.6634 | 92 | 4310 | 0.6656 | 40 | 2310 | 5.9438 | 50 | 2510 | 0.5268 | 56 | 2510 |
7.6185 | 62 | 4445 | 0.6656 | 40 | 2310 | 5.9438 | 50 | 2510 | 0.5268 | 56 | 2510 |
7.6185 | 70 | 4310 | 0.6656 | 40 | 2310 | 5.9438 | 49 | 2510 | 0.5268 | 56 | 2510 |
13.6070 | 113 | 2910 | 0.6656 | 40 | 2310 | 5.9438 | 50 | 2510 | 0.5268 | 56 | 2510 |
15.3632 | 55 | 4310 | 0.6656 | 40 | 2310 | 5.9438 | 46 | 2510 | 0.5268 | 56 | 2510 |
3rd User | 4th User | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ToU | ACLPS | ToU | ACLPS | ||||||||
Cost | I | Peak | Cost | I | Peak | Cost | I | Peak | Cost | I | Peak |
8.5932 | 52 | 3220 | 1.4845 | 61 | 4420 | 8.1674 | 96 | 3420 | 1.6840 | 55 | 4110 |
11.0604 | 36 | 4420 | 0.7703 | 35 | 2510 | 8.5507 | 53 | 2110 | 0.5687 | 57 | 2110 |
8.7354 | 36 | 4420 | 0.7703 | 35 | 2510 | 8.1584 | 75 | 2710 | 0.5687 | 57 | 2110 |
8.5932 | 53 | 4420 | 0.7703 | 35 | 2510 | 9.4220 | 76 | 4110 | 0.5687 | 57 | 2110 |
10.8478 | 45 | 2510 | 0.7703 | 35 | 2510 | 8.1584 | 77 | 2710 | 0.5687 | 57 | 2110 |
8.5932 | 47 | 4420 | 0.7703 | 35 | 2510 | 8.1584 | 72 | 3420 | 0.5687 | 57 | 2110 |
9.3447 | 40 | 3245 | 0.7703 | 35 | 2510 | 8.1584 | 85 | 4820 | 0.5687 | 57 | 2110 |
8.8058 | 37 | 2510 | 0.7703 | 35 | 2510 | 8.1584 | 72 | 3420 | 0.5687 | 57 | 2110 |
9.5573 | 31 | 4420 | 0.7703 | 35 | 2510 | 8.1584 | 70 | 2820 | 0.5687 | 57 | 2110 |
8.8058 | 39 | 2510 | 0.7703 | 35 | 2510 | 8.5836 | 60 | 2110 | 0.5687 | 57 | 2110 |
10.8478 | 45 | 2510 | 0.7703 | 35 | 2510 | 12.8085 | 59 | 3420 | 0.5687 | 57 | 2110 |
8.5932 | 48 | 3220 | 0.7703 | 35 | 2510 | 8.3710 | 74 | 3420 | 0.5687 | 57 | 2110 |
8.5932 | 47 | 4420 | 0.7703 | 35 | 2510 | 10.8383 | 70 | 2110 | 0.5687 | 57 | 2110 |
8.8058 | 37 | 2510 | 0.7703 | 35 | 2510 | 8.1584 | 52 | 3420 | 0.5687 | 57 | 2110 |
8.5932 | 47 | 4420 | 0.7703 | 35 | 2510 | 8.5507 | 59 | 2110 | 0.5687 | 57 | 2110 |
10.8478 | 77 | 2510 | 0.7703 | 35 | 2510 | 9.8142 | 67 | 2110 | 0.5687 | 57 | 2110 |
10.3089 | 31 | 4420 | 0.7703 | 35 | 2510 | 8.7722 | 54 | 2710 | 0.5687 | 57 | 2110 |
8.5932 | 57 | 3220 | 0.7703 | 35 | 2510 | 8.7677 | 55 | 2710 | 0.5687 | 57 | 2110 |
8.5932 | 50 | 3220 | 0.7703 | 35 | 2510 | 8.7677 | 55 | 2710 | 0.5687 | 57 | 2110 |
8.8058 | 37 | 2510 | 0.7703 | 35 | 2510 | 9.2363 | 63 | 4110 | 0.5687 | 57 | 2110 |
9.3447 | 56 | 3220 | 0.7703 | 35 | 2510 | 8.1584 | 63 | 3420 | 0.5687 | 57 | 2110 |
8.8058 | 37 | 2510 | 0.7703 | 35 | 2510 | 8.7902 | 72 | 2710 | 0.5687 | 57 | 2110 |
9.3447 | 56 | 3220 | 0.7703 | 35 | 2510 | 8.6061 | 61 | 2710 | 0.5687 | 57 | 2110 |
8.8058 | 44 | 2510 | 0.7703 | 35 | 2510 | 8.5507 | 70 | 2710 | 0.5687 | 57 | 2110 |
8.8058 | 47 | 2510 | 0.7703 | 35 | 2510 | 11.0164 | 47 | 2710 | 0.5687 | 57 | 2110 |
8.7354 | 35 | 4420 | 0.7703 | 35 | 2510 | 9.4220 | 74 | 2110 | 0.5687 | 57 | 2110 |
8.8058 | 38 | 2510 | 0.7703 | 35 | 2510 | 9.6106 | 86 | 2110 | 0.5687 | 57 | 2110 |
8.8058 | 38 | 2510 | 0.7703 | 35 | 2510 | 8.1719 | 55 | 3420 | 0.5687 | 57 | 2110 |
8.8058 | 39 | 2510 | 0.7703 | 35 | 2510 | 9.4220 | 66 | 2710 | 0.5687 | 57 | 2110 |
8.8058 | 39 | 2510 | 0.7703 | 35 | 2510 | 8.1629 | 68 | 3420 | 0.5687 | 57 | 2110 |
