In Situ Focused Beam Reflectance Measurement (FBRM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Raman Characterization of the Polymorphic Transformation of Carbamazepine
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Pure Carbamazepine Polymorphs
2.2. Polymorphic Transformation during Seeded Isothermal Crystallization
3. Results and Discussion
3.1. Characterization of Carbamazepine Polymorphs
T/°C | Cact/g ∙ (g 1-propanol)−1 | Ccal/g ∙ (g 1-propanol)−1 | |
---|---|---|---|
25.0 | 0.0177 | 0.0181 | 0.018 |
43.0 | 0.0329 | 0.0337 | 0.023 |
40.0 | 0.0352 | 0.0355 | 0.008 |
47.0 | 0.0376 | 0.0377 | 0.003 |
46.0 | 0.0377 | 0.0377 | 0.001 |
45.0 | 0.0379 | 0.0386 | 0.017 |
49.0 | 0.0455 | 0.0446 | 0.020 |
50.0 | 0.0515 | 0.0498 | 0.033 |
56.0 | 0.0531 | 0.0522 | 0.016 |
54.0 | 0.0550 | 0.0554 | 0.006 |
50.0 | 0.0556 | 0.0552 | 0.006 |
58.0 | 0.0666 | 0.0667 | 0.002 |
3.2. Solubility of Carbamazepine Polymorphs
T/°C | Solubility of Form II/g ∙ (g 1-propanol)−1 | T/°C | Metastable limit of Form II/g ∙ (g 1-propanol)−1 | T/°C | Solubility of Form III/g ∙ (g 1-propanol)−1 | T/°C | Metastable limit of Form III/g ∙ (g 1-propanol)−1 |
---|---|---|---|---|---|---|---|
39.7 | 0.0318 | 39.2 | 0.04777 | 25.0 | 0.0196 | 22.0 | 0.03407 |
45.0 | 0.03796 | 45.9 | 0.06155 | 29.3 | 0.02485 | 27.7 | 0.03909 |
48.0 | 0.04215 | 52.3 | 0.07261 | 34.0 | 0.02909 | 34.2 | 0.04595 |
53.4 | 0.05077 | 58.0 | 0.08335 | 40.5 | 0.03831 | 38.5 | 0.04806 |
58.6 | 0.06267 | -- | -- | 48.5 | 0.05267 | -- | -- |
-- | -- | -- | -- | 52.3 | 0.06111 | -- | -- |
-- | -- | -- | -- | 58.0 | 0.07252 | -- | -- |
-- | -- | -- | -- | 60.0 | 0.08632 | -- | -- |
-- | -- | -- | -- | 64.0 | 0.09961 | -- | -- |
3.3. Metastable Limits of Carbamazepine Polymorphs
Parameters | A | B | R^2 |
---|---|---|---|
values | 9.71 × 10−6 | 7.51 × 10−4 | 0.998 |
error | 3.87 × 10−6 | 0.545 × 10−4 |
3.4. Quantitative Analysis of Polymorphic Transformation
3.5. Real-Time Monitoring of Polymorphic Transformation of Carbamazepine during Seeded Isothermal Crystallization
Run Number | Initial solution concentration (g/g 1-propanol) | Supersaturation for Form III (g/g) | Relative seed mass of Form II (g Form II/g solute) |
---|---|---|---|
1 | 0.0275 | 0.2791 | 7% |
2 | 0.0275 | 0.2791 | 10% |
3 | 0.0275 | 0.2791 | 15% |
3.5.1. FBRM Results of Polymorphic Transformation in Seeded Isothermal Crystallization
3.5.2. Raman and FTIR Results of the Polymorph Transformation in Seeded Isothermal Crystallization
4. Conclusions
References
- Chapman, D. The polymorphism of glycerides. Chem. Rev. 1962, 62, 433–456. [Google Scholar]
- Fried, E.; Gurtin, M.E. Dynamic solid-solid transitions with phase characterized by an order parameter. Phys. D 1994, 72, 287–308. [Google Scholar]
- Cardew, P.; Davey, R. The kinetics of solvent-mediated phase transformations. Proc. R. Soc. Lond. A 1985, 398, 415–428. [Google Scholar]
- O’Sullivan, B.; Barrett, P.; Hsiao, G.; Carr, A.; Glennon, B. In situ monitoring of polymorphic transitions. Org. Process Res. Dev. 2003, 7, 977–982. [Google Scholar] [CrossRef]
- O’Sullivan, B.; Glennon, B. Application of in situ FBRM and ATR-FTIR to the monitoring of the polymorphic transformation of D-mannitol. Org. Process Res. Dev. 2005, 9, 884–889. [Google Scholar]
- Ono, T.; Ter Horst, J.; Jansens, P. Quantitative measurement of the polymorphic transformation of L-glutamic acid using in-situ Raman spectroscopy. Cryst. Growth Des. 2004, 4, 465–469. [Google Scholar]
- Tian, F.; Zeitler, J.A.; Strachan, C.J.; Saville, D.J.; Gordon, K.C.; Rades, T. Characterizing the conversion kinetics of carbamazepine polymorphs to the dihydrate in aqueous suspension using Raman spectroscopy. J. Pharm. Biomed. Anal. 2006, 40, 271–280. [Google Scholar]
- Chen, Z.P.; Fevotte, G.; Caillet, A.; Littlejohn, D.; Morris, J. Advanced calibration strategy for in situ quantitative monitoring of phase transition processes in suspensions using FT-Raman spectroscopy. Anal. Chem. 2008, 80, 6658–6665. [Google Scholar]
- Vankeirsbilck, T.; Vercauteren, A.; Baeyens, W.; van der Weken, F. Applications of Raman spectroscopy in pharmaceutical analysis. TrAC Trends Anal. Chem. 2002, 21, 869–877. [Google Scholar]
- Liu, W.; Wei, H.; Black, S. An investigation of the transformation of carbamazepine from anhydrate to hydrate using in situ FBRM and PVM. Org. Process Res. Dev. 2009, 13, 494–500. [Google Scholar]
- Hartley, R.; Aleksandrowicz, J.; Ng, P.; McLain, B.; Bowmer, C.; Forsythe, W. Breakthrough seizures with generic carbamazepine: a consequence of poorer bioavailability? Br. J. Clin. Pract. 1990, 44, 270–273. [Google Scholar]
- Edwards, A.D.; Shekunov, B.Y.; Kordikowski, A.; Forbes, R.T.; York, P. Crystallization of pure anhydrous polymorphs of carbamazepine by solution enhanced dispersion with supercritical fluids (SEDS™). J. Pharm. Sci. 2001, 90, 1115–1124. [Google Scholar]
- Yoshihashi, Y.; Yonemochi, E.; Terada, K. Estimation of initial dissolution rate of drug substance by thermal analysis: Application for carbamazepine hydrate. Pharm. Dev. Technol. 2002, 7, 89–95. [Google Scholar]
- Burger, A.; Ramberger, R. On the polymorphism of pharmaceuticals and other molecular crystals. I: Theory of thermodynamic rules. Microchim. Acta 1979, 72, 259–271. [Google Scholar] [CrossRef]
- Ostwald, W. Studies of the formation and transformation of solid substances. Phys. Chem. 1897, 22, 289. [Google Scholar]
- Kaneko, F.; Sakashita, H.; Kobayashi, M.; Suzuki, M. Infrared spectroscopic and chemical etching study on the crystallization process of the B and E forms of stearic acid: Roles of dislocations in single crystals. J. Phys. Chem. 1994, 98, 3801–3808. [Google Scholar]
- Brittain, H.G. Polymorphism in Pharmaceutical Solids; Marcel Dekker, Inc.: New York, NY, USA, 1999; Volume 95. [Google Scholar]
- McCrone, W.C. “Polymorphism,” Chapter 8 in Physics and Chemistry of the Organic Solid State; Fox, D., Labes, M.M., Weissberger, A., Eds.; Interscience: New York, NY, USA, 1965; Volume 11. [Google Scholar]
- Grzesiak, A.L.; Lang, M.; Kim, K.; Matzger, A.J. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. J. Pharm. Sci. 2003, 92, 2260–2271. [Google Scholar]
- Mao, S.; Zhang, Y.; Rohani, S.; Ray, A.K. Kinetics of (R, S)-and (R)-mandelic acid in an unseeded cooling batch crystallizer. J. Cryst. Growth 2010, 312, 3340–3348. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhao, Y.; Bao, Y.; Wang, J.; Rohani, S. In Situ Focused Beam Reflectance Measurement (FBRM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Raman Characterization of the Polymorphic Transformation of Carbamazepine. Pharmaceutics 2012, 4, 164-178. https://doi.org/10.3390/pharmaceutics4010164
Zhao Y, Bao Y, Wang J, Rohani S. In Situ Focused Beam Reflectance Measurement (FBRM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Raman Characterization of the Polymorphic Transformation of Carbamazepine. Pharmaceutics. 2012; 4(1):164-178. https://doi.org/10.3390/pharmaceutics4010164
Chicago/Turabian StyleZhao, Yingying, Ying Bao, Jingkang Wang, and Sohrab Rohani. 2012. "In Situ Focused Beam Reflectance Measurement (FBRM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Raman Characterization of the Polymorphic Transformation of Carbamazepine" Pharmaceutics 4, no. 1: 164-178. https://doi.org/10.3390/pharmaceutics4010164