Inhalable PEGylated Phospholipid Nanocarriers and PEGylated Therapeutics for Respiratory Delivery as Aerosolized Colloidal Dispersions and Dry Powder Inhalers
Abstract
:1. Introduction
2. Polyethylene Glycol (PEG)ylation Advantages
Molecular Mass (Da) | Conjugated moiety/Delivery | Mechanism [6] |
---|---|---|
20,000–50,000 | Gene delivery, e.g., Oligonucleotides, siRNA | Larger size avoid renal clearance, increased circulation |
1,000–5,000 | Larger drugs, e.g., Antibodies, nanoparticulate system | Cationic charges are hidden, degradation by enzymes and elimination by RES avoided |
3,000–4,000 | Oral laxatives | Bulking agent and water retention |
3. PEGylated Drug Delivery
4. Phospholipid Nanocarriers
5. Nasal Drug Delivery
6. Nasal Delivery of PEGylated Therapeutics for Upper Respiratory Tract Delivery and Noninvasive Systemic Delivery
Therapeutic | Prevention/Treatment | Absorption Target | Carrier/Conjugate |
---|---|---|---|
Viral DNA | Vaccinations | Systemic | PEGylated oligonucleotide |
Glucagon-like protein-1 | Diabetes mellitus type II | Systemic | PEGylated protein hormone |
Calcitonin | Osteoporosis, bone diseases | Systemic | PEGylated protein hormone |
Growth factor | Alzheimer’s disease | CNS | PEG-PLGA |
7. Noninvasive Delivery to the Central Nervous System (CNS) through the Intranasal Route
8. Pulmonary Administration of Nanocarriers and Inhaled Nanocarrier Liquid Aerosols
Drug | Conjugation | Carrier | Admin Route | Disease | PEG Molecular Mass (Da) |
---|---|---|---|---|---|
Budesonide | DSPE-PEG | PEGylated micelle | Nebulizer | Asthma COPD | 5,000 [4] |
Lysine | Lys16 PEG | PEGylated Dendrimer | Intra tracheal | – | 200 and 570 [5] |
SiCTGF | PDMAEMA/PDMAEMA-b-PMAPEG | PEGylated siRNA polymeric complex | Intracheal instillation | Pulmonary fibrosis [73] | – |
LMWH | DSPC:DSPE-PEG | PEGylated liposome | Intra tracheal | DVT, pulmonary embolism | 2,000–5,000 [65] |
Paclitaxel | DSPE-PEG | PEGylated micelle | Intra tracheal | Lung cancer | 5,000 [69] |
LMWH | DOTAP, cholesterol and DSPE-PEG-2,000 | Cationic PEGylated liposome | Intra tracheal | DVT | 2,000 [74] |
Glucagon like peptide-1 (GLP 1) | mPEG | PEGylated protein | Intra tracheal | Type II diabetes | 2,000, 5,000, 10,000 [75] |
Salmon Calcitonin | mPEG-SPA | PEGylated protein | Intra tracheal | Osteoporosis | 1,000, 2,000, 5,000 [14] |
Ciprofloxacin | PC, cholesterol, diacetylphosphate, DSPE-PEG | PEGylated liposome | Intra tracheal | Respiratory infection | 2,000 [34] |
LMWH | PAMAM-PEG | PEGylated Dendrimer | Intra tracheal | DVT | 2,000 [70] |
9. Dry Powder Inhalers (DPIs)
Aerosol Type | PEG Length | Therapeutic | Carrier | Disease | Reference |
---|---|---|---|---|---|
DPI | 2, 3, and 5 kDa | Paclitaxel | PEG | Lung cancer | [62] |
DPI | 5 kDa | Curcumin | PLGA–PEG chitosan | Asthma, COPD, Cystic Fibrosis | [85] |
DPI | 8 kDa | Ciprofloxacin | PEG | Respiratory infections | [81] |
Colloidal Dispersion | 2 kDa | Ciprofloxacin | PEGylated liposome | Respiratory infections | [34] |
DPI | – | Insulin | PEG | Diabetes mellitus | [87] |