5th User | All Users | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ToU | ACLPS | ToU | ACLPS | ||||||||
Cost | I | P | Cost | I | P | Cost | I | P | Cost | I | P |
6.5974 | 111 | 2710 | 2.5094 | 164 | 4125 | 41.4820 | 368 | 6950 | 62.2565 | 359 | 9530 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.9267 | 365 | 6150 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 44.4344 | 304 | 6175 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.9267 | 353 | 6150 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 43.1513 | 466 | 6110 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.6422 | 389 | 6535 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 43.5166 | 396 | 6125 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.9267 | 372 | 6150 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 40.3876 | 393 | 7355 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 40.3876 | 393 | 7355 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.0524 | 432 | 6135 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.9177 | 421 | 8445 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 40.3876 | 395 | 7355 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.5150 | 369 | 6435 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 40.6107 | 391 | 6530 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.0524 | 425 | 6310 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.7755 | 386 | 6820 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.2919 | 394 | 6620 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.6497 | 358 | 5220 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 45.1200 | 420 | 6620 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 42.7127 | 367 | 6150 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 51.1385 | 324 | 8445 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.7755 | 385 | 6820 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 40.9550 | 393 | 6175 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.7755 | 387 | 6820 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.7755 | 386 | 6820 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 40.8502 | 361 | 6175 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 40.8502 | 371 | 6555 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 40.5778 | 374 | 6555 | 13.4078 | 321 | 4620 |
6.4792 | 31 | 2110 | 0.4970 | 116 | 2110 | 41.4820 | 369 | 6950 | 13.4078 | 321 | 4620 |
References
- Zheng, Z.; Shafique, M.; Luo, X.; Wang, S. A systematic review towards integrative energy management of smart grids and urban energy systems. Renew. Sustain. Energy Rev. 2024, 89, 114023. [Google Scholar] [CrossRef]
- Hui, H.; Ding, Y.; Shi, Q.; Li, F.; Song, Y.; Yan, J. 5G network-based Internet of Things for demand response in smart grid: A survey on application potential. Appl. Energy 2020, 257, 113972. [Google Scholar] [CrossRef]
- Alamir, N.; Kamel, S.; Megahed, T.F.; Hori, M.; Abdelkader, S.M. Developing Hybrid Demand Response Technique for Energy Management in Microgrid Based on Pelican Optimization Algorithm. Electr. Power Syst. Res. 2023, 214, 108905. [Google Scholar] [CrossRef]
