Construction of Multifunctional Fe3O4@MSN@PDA-HA-FA Nanocarriers and Research on Synergistic Tumor Therapy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fe3O4
2.3. Preparation of Fe3O4@MSN
2.4. Preparation of Fe3O4@MSN@PDA-HA-FA
2.5. Characterization
2.6. Fenton Reaction Tests
2.7. Photothermal Property Tests
2.8. In Vitro Drug Loading and Release
2.9. In Vitro Cytocompatibility and Blood Compatibility
2.10. Evaluation of the In Vitro Tumor Synergistic Therapy Effect
2.11. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Characterizations
3.2. Fenton Reaction Tests
3.3. Photothermal Properties
3.4. In Vitro Hemocompatibility and Cytocompatibility
3.5. In Vitro Drug Loading/Release and Cell Therapy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Z.P.; Qin, R.P.; Ruan, D.Q.; Hu, C.; Li, W.J.; Zhou, J.; Zhang, F.; Guo, B.; Huang, L.Y.; Jaque, D.; et al. Ce6-DNAzyme-Loaded Metal-Organic Framework Theranostic Agents for Boosting miRNA Imaging-Guided Photodynamic Therapy in Breast Cancer. Acs Nano 2025, 19, 27873–27889. [Google Scholar] [CrossRef]
- Lou, Z.B.; Sun, J.X.; Shi, J.; Liu, C.; Yuan, R.J.; Cheng, S.Q. Microvascular invasion in hepatocellular carcinoma: A detailed narrative review of definitions, predictions, and therapeutic strategies. Hepatobiliary Surg. Nutr. 2025, 191, 191. [Google Scholar] [CrossRef]
- Zuo, J.X.; Ma, Z.Y.; Su, Z.H.; Hu, Y.F.; Qiu, T.; Li, Y.H.; Zeng, X.L.; He, M.M.; Peng, C.; Fan, J.L.; et al. A Photothermal Agent with Multiple Hot Shock Proteins Inhibition for Enhanced Tumor Photothermal Therapy and Intrinsic Apoptosis. Small 2025, 21, 2504769. [Google Scholar] [CrossRef]
- Xiang, S.; Zhan, H.; Zhan, J.M.; Li, X.; Lin, X.J.; Sun, W.J. Breaking hypoxic barrier: Oxygen-supplied nanomaterials for enhanced T cell-mediated tumor immunotherapy. Int. J. Pharm. -X 2025, 10, 100400. [Google Scholar] [CrossRef]
- Lai, X.; Lu, T.; Zhang, F.; Khan, A.; Zhao, Y.; Li, X.; Xiang, S.; Lin, K. Lysosome-targeted theranostics: Integration of real-time fluorescence imaging and controlled drug delivery via Zn(II)-Schiff Base complexes. J. Inorg. Biochem. 2025, 272, 113015. [Google Scholar] [CrossRef]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, Y.; Li, M.; Cao, S.; Wang, N.; Zhang, Y.; Wang, Y. A PDA-Functionalized 3D Lung Scaffold Bioplatform to Construct Complicated Breast Tumor Microenvironment for Anticancer Drug Screening and Immunotherapy. Adv. Sci. 2023, 10, 2302855. [Google Scholar] [CrossRef] [PubMed]
- Jalessi, M.; Moghaddam, Y.T.; Khanmohammadi, M.; Hassanzadeh, S.; Azad, Z.; Farhadi, M. Sustained co-release of ciprofloxacin and dexamethasone in rabbit maxillary sinus using polyvinyl alcohol-based hydrogel microparticle. J. Mater. Sci. -Mater. Med. 2024, 35, 60. [Google Scholar] [CrossRef] [PubMed]
- Ruan, L.; Cao, Y.; Ren, C.; Li, H.; Feng, X.; Hao, R. Hyaluronic Acid-Functionalized Polydopamine Nanoparticles Augment Photothermal Therapy via Synergetic Tumor-Targeting and Heat Shock Protein Inhibition. Acs Appl. Nano Mater. 2023, 6, 20458–20468. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Xia, W.; Cao, D.; Wang, X.; Kuang, Y.; Luo, Y.; Yuan, C.; Lu, J.; Liu, X. Application of Hydrogels as Carrier in Tumor Therapy: A Review. Chem.-Asian J. 2022, 17, 202200740. [Google Scholar] [CrossRef]