10. Conclusions and Future Directions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hickey, A.J.; Mansour, H.M. Chapter 5: Delivery of drugs by the pulmonary route. In Modern Pharmaceutics: Applications and Advances, 5th ed.; Taylor & Francis, Inc.: New York, NY, USA, 2009; pp. 191–219. [Google Scholar]
- Pison, U.; Welte, T.; Giersig, M.; Groneberg, D.A. Nanomedicine for respiratory diseases. Eur. J. Pharmacol. 2006, 533, 341–350. [Google Scholar] [CrossRef]
- Mansour, H.M.; Rhee, Y.S.; Wu, X. Nanomedicine in pulmonary delivery. Int. J. Nanomed. 2009, 4, 299–319. [Google Scholar] [CrossRef]
- Sahib, M.N.; Darwis, Y.; Peh, K.K.; Abdulameer, S.A.; Tan, Y.T. Rehydrated sterically stabilized phospholipid nanomicelles of budesonide for nebulization: Physicochemical characterization and in vitro, in vivo evaluations. Int. J. Nanomed. 2011, 6, 2351–2366. [Google Scholar]
- Ryan, G.M.; Kaminskas, L.M.; Kelly, B.D.; Owen, D.J.; McIntosh, M.P.; Porter, C.J. Pulmonary administration of pegylated polylysine dendrimers: Absorption from the lung versus retention within the lung is highly size-dependent. Mol. Pharm. 2013, 10, 2986–2995. [Google Scholar] [CrossRef]
- Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 2010, 49, 6288–6308. [Google Scholar] [CrossRef]
- Veronese, F.M.; Pasut, G. Pegylation, successful approach to drug delivery. Drug Discov. Today 2005, 10, 1451–1458. [Google Scholar] [CrossRef]
- Karathanasis, E.; Ayyagari, A.L.; Bhavane, R.; Bellamkonda, R.V.; Annapragada, A.V. Preparation of in vivo cleavable agglomerated liposomes suitable for modulated pulmonary drug delivery. J. Control. Release 2005, 103, 159–175. [Google Scholar] [CrossRef]
- Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221. [Google Scholar] [CrossRef]
- Sakagami, M. Systemic delivery of biotherapeutics through the lung: Opportunities and challenges for improved lung absorption. Ther. Deliv. 2013, 4, 1511–1525. [Google Scholar] [CrossRef]
- Vonarbourg, A.; Passirani, C.; Saulnier, P.; Simard, P.; Leroux, J.C.; Benoit, J.P. Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J. Biomed. Mater. Res. A 2006, 78, 620–628. [Google Scholar]
- Nag, O.K.; Awasthi, V. Surface engineering of liposomes for stealth behavior. Pharmaceutics 2013, 5, 542–569. [Google Scholar] [CrossRef]
- Fee, C.J. Size comparison between proteins pegylated with branched and linear poly(ethylene glycol) molecules. Biotechnol. Bioeng. 2007, 98, 725–731. [Google Scholar] [CrossRef]
- Youn, Y.S.; Kwon, M.J.; Na, D.H.; Chae, S.Y.; Lee, S.; Lee, K.C. Improved intrapulmonary delivery of site-specific pegylated salmon calcitonin: Optimization by peg size selection. J. Control. Release 2008, 125, 68–75. [Google Scholar] [CrossRef]
- Gursahani, H.; Riggs-Sauthier, J.; Pfeiffer, J.; Lechuga-Ballesteros, D.; Fishburn, C.S. Absorption of polyethylene glycol (peg) polymers: The effect of peg size on permeability. J. Pharm. Sci. 2009, 98, 2847–2856. [Google Scholar] [CrossRef]
- Mansour, H.M.; Park, C.-W.; Hayes, D., Jr. Nanoparticle lung delivery and inhalation aerosols for targeted pulmonary nanomedicine. In Nanomedicine in Drug Delivery; Kumar, A., Mansour, H.M., Friedman, A., Blough, E.R., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2013; pp. 43–74. [Google Scholar]
- Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001, 41, 189–207. [Google Scholar] [CrossRef]
- Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79. [Google Scholar] [CrossRef]
- Chung, H.A.; Kato, K.; Itoh, C.; Ohhashi, S.; Nagamune, T. Casual cell surface remodeling using biocompatible lipid-poly(ethylene glycol)(n): Development of stealth cells and monitoring of cell membrane behavior in serum-supplemented conditions. J. Biomed. Mater. Res. Part A 2004, 70A, 179–185. [Google Scholar] [CrossRef]
- Yowell, S.L.; Blackwell, S. Novel effects with polyethylene glycol modified pharmaceuticals. Cancer Treat. Rev. 2002, 28, 3–6. [Google Scholar] [CrossRef]
- Bailon, P.; Berthold, W. Polyethylene glycol-conjugated pharmaceutical proteins. Pharm. Sci. Technol. Today 1998, 1, 352–356. [Google Scholar] [CrossRef]
- Liu, Q.; de Felippis, M.R.; Huang, L. Method for characterization of pegylated bioproducts in biological matrixes. Anal. Chem. 2013, 85, 9630–9637. [Google Scholar]
- Zhang, X.; Gan, Y.; Gan, L.; Nie, S.; Pan, W. Pegylated nanostructured lipid carriers loaded with 10-hydroxycamptothecin: An efficient carrier with enhanced anti-tumour effects against lung cancer. J. Pharm. Pharmacol. 2008, 60, 1077–1087. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, M.R.; Wan, H.T. Discussion about several potential drawbacks of pegylated therapeutic proteins. Biol. Pharm. Bull. 2014, 37, 335–339. [Google Scholar] [CrossRef]
- Swaminathan, J.; Gobbo, O.L.; Tewes, F.; Healy, A.M.; Ehrhardt, C. Encapsulation into PEG-liposomes does not improve the bioavailability of pulmonary delivered salmon calcitonin. J. Aerosol Med. Pulm. Drug Deliv. 2014, 27, 1–11. [Google Scholar] [CrossRef]
- Vartany, E.; Caldwell, C.A.; Trow, T.K. Adult respiratory distress syndrome after treatment with PEGylated interferon α-2a and ribavirin. Heart Lung 2008, 37, 153–156. [Google Scholar] [CrossRef]
- Inaba, K.; Arimoto, T.; Hoya, M.; Kawana, K.; Nakagawa, S.; Kozuma, S.; Taketani, Y. Interstitial pneumonitis induced by PEGylated liposomal doxorubicin in a patient with recurrent ovarian cancer. Med. Oncol. 2012, 29, 1255–1257. [Google Scholar] [CrossRef]
- Trullas, V.J.C.; Padilla, L.D.R.; Bisbe, C.V.; Soler, S.S.; Cortes, H.P.; Bisbe, C.J. Organizing pneumonia associated with the use of PEGylated interferon α. Arch. Bronconeumol. 2008, 44, 173–174. [Google Scholar]
- Nevadunsky, N.S.; Mbagwu, C.; Mizrahi, N.; Burton, E.; Goldberg, G.L. Pulmonary fibrosis after PEGylated liposomal doxorubicin in a patient with uterine papillary serous carcinoma. J. Clin. Oncol. 2013, 31, e167–e169. [Google Scholar] [CrossRef]
- Mark, M.; Thurlimann, B. Fatal pneumonitis after treatment with pegylated liposomal doxorubicin in a patient with metastatic breast cancer in complete remission. Med. Oncol. 2012, 29, 1477–1478. [Google Scholar] [CrossRef]
- Kraft, J.C.; Freeling, J.P.; Wang, Z.; Ho, R.J. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci. 2014, 103, 29–52. [Google Scholar] [CrossRef]
- Willis, L.; Hayes, D., Jr.; Mansour, H.M. Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery. Lung 2012, 190, 251–262. [Google Scholar] [CrossRef]
- Awasthi, V.D.; Garcia, D.; Goins, B.A.; Phillips, W.T. Circulation and biodistribution profiles of long-circulating peg-liposomes of various sizes in rabbits. Int. J. Pharm. 2003, 253, 121–132. [Google Scholar] [CrossRef]
- Chono, S.; Suzuki, H.; Togami, K.; Morimoto, K. Efficient drug delivery to lung epithelial lining fluid by aerosolization of ciprofloxacin incorporated into PEGylated liposomes for treatment of respiratory infections. Drug Dev. Ind. Pharm. 2011, 37, 367–372. [Google Scholar] [CrossRef]
- Janoff, A.S. Liposomes Rational Design; Marcel Dekker Inc.: New York, NY, USA, 1999; p. 451. [Google Scholar]
- Molineux, G. Pegylation: Engineering improved biopharmaceuticals for oncology. Pharmacotherapy 2003, 23, 3S–8S. [Google Scholar] [CrossRef]
- Mansour, H.M.; Rhee, Y.S.; Park, C.W.; DeLuca, P.P. Lipid Nanoparticulate Drug Delivery and Nanomedicine, 1st ed.; American Oil Chemists Society (AOCS) Press: Chicago, IL, USA, 2011; pp. 221–268. [Google Scholar]
- Illum, L. Nanoparticulate systems for nasal delivery of drugs: A real improvement over simple systems? J. Pharm. Sci. 2007, 96, 473–483. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, J.; Feng, C.; Shao, X.; Liu, Q.; Zhang, Q.; Pang, Z.; Jiang, X. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int. J. Pharm. 2014, 461, 192–202. [Google Scholar] [CrossRef]
- Kim, T.H.; Park, C.W.; Kim, H.Y.; Chi, M.H.; Lee, S.K.; Song, Y.M.; Jiang, H.H.; Lim, S.M.; Youn, Y.S.; Lee, K.C. Low molecular weight (1 kDa) polyethylene glycol conjugation markedly enhances the hypoglycemic effects of intranasally administered exendin-4 in type 2 diabetic db/db mice. Biol. Pharm. Bull. 2012, 35, 1076–1083. [Google Scholar] [CrossRef]
- Youn, Y.S.; Jeon, J.E.; Chae, S.Y.; Lee, S.; Lee, K.C. PEGylation improves the hypoglycaemic efficacy of intranasally administered glucagon-like peptide-1 in type 2 diabetic db/db mice. Diabetes Obes. Metab. 2008, 10, 343–346. [Google Scholar] [CrossRef]
- Casettari, L.; Vllasaliu, D.; Castagnino, E.; Stolnik, S.; Howdle, S.; Illum, L. PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications. Prog. Polym. Sci. 2012, 37, 659–685. [Google Scholar] [CrossRef]
- Lee, K.C.; Park, M.O.; Na, D.H.; Youn, Y.S.; Lee, S.D.; Yoo, S.D.; Lee, H.S.; DeLuca, P.P. Intranasal delivery of pegylated salmon calcitonins: Hypocalcemic effects in rats. Calc. Tissue Int. 2003, 73, 545–549. [Google Scholar] [CrossRef]
- Sharma, S.; Mukkur, T.K.S.; Benson, H.A.E.; Chen, Y. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J. Pharm. Sci. 2009, 98, 812–843. [Google Scholar] [CrossRef]
- Croyle, M.A.; Patel, A.; Tran, K.N.; Gray, M.; Zhang, Y.; Strong, J.E.; Feldmann, H.; Kobinger, G.P. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice. PLoS One 2008, 3, e3548. [Google Scholar]
- Liu, Q.; Shen, Y.; Chen, J.; Gao, X.; Feng, C.; Wang, L.; Zhang, Q.; Jiang, X. Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG–PLA nanoparticles. Pharm. Res. 2012, 29, 546–558. [Google Scholar] [CrossRef]