- Shreenidhi, H.S.; Ramaiah, N.S. A two-stage deep convolutional model for demand response energy management system in IoT-enabled smart grid. Sustain. Energy Grids Netw. 2022, 30, 100630. [Google Scholar] [CrossRef]
- Rong, J.; Liu, W.; Jiang, F.; Cheng, Y.; Li, H.; Peng, J. Privacy-aware optimal load scheduling for energy management system of smart home. Sustain. Energy Grids Netw. 2023, 34, 101039. [Google Scholar] [CrossRef]
- Balavignesh, S.; Kumar, C.; Ueda, S.; Senjyu, T. Optimization-based optimal energy management system for smart home in smart grid. Energy Rep. 2023, 10, 3733–3756. [Google Scholar] [CrossRef]
- Hossain, J.; Saeed, N.; Manojkumar, R.; Marzband, M.; Sedraoui, K.; Al-Turki, Y. Optimal peak-shaving for dynamic demand response in smart Malaysian commercial buildings utilizing an efficient PV-BES system. Sustain. Cities Soc. 2024, 101, 105107. [Google Scholar] [CrossRef]
- Jasim, A.M.; Jasim, B.H.; Flah, A.; Bolshev, V.; Mihet-Popa, L. A new optimized demand management system for smart grid-based residential buildings adopting renewable and storage energies. Energy Rep. 2023, 9, 4018–4035. [Google Scholar] [CrossRef]
- Alghtani, A.H.; Tirth, V.; Algahtani, A. Lens-oppositional duck pack algorithm based smart home energy management system for demand response in smart grids. Sustain. Energy Technol. Assess. 2023, 56, 103112. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, L. A Residential Load Scheduling Based on Cost Efficiency and Consumer’s Preference for Demand Response in Smart Grid. Electr. Power Syst. Res. 2020, 186, 106410. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; He, R.; Liu, J.; Gao, M.; Zhang, L. Multi-objective residential load scheduling approach for demand response in smart grid. Sustain. Cities Soc. 2022, 76, 103530. [Google Scholar] [CrossRef]
- Muhsen, D.H.; Haider, H.T.; Al-Nidawi, Y.; Shayea, G.G. Operational Scheduling of Household Appliances by Using Triple-Objective Optimization Algorithm Integrated with Multi-Criteria Decision Making. Sustainability 2023, 15, 16589. [Google Scholar] [CrossRef]
- Jadhav, P.; More, D.; Salkuti, S.R. Smart residential distribution energy management system with integration of demand response and Aggregator. Clean. Responsible Consum. 2023, 9, 100115. [Google Scholar] [CrossRef]
- Fan, X.M.; Li, X.H.; Ding, Y.M.; He, J.; Zhao, M. Demand response scheduling algorithm for smart residential communities considering heterogeneous energy consumption. Energy Build. 2023, 279, 112691. [Google Scholar] [CrossRef]
- Yahia, Z.; Pradhan, A. Multi-objective optimization of household appliance scheduling problem considering consumer preference and peak load reduction. Sustain. Cities Soc. 2020, 55, 102058. [Google Scholar] [CrossRef]
- Setlhaolo, D.; Xia, X. Combined residential demand side management strategies with coordination and economic analysis. Int. J. Electr. Power Energy Syst. 2016, 79, 150–160. [Google Scholar] [CrossRef]
