Real-Time Monitoring of Passenger’s Psychological Stress
Abstract
:1. Introduction
1.1. General Background and Motivations
1.2. Narrow Context and Related Work
2. Results
2.1. Learning Phase
2.1.1. Data Acquisition
2.1.2. Cross-Validation
2.1.3. Validation Output
2.2. Test Phase
2.2.1. User Interface
2.2.2. Estimation Performances
3. Discussion
4. Materials and Methods
4.1. Ethics Approval, Consent, Availability of Data
4.2. Physiological Recording
4.3. Preliminary Signal Processing
4.4. Feature Computation
4.5. Linear Regression Model
4.6. From Learning to Test Phase
Author Contributions
Funding
Conflicts of Interest
References
- McEwen, B.S. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000, 886, 172–189. [Google Scholar] [CrossRef]
- Lazarus, R.S.; Folkman, S. Transactional theory and research on emotions and coping. Eur. J. Personal. 1987, 1, 141–169. [Google Scholar] [CrossRef]
- European Foundation for the Improvement of Living and Working Conditions (Ed.) The Journey from Home to the Workplace: The Impact on the Safety and Health of the Commuters/workers: Consolidated Report; European Foundation for the Improvement of Living and Working Conditions: Dublin, Ireland, 1984. [Google Scholar]
- Legrain, A.; Eluru, N.; El-Geneidy, A.M. Am stressed, must travel: The relationship between mode choice and commuting stress. Transp. Res. Part F Traffic Psychol. Behav. 2015, 34, 141–151. [Google Scholar] [CrossRef]
- Cox, T.; Houdmont, J.; Griffiths, A. Rail passenger crowding, stress, health and safety in Britain. Transp. Res. Part Policy Pract. 2006, 40, 244–258. [Google Scholar] [CrossRef] [Green Version]
- Wener, R.E.; Evans, G.W. Comparing stress of car and train commuters. Transp. Res. Part F Traffic Psychol. Behav. 2011, 14, 111–116. [Google Scholar] [CrossRef]
- Greene, S.; Thapliyal, H.; Caban-Holt, A. A Survey of Affective Computing for Stress Detection: Evaluating technologies in stress detection for better health. IEEE Consum. Electron. Mag. 2016, 5, 44–56. [Google Scholar] [CrossRef]
- Kim, H.-G.; Cheon, E.-J.; Bai, D.-S.; Lee, Y.H.; Koo, B.-H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Invest. 2018, 15, 235–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 9781461411260. [Google Scholar]
- Healey, J.A.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef]
- Hovsepian, K.; al’Absi, M.; Ertin, E.; Kamarck, T.; Nakajima, M.; Kumar, S. Stress: Towards a Gold Standard for Continuous Stress Assessment in the Mobile Environment. Proc. ACM Int. Conf. Ubiquitous Comput. UbiComp Conf. 2015, 2015, 493–504. [Google Scholar]
- Ollander, S.; Godin, C.; Campagne, A.; Charbonnier, S. A comparison of wearable and stationary sensors for stress detection. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 004362–004366. [Google Scholar]
- Ollander, S.; Godin, C.; Charbonnier, S.; Campagne, A. Feature and Sensor Selection for Detection of Driver Stress; SCITEPRESS—Science and Technology Publications: Setúbal, Portugal, 2016; pp. 115–122. [Google Scholar]
- MathWorks, Inc. Available online: https://www.mathworks.com/help/signal/ug/prominence.html (accessed on 25 April 2019).
Trial | -----------On the Training Set----------- | ----------On the Validation Set---------- | ||||
---|---|---|---|---|---|---|
N° | No. Ex. Ns/S | RMSE | Cr % | No. Ex. Ns/S | RMSE | Cr % |
1 | 56/74 | 0.066 ± 0.009 | 100 ± 0 | 28/63 | 0.090 ± 0.015 | 100 ± 0 |
2 | 56/72 | 0.048 ± 0.007 | 100 ± 0 | 28/65 | 0.143 ± 0.024 | 100 ± 0 |
3 | 56/128 | 0.070 ± 0.008 | 100 ± 0 | 28/9 | 0.086 ± 0.025 | 100 ± 0 |
Mean | - | 0.061 ± 0.008 | 100 ± 0 | - | 0.106 ± 0.021 | 100 ± 0 |
Mode | No. Ex. | RMSE (Raw Output) | RMSE (Clipped Output) | Cr % |
---|---|---|---|---|
Shuttle | 68 | 0.202 ± 0.041 | 0.189 ± 0.039 | 97.1 ± 4.0 |
Train I | 95 | 0.189 ± 0.031 | 0.154 ± 0.026 | 92.6 ± 5.3 |
Train II | 83 | 0.171 ± 0.031 | 0.094 ± 0.017 | 100 ± 0 |
Mean | - | 0.187 ± 0.035 | 0.146 ± 0.027 | 96.5 ± 3.2 |
Description |
---|
Mean interbeat interval (IBI) |
IBI standard deviation |
Root mean square of the successive differences in IBI |
Mean heart rate (HR) |
HR standard deviation |
Ratio of the HR mean over standard deviation |
Root mean square of the successive differences in HR |
Total power in the IBI signal |
IBI signal power in the Low Frequency (LF) band [0.04 Hz 0.15 Hz] |
Previous value normalized by the total power in IBI |
IBI signal power in the High Frequency (HF) band [0.15 Hz 0.5 Hz] |
Previous value normalized by the total power |
Ratio of the previous LF and HF frequency components |
Mean of the SCL signal |
Mean of the 1st temporal derivative on the SCL signal |
Standard deviation of the SC signal |
Number of local maxima (SCRs) on the SC curve |
Mean prominence of the SCRs |
Mean width of the SCRs |
Sum of all SCRs’ width-prominence products |
Mean Skin Temperature |
Mean of the 1st temporal derivative of the Skin Temperature |
Total power of the Acceleration norm |
Mean absolute deviation of Acceleration norm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vila, G.; Godin, C.; Sakri, O.; Labyt, E.; Vidal, A.; Charbonnier, S.; Ollander, S.; Campagne, A. Real-Time Monitoring of Passenger’s Psychological Stress. Future Internet 2019, 11, 102. https://doi.org/10.3390/fi11050102
Vila G, Godin C, Sakri O, Labyt E, Vidal A, Charbonnier S, Ollander S, Campagne A. Real-Time Monitoring of Passenger’s Psychological Stress. Future Internet. 2019; 11(5):102. https://doi.org/10.3390/fi11050102
Chicago/Turabian StyleVila, Gaël, Christelle Godin, Oumayma Sakri, Etienne Labyt, Audrey Vidal, Sylvie Charbonnier, Simon Ollander, and Aurélie Campagne. 2019. "Real-Time Monitoring of Passenger’s Psychological Stress" Future Internet 11, no. 5: 102. https://doi.org/10.3390/fi11050102
APA StyleVila, G., Godin, C., Sakri, O., Labyt, E., Vidal, A., Charbonnier, S., Ollander, S., & Campagne, A. (2019). Real-Time Monitoring of Passenger’s Psychological Stress. Future Internet, 11(5), 102. https://doi.org/10.3390/fi11050102