- Chekhonin, V.P.; Gurina, O.I.; Ykhova, O.V.; Ryabinina, A.E.; Tsibulkina, E.A.; Zhirkov, Y.A. Polyethylene glycol-conjugated immunoliposomes specific for olfactory ensheathing glial cells. Bull. Exp. Biol. Med. 2008, 145, 449–451. [Google Scholar] [CrossRef]
- Gao, X.; Tao, W.; Lu, W.; Zhang, Q.; Zhang, Y.; Jiang, X.; Fu, S. Lectin-conjugated PEG–PLA nanoparticles: Preparation and brain delivery after intranasal administration. Biomaterials 2006, 27, 3482–3490. [Google Scholar] [CrossRef]
- Suarez, S.; Hickey, A.J. Drug properties affecting aerosol behavior. Respir. Care 2000, 45, 652–666. [Google Scholar]
- Lai, S.K.; Wang, Y.Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 2009, 61, 158–171. [Google Scholar] [CrossRef]
- Har-el, Y.; Fiegel, J.; Dawson, M.; Hanes, J. Chapter 16: Gene Delivery to the Lung. In Pharmaceutical Inhalation Aerosol Technology; Hickey, A.J., Ed.; Marcel Dekker Inc.: New York, NY, USA, 2004; Volume 134, pp. 498–505. [Google Scholar]
- Hickey, A.J.; Thompson, D.C. Chapter 1: Physiology of the Airways. In Pharmaceutical Inhalation Aerosol Technology; Hickey, A.J., Ed.; Marcel Dekker Inc.: New York, NY, USA, 2004; Volume 134, pp. 1–30. [Google Scholar]
- Tseng, C.L.; Wu, S.Y.; Wang, W.H.; Peng, C.L.; Lin, F.H.; Lin, C.C.; Young, T.H.; Shieh, M.J. Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials 2008, 29, 3014–3022. [Google Scholar] [CrossRef]
- Vllasaliu, D.; Fowler, R.; Stolnik, S. PEGylated nanomedicines: Recent progress and remaining concerns. Expert Opin. Drug Deliv. 2014, 11, 139–154. [Google Scholar] [CrossRef]
- Ernsting, M.J.; Murakami, M.; Roy, A.; Li, S.D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Release 2013, 172, 782–794. [Google Scholar] [CrossRef]
- Hadidi, N.; Kobarfard, F.; Nafissi-Varcheh, N.; Aboofazeli, R. PEGylated single-walled carbon nanotubes as nanocarriers for cyclosporin a delivery. AAPS PharmSciTech 2013, 14, 593–600. [Google Scholar] [CrossRef]
- Castro, E.; Kumar, A. Chapter 1: Nanoparticles in Drug Delivery Systems. In Nanomedicine in Drug Delivery; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2013; pp. 4–13. [Google Scholar]
- Liu, Y.; Hu, Y.; Huang, L. Influence of polyethylene glycol density and surface lipid on pharmacokinetics and biodistribution of lipid-calcium-phosphate nanoparticles. Biomaterials 2014, 35, 3027–3034. [Google Scholar] [CrossRef]
- Kutscher, H.L.; Chao, P.; Deshmukh, M.; Sundara Rajan, S.; Singh, Y.; Hu, P.; Joseph, L.B.; Stein, S.; Laskin, D.L.; Sinko, P.J. Enhanced passive pulmonary targeting and retention of pegylated rigid microparticles in rats. Int. J. Pharm. 2010, 402, 64–71. [Google Scholar] [CrossRef]
- Cryan, S.A. Carrier-based strategies for targeting protein and peptide drugs to the lungs. AAPS J. 2005, 7, E20–E41. [Google Scholar] [CrossRef]
- Niven, R. Modulated drug therapy with inhalation aerosols. In Pharmaceutical Inhalation Aerosol Technology, 2nd ed.; Marcel Dekker Inc.: New York, NY, USA, 2003; pp. 551–570. [Google Scholar]
- Meenach, S.A.; Anderson, K.W.; Zach Hilt, J.; McGarry, R.C.; Mansour, H.M. Characterization and aerosol dispersion performance of advanced spray-dried chemotherapeutic PEGylated phospholipid particles for dry powder inhalation delivery in lung cancer. Eur. J. Pharm. Sci. 2013, 49, 699–711. [Google Scholar] [CrossRef]
- Ibricevic, A.; Guntsen, S.P.; Zhang, K.; Shrestha, R.; Liu, Y.; Sun, J.Y.; Welch, M.J.; Wooley, K.L.; Brody, S.L. PEGylation of cationic, shell-crosslinked-knedel-like nanoparticles modulates inflammation and enhances cellular uptake in the lung. Nanomedicine 2013, 9, 912–922. [Google Scholar]
- Sahib, M.N.; Abdulameer, S.A.; Darwis, Y.; Peh, K.K.; Tan, Y.T. Solubilization of beclomethasone dipropionate in sterically stabilized phospholipid nanomicelles (SSMS): Physicochemical and in vitro evaluations. Drug Des. Dev. Ther. 2012, 6, 29–42. [Google Scholar]
- Bai, S.; Ahsan, F. Inhalable liposomes of low molecular weight heparin for the treatment of venous thromboembolism. J. Pharm. Sci. 2010, 99, 4554–4564. [Google Scholar] [CrossRef]
- Lu, Y.; Park, K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. 2013, 453, 198–214. [Google Scholar] [CrossRef]
- Craparo, E.F.; Teresi, G.; Bondi, M.L.; Licciardi, M.; Cavallaro, G. Phospholipid-polyaspartamide micelles for pulmonary delivery of corticosteroids. Int. J. Pharm. 2011, 406, 135–144. [Google Scholar] [CrossRef]
- Lim, S.B.; Rubinstein, I.; Sadikot, R.T.; Artwohl, J.E.; Onyuksel, H. A novel peptide nanomedicine against acute lung injury: Glp-1 in phospholipid micelles. Pharm. Res. 2011, 28, 662–672. [Google Scholar] [CrossRef]
- Gill, K.K.; Nazzal, S.; Kaddoumi, A. Paclitaxel loaded PEG(5000)-dspe micelles as pulmonary delivery platform: Formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation. Eur. J. Pharm. Biopharm. 2011, 79, 276–284. [Google Scholar] [CrossRef]
- Bai, S.; Ahsan, F. Synthesis and evaluation of PEGylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin. Pharm. Res. 2009, 26, 539–548. [Google Scholar] [CrossRef]
- Gaspar, M.M.; Radomska, A.; Gobbo, O.L.; Bakowsky, U.; Radomski, M.W.; Ehrhardt, C. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J. Aerosol Med. Pulm. Drug Deliv. 2012, 25, 310–318. [Google Scholar] [CrossRef]
- Kleemann, E.; Neu, M.; Jekel, N.; Fink, L.; Schmehl, T.; Gessler, T.; Seeger, W.; Kissel, T. Nano-carriers for DNA delivery to the lung based upon a tat-derived peptide covalently coupled to peg–pei. J. Control. Release 2005, 109, 299–316. [Google Scholar] [CrossRef]
- Sung, D.K.; Kong, W.H.; Park, K.; Kim, J.H.; Kim, M.Y.; Kim, H.; Hahn, S.K. Noncovalenly PEGylated CTGF siRNA/pdmaema complex for pulmonary treatment of bleomycin-induced lung fibrosis. Biomaterials 2013, 34, 1261–1269. [Google Scholar] [CrossRef]
- Bai, S.; Gupta, V.; Ahsan, F. Cationic liposomes as carriers for aerosolized formulations of an anionic drug: Safety and efficacy study. Eur. J. Pharm. Sci. 2009, 38, 165–171. [Google Scholar] [CrossRef]
- Lee, K.C.; Chae, S.Y.; Kim, T.H.; Lee, S.; Lee, E.S.; Youn, Y.S. Intrapulmonary potential of polyethylene glycol-modified glucagon-like peptide-1s as a type 2 anti-diabetic agent. Regul. Pept. 2009, 152, 101–107. [Google Scholar] [CrossRef]
- World Health Organization. Available online: http://who.int/mediacentre/factsheets/fs310/en/ (accessed on 3 March 2014).