- Revathi, R.; Senthilnathan, N. Hybrid optimization approach for power scheduling with PV-battery system in smart grids. Energy 2024, 290, 130051. [Google Scholar] [CrossRef]
- Hofmann, M.; Lindberg, K.B. Residential demand response and dynamic electricity contracts with hourly prices: A study of Norwegian households during the 2021/22 energy crisis. Smart Energy 2024, 13, 100126. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Mirjalili, S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng. 2022, 388, 114194. [Google Scholar] [CrossRef]
- Hamida, M.A.; El-Sehiemy, R.A.; Ginidi, A.R.; Elattar, E.; Shaheen, A.M. Parameter identification and state of charge estimation of Li-Ion batteries used in electric vehicles using artificial hummingbird optimizer. J. Energy Storage 2022, 51, 104535. [Google Scholar] [CrossRef]
- Fathy, A. A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems. Appl. Energy 2022, 323, 119605. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Hu, G.; Yang, M.S. An enhanced artificial hummingbird algorithm and its application in truss topology engineering optimization. Adv. Eng. Inform. 2022, 54, 101761. [Google Scholar] [CrossRef]
- Alfares, H.K.; Duffuaa, S.O. Simulation-Based Evaluation of Criteria Rank-Weighting Methods in Multi-Criteria Decision-Making. Int. J. Inf. Technol. Decis. Mak. 2015, 15, 43–61. [Google Scholar] [CrossRef]
- Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Determination of objective weights using a new method based on the removal effects of criteria (MEREC). Symmetry 2021, 13, 525. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Cristóbal, J.R.S. Multi-criteria decision-making in the selection of a renewable energy project in spain: The VIKOR method. Renew. Energy 2011, 36, 498–502. [Google Scholar] [CrossRef]
- Haider, H.T.; See, O.H.; Elmenreich, W. Residential demand response scheme based on adaptive consumption level pricing. Energy 2016, 113, 301–308. [Google Scholar] [CrossRef]
Seq. | Condition | Compromise Solution | |
---|---|---|---|
C1 | C2 | ||
1 | √ | √ | is the compromise solution. |
2 | √ | × | are the compromise solutions. |
3 | × | - |
No. | Device Name | Power Rate (kW) | Duration (min/day) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Microwave | 0.8 | 1.5 | 0.6 | 1.2 | 0.6 | 6 | 8 | 6 | 6 | 9 |
2 | Stove | 2.2 | 2 | 2.4 | 2 | 2 | 54 | 45 | 48 | 62 | 36 |
3 | Electrical Water Heater | 2 | 2 | 2 | 2 | 2 | 180 | 120 | 180 | 180 | 180 |
4 | Dishwasher Machine | 2 | 2.4 | 2.2 | 2 | 2 | 60 | 60 | 60 | 60 | 60 |
5 | Clothes Dryer | 2 | 0.6 | 2 | 0.6 | 0.6 | 30 | 30 | 30 | 30 | 15 |
6 | Vacuum Cleaner | 0.8 | 0.8 | 0.4 | 0.8 | 0.35 | 12 | 24 | 16 | 18 | 10 |
7 | DVD Player | 0.025 | 0.025 | 0.025 | 0.015 | 0.015 | 120 | 180 | 120 | 120 | 120 |
No. | Device Name | ) | ||||
---|---|---|---|---|---|---|
1 | Microwave | 06:00–21:00 | 04:00–18:00 | 08:00–11:00 | 05:30–09:00 | 01:00–19:00 |
2 | Stove | 06:30–15:00 | 06:00–15:00 | 08:00–11:00 | 05:30–09:00 | 01:00–15:00 |
3 | Electrical Water Heater | 06:00–15:00 | 09:15–00:00 | 23:00–04:00 | 16:00–23:00 | - |