- Jiang, W.; Mo, F.; Jin, X.; Chen, L.; Xu, L.; Guo, L.; Fu, F. Tumor-Targeting Photothermal Heating-Responsive Nanoplatform Based on Reduced Graphene Oxide/Mesoporous Silica/Hyaluronic Acid Nanocomposite for Enhanced Photodynamic Therapy. Adv. Mater. Interfaces 2017, 4, 1700425. [Google Scholar] [CrossRef]
- Zhou, X.; He, C.; Liu, M.; Chen, Q.; Zhang, L.; Xu, X.; Xu, H.; Qian, Y.; Yu, F.; Wu, Y.; et al. Self-assembly of hyaluronic acid-mediated tumor-targeting theranostic nanoparticles. Biomater. Sci. 2021, 9, 2221–2229. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Xu, L.; Zhuang, Z.; Liu, J.; Liu, S.; Wu, Y.; Gong, A.; Zhang, M.; Du, F. NIR responsive tumor vaccine in situ for photothermal ablation and chemotherapy to trigger robust antitumor immune responses. J. Nanobiotechnology 2021, 19, 142. [Google Scholar] [CrossRef]
- Zhuang, B.; Chen, T.; Huang, Y.; Xiao, Z.; Jin, Y. Chemo-photothermal immunotherapy for eradication of orthotopic tumors and inhibition of metastasis by intratumoral injection of polydopamine versatile hydrogels. Acta Pharm. Sin. B 2022, 12, 1447–1459. [Google Scholar] [CrossRef]
- Wong, K.M.; Horton, K.J.; Coveler, A.L.; Hingorani, S.R.; Harris, W.P. Targeting the Tumor Stroma: The Biology and Clinical Development of Pegylated Recombinant Human Hyaluronidase (PEGPH20). Curr. Oncol. Rep. 2017, 19, 47. [Google Scholar] [CrossRef]
- McKee, C.M.; Penno, M.B.; Cowman, M.; Burdick, M.D.; Strieter, R.M.; Bao, C.; Noble, P.W. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J. Clin. Investig. 1996, 98, 2403–2413. [Google Scholar] [CrossRef]
- Guo, Q.; Yang, C.; Gao, F. The state of CD44 activation in cancer progression and therapeutic targeting. FEBS J. 2022, 289, 7970–7986. [Google Scholar] [CrossRef]
- Chiesa, E.; Greco, A.; Riva, F.; Dorati, R.; Conti, B.; Modena, T.; Genta, I. CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles. Pharmaceuticals 2022, 15, 103. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-H.; Wang, T.-H.; Hu, S.-H.; Hsu, T.-C.; Yow, J.-L.; Tzang, B.-S.; Chiang, W.-H. Tumor site-specific PEG detachment and active tumor homing of therapeutic PEGylated chitosan/folate-decorated polydopamine nanoparticles to augment antitumor efficacy of photothermal/chemo combination therapy. Chem. Eng. J. 2022, 446, 137243. [Google Scholar] [CrossRef]
- Moharil, P.; Wan, Z.; Pardeshi, A.; Li, J.; Huang, H.; Luo, Z.; Rathod, S.; Zhang, Z.; Chen, Y.; Zhang, B.; et al. Engineering a folic acid-decorated ultrasmall gemcitabine nanocarrier for breast cancer therapy: Dual targeting of tumor cells and tumor-associated macrophages. Acta Pharm. Sin. B 2022, 12, 1148–1162. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Hu, A.; Pu, X.; Wang, J.; Liao, X.; Huang, Z.; Yin, G. Cu-Chelated polydopamine nanoparticles as a photothermal medium and "immunogenic cell death" inducer for combined tumor therapy. J. Mater. Chem. B 2022, 10, 3104–3118. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lin, J.; Guo, Y.; Wu, X.; Xu, Y.; Zhang, D.; Zhang, X.; Yujiao, X.; Wang, J.; Yao, C.; et al. TiO2-based Surface-Enhanced Raman Scattering bio-probe for efficient circulating tumor cell detection on microfilter. Biosens. Bioelectron. 2022, 210, 114305. [Google Scholar] [CrossRef]
- Song, W.-F.; Zheng, D.; Zeng, S.-M.; Zeng, X.; Zhang, X.-Z. Targeting to Tumor-Harbored Bacteria for Precision Tumor Therapy. Acs Nano 2022, 16, 17402–17413. [Google Scholar] [CrossRef]
- Mo, R.