- Claus, S.; Weiler, C.; Schiewe, J.; Friess, W. How can we bring high drug doses to the lung? Eur. J. Pharm. Biopharm. 2014, 86, 1–6. [Google Scholar] [CrossRef]
- Rahimpour, Y.; Kouhsoltani, M.; Hamishehkar, H. Alternative carriers in dry powder inhaler formulations. Drug Discov. Today 2014, 19, 618–626. [Google Scholar] [CrossRef]
- Freire-Moran, L.; Aronsson, B.; Manz, C.; Gyssens, I.C.; So, A.D.; Monnet, D.L.; Cars, O.; Group, E.-E.W. Critical shortage of new antibiotics in development against multidrug-resistant bacteria-time to react is now. Drug Resist. Updates 2011, 14, 118–124. [Google Scholar] [CrossRef]
- Andrade, F.; Rafael, D.; Videira, M.; Ferreira, D.; Sosnik, A.; Sarmento, B. Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv. Drug Deliv. Rev. 2013, 65, 1816–1827. [Google Scholar] [CrossRef]
- Osman, R.; Kan, P.L.; Awad, G.; Mortada, N.; El-Shamy, A.E.; Alpar, O. Spray dried inhalable ciprofloxacin powder with improved aerosolisation and antimicrobial activity. Int. J. Pharm. 2013, 449, 44–58. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Basu, N.; Ghatak, N.; Gujral, P.K. Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Act. 1982, 12, 508–515. [Google Scholar] [CrossRef]
- Reddy, A.C.; Lokesh, B.R. Effect of dietary turmeric (Curcuma longa) on iron-induced lipid peroxidation in the rat liver. Food Chem. Toxicol. 1994, 32, 279–283. [Google Scholar] [CrossRef]
- Egan, M.E.; Pearson, M.; Weiner, S.A.; Rajendran, V.; Rubin, D.; Glockner-Pagel, J.; Canny, S.; Du, K.; Lukacs, G.L.; Caplan, M.J. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 2004, 304, 600–602. [Google Scholar] [CrossRef]
- El-Sherbiny, I.M.; Smyth, H.D.C. Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Mol. Pharm. 2012, 9, 269–280. [Google Scholar] [CrossRef]
- Meenach, S.A.; Vogt, F.G.; Anderson, K.W.; Hilt, J.Z.; McGarry, R.C.; Mansour, H.M. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols. Int. J. Nanomed. 2013, 8, 275–293. [Google Scholar]
- Insulin inhalation—Pfizer/Nektar therapeutics: Hmr 4006, inhaled peg-insulin—Nektar, PEGylated insulin—Nektar. Drugs R&D 2004, 5, 166–170.
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Muralidharan, P.; Mallory, E.; Malapit, M.; Hayes, D., Jr.; Mansour, H.M. Inhalable PEGylated Phospholipid Nanocarriers and PEGylated Therapeutics for Respiratory Delivery as Aerosolized Colloidal Dispersions and Dry Powder Inhalers. Pharmaceutics 2014, 6, 333-353. https://doi.org/10.3390/pharmaceutics6020333
Muralidharan P, Mallory E, Malapit M, Hayes D Jr., Mansour HM. Inhalable PEGylated Phospholipid Nanocarriers and PEGylated Therapeutics for Respiratory Delivery as Aerosolized Colloidal Dispersions and Dry Powder Inhalers. Pharmaceutics. 2014; 6(2):333-353. https://doi.org/10.3390/pharmaceutics6020333
Chicago/Turabian StyleMuralidharan, Priya, Evan Mallory, Monica Malapit, Don Hayes, Jr., and Heidi M. Mansour. 2014. "Inhalable PEGylated Phospholipid Nanocarriers and PEGylated Therapeutics for Respiratory Delivery as Aerosolized Colloidal Dispersions and Dry Powder Inhalers" Pharmaceutics 6, no. 2: 333-353. https://doi.org/10.3390/pharmaceutics6020333
APA StyleMuralidharan, P., Mallory, E., Malapit, M., Hayes, D., Jr., & Mansour, H. M. (2014). Inhalable PEGylated Phospholipid Nanocarriers and PEGylated Therapeutics for Respiratory Delivery as Aerosolized Colloidal Dispersions and Dry Powder Inhalers. Pharmaceutics, 6(2), 333-353. https://doi.org/10.3390/pharmaceutics6020333