4 | Dishwasher Machine | 10:00–15:00 | 18:00–22:00 | 15:00–17:00 | 16:00–22:00 | 01:00–19:00 |
5 | Clothes Dryer | 10:00–15:00 | 18:00–22:00 | 15:00–17:00 | 16:00–22:00 | 01:00–19:00 |
6 | Vacuum Cleaner | 10:00–18:00 | 09:00–12:00 | 08:00–15:00 | 08:00–14:00 | 01:00–19:00 |
7 | DVD Player | 10:00–23:00 | 08:00–23:00 | 08:00–23:00 | 08:00–22:00 | 01:00–19:00 |
Time | Duration | Price Rate (R/kWh) |
---|---|---|
Peak | 07:00–10:00 and 18:00–20:00 | 1.7487 |
Off-peak | Otherwise | 0.5510 |
User | Pricing Schemes | |||
---|---|---|---|---|
1 | ToU | 0.341 | 0.346 | 0.313 |
ACLPS | 0.576 | 0.149 | 0.275 | |
2 | ToU | 0.359 | 0.346 | 0.295 |
ACLPS | 0.703 | 0.025 | 0.272 | |
3 | ToU | 0.169 | 0.533 | 0.298 |
ACLPS | 0.372 | 0.311 | 0.317 | |
4 | ToU | 0.293 | 0.295 | 0.412 |
ACLPS | 0.631 | 0.001 | 0.368 | |
5 | ToU | 0.01 | 0.845 | 0.145 |
ACLPS | 0.641 | 0.12 | 0.24 | |
All | ToU | 0.307 | 0.308 | 0.384 |
ACLPS | 0.67 | 0.042 | 0.288 |
User | Pricing Schemes | Acceptable Advantage | Acceptable Stability |
---|---|---|---|
1 | ToU | ✓ | ✓ |
ACLPS | × | - | |
2 | ToU | × | - |
ACLPS | × | - | |
3 | ToU | × | - |
ACLPS | × | - | |
4 | ToU | ✓ | ✓ |
ACLPS | × | - | |
5 | ToU | ✓ | ✓ |
ACLPS | × | - | |
All | ToU | ✓ | ✓ |
ACLPS | × | - |
User | Pricing Schemes | Cost | Inconvenience | Peak of Power |
---|---|---|---|---|
1 | ToU | 7.6185 | 45 | 4310 |
ACLPS | 0.6656 | 40 | 2310 | |
2 | ToU | 5.9438 | 46 | 2510 |
ACLPS | 0.5268 | 56 | 2510 | |
3 | ToU | 8.8058 | 37 | 2510 |
ACLPS | 0.7703 | 35 | 2510 | |
4 | ToU | 8.5507 | 53 | 2110 |
ACLPS | 0.5687 | 57 | 2110 | |
5 | ToU | 6.4792 | 31 | 2110 |
ACLPS | 0.4970 | 116 | 2110 | |
All | ToU | 41.6497 | 358 | 5220 |
ACLPS | 13.4078 | 321 | 4620 |
User | Cost | Inconvenience | Peak of Power |
---|---|---|---|
1 | ↓ 91 | ↓ 11 | ↓ 46 |
2 | ↓ 91 | ↑ 22 | - |
3 | ↓ 91 | ↓ 0 5 | - |
4 | ↓ 93 | ↑ 7.5 | - |
5 | ↓ 92 | ↑274 | - |
All | ↓ 68 | ↓ 10 | ↓ 12 |
References | Cost Reduction (%) | Peak Load Reduction (%) |
---|---|---|
[15] | 15.21 | 14 |
Proposed method | 40 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Nidawi, Y.; Haider, H.T.; Muhsen, D.H.; Shayea, G.G. Multi-User Optimal Load Scheduling of Different Objectives Combined with Multi-Criteria Decision Making for Smart Grid. Future Internet 2024, 16, 355. https://doi.org/10.3390/fi16100355
Al-Nidawi Y, Haider HT, Muhsen DH, Shayea GG. Multi-User Optimal Load Scheduling of Different Objectives Combined with Multi-Criteria Decision Making for Smart Grid. Future Internet. 2024; 16(10):355. https://doi.org/10.3390/fi16100355
Chicago/Turabian StyleAl-Nidawi, Yaarob, Haider Tarish Haider, Dhiaa Halboot Muhsen, and Ghadeer Ghazi Shayea. 2024. "Multi-User Optimal Load Scheduling of Different Objectives Combined with Multi-Criteria Decision Making for Smart Grid" Future Internet 16, no. 10: 355. https://doi.org/10.3390/fi16100355
APA StyleAl-Nidawi, Y., Haider, H. T., Muhsen, D. H., & Shayea, G. G. (2024). Multi-User Optimal Load Scheduling of Different Objectives Combined with Multi-Criteria Decision Making for Smart Grid. Future Internet, 16(10), 355. https://doi.org/10.3390/fi16100355