Using Ion-Selective Electrodes to Study the Drug Release from Porous Cellulose Matrices
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Working Principle of Electrodes
2.3. Preparation of ISEs
2.4. Preparation of the Drug-Containing Solid Dosage Forms
2.5. Potentiometric and UV Spectrophotometric Measurements
3. Results and Discussion
3.1. The Quality of ISEs
3.1.1. Calibration Curves
3.1.2. Response Time
3.1.3. Effect of pH
3.1.4. Potentiometric Selectivity
Mn+ | KpotLid,M |
---|---|
K+ | 5.00 × 10−4 |
Na+ | 7.94 × 10−5 |
Ca2+ | 3.98 × 10−6 |
Mg2+ | 3.16 × 10−6 |
3.2. Comparison of Potentiometric and UV Spectrophotometry Methods
3.2.1. Polymer Films
3.2.2. Porous Filter Paper Substrates
3.3. Study of Lidocaine Hydrochloride Release
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Amman, D.; Morf, W.E.; Anker, P.; Meier, P.C.; Pretsch, E.; Simon, W. Neutral carrier based ion-selective electrodes. Ion. Sel. Electrode. R. 1983, 5, 3–92. [Google Scholar]
- Bakker, E.; Diamond, D.; Lewenstam, A; Pretsch, E. Ion sensors: Current limits and new trends. Anal. Chim. Acta. 1999, 393, 11–18. [Google Scholar]
- Baum, G. An organic cation-selective electrode: Potentiometric determination of acetylcholine activity. Anal. Lett. 1970, 3, 105–111. [Google Scholar] [CrossRef]
- Baum, G.; Ward, F.B. General enzyme studies with a substrate selective electrode: Characterization of cholinesterases. Anal. Biochem. 1971, 42, 487–493. [Google Scholar]
- Baum, G. Determination of cholinesterase by an organic substrate selective electrode. Anal. Biochem. 1971, 39, 65–79. [Google Scholar]
- Coşofreţ, V.V. Drug membrane sensors and their pharmaceutical applications. Trends Anal. Chem. 1991, 10, 261–265. [Google Scholar] [CrossRef]
- Khalil, S.; Borham, N. Phenothiazine drug poly(vinyl chloride) matrix membrane electrodes and their use in pharmaceutical analysis. Microchem. J. 1999, 63, 389–397. [Google Scholar] [CrossRef]
- Aboul-Enein, H.Y.; Sun, X.X. Anovel ion selective PVC membrane electrode for determination of propranolol in pharmaceutical formulation. Analusis. 2000, 28, 855–858. [Google Scholar] [CrossRef]
- Giahi, M.; Mirzaei, M.; Veghar Lahijani, G. Potentiometric PVC membrane sensors for the determination of phenylephrine hydrochloride in some pharmaceutical products. J. Iran. Chem. Soc. 2010, 7, 333–338. [Google Scholar] [CrossRef]
- Coşofreţ, V.V.; Buck, R.P. A poly (vinylchloride) membrane electrode for determination of phenytoin in pharmaceutical formulations. J. Pharmaceut. Biomed. Anal. 1986, 6, 45–51. [Google Scholar]
- Coşofreţ, V.V.; Buck, R.P. A chloroquine membrane electrode with low detection limit. Anal. Chim. Acta 1985, 174, 299–303. [Google Scholar] [CrossRef]
- Peeters, K.; De Maesschalck, R.; Bohets, H.; Vanhoutte, K.; Nagels, L. In situ dissolution testing using potentiometric sensors. Eur. J. Pharm. Sci. 2008, 34, 243–249. [Google Scholar]
- Bohets, H.; Vanhoutte, K.; de Maesschalck, R.; Cockaerts, P.; Vissers, B; Nagels, J.L. Development of in situ ion selective sensors for dissolution. Anal. Chim. Acta 2007, 581, 181–191. [Google Scholar] [CrossRef]
- Scheubel, E.; Lindenberg, M.; Beyssac, E.; Cardot, J.M. Small volume dissolution testing as a powerful method during pharmaceutical development. Pharmaceutics 2010, 2, 351–365. [Google Scholar] [CrossRef]
- Graffner, C. Regulatory aspects of drug dissolution from a European perspective. Eur. J. Pharm. Sci. 2006, 29, 288–293. [Google Scholar]
- Wang, J. Analytical electrochemistry, 3rd ed; John Wiley & Sons, Inc.: Hoboken, N.J. USA, 2006; p. 189. [Google Scholar]
- Sundfors, F. Solid-contact ion Sensors: Materials and properties. Ph.D. Thesis, Åbo Akademi University, Finland, June 2010. [Google Scholar]
- Coşofreţ, V.V.; Buck, R.P. Recent advances in pharmaceutical analysis with potentiometric membrane sensors. Crit. Rev. Anal. Chem. 1993, 24, 1–58. [Google Scholar] [CrossRef]
- Alaviuhkola, T.; Bobacka, J.; Nissinen, M.; Rissanen, K.; Ivaska, A.; Pursiainen, J. Synthesis characterization and complexation of tetraarylborates with aromatic cations and their use in chemical sensors. Chem. Eur. J. 2005, 11, 2071–2080. [Google Scholar]
- Mattinen, U.; Rabiej, S.; Lewenstam, A.; Bobacka, J. Impedance study of the ion-to-electron transduction process for carbon cloth as solid-contact material in potentiometric ion sensors. Electrochim. Acta 2011, 56, 10683–10687. [Google Scholar] [CrossRef]
- Bakker, E.; Buhlmann, P.; Pretsch, E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 1997, 97, 3083–3132. [Google Scholar]
- Umezawa, Y.; Umezawa, K.; Sato, H. Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting KpotA,B values. Pure Appl. Chem. 1995, 67, 507–518. [Google Scholar] [CrossRef]
- Upadrashta, S.M.; Katikaneni, P.R.; Hileman, G.A.; Keshary, P.R. Direct compression controlled release tablets using ethylcellulose. Drug Dev. Ind. Pharm. 1993, 19, 449–460. [Google Scholar] [CrossRef]
- Katikaneni, P.R.; Upadrashta, S.M.; Neau, S.H.; Mitra, A.K. Ethyl cellulose matrix controlled-release tablets of water soluble. Int. J. Pharm. 1995, 123, 119–125. [Google Scholar] [CrossRef]
- Siepmann, F.; Hoffmann, A.; Leclercq, B.; Carlin, B.; Siepmann, J. How to adjust desired drug release patterns from ethylcellulose-coated dosage forms. J. Control. Release 2007, 119, 182–189. [Google Scholar]
- Kohda, Y.; Kobayashi, H.; Baba, Y.; Yuasa, H.; Ozeki, T.; Kanaya, Y.; Sagara, E. Controlled release of lidocaine hydrochloride from buccal mucosa-adhesive films with solid dispersion. Int. J. Pharm. 1997, 158, 147–155. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vakili, H.; Genina, N.; Ehlers, H.; Bobacka, J.; Sandler, N. Using Ion-Selective Electrodes to Study the Drug Release from Porous Cellulose Matrices. Pharmaceutics 2012, 4, 366-376. https://doi.org/10.3390/pharmaceutics4030366
Vakili H, Genina N, Ehlers H, Bobacka J, Sandler N. Using Ion-Selective Electrodes to Study the Drug Release from Porous Cellulose Matrices. Pharmaceutics. 2012; 4(3):366-376. https://doi.org/10.3390/pharmaceutics4030366
Chicago/Turabian StyleVakili, Hossein, Natalja Genina, Henrik Ehlers, Johan Bobacka, and Niklas Sandler. 2012. "Using Ion-Selective Electrodes to Study the Drug Release from Porous Cellulose Matrices" Pharmaceutics 4, no. 3: 366-376. https://doi.org/10.3390/pharmaceutics4030366
APA StyleVakili, H., Genina, N., Ehlers, H., Bobacka, J., & Sandler, N. (2012). Using Ion-Selective Electrodes to Study the Drug Release from Porous Cellulose Matrices. Pharmaceutics, 4(3), 366-376. https://doi.org/10.3390/pharmaceutics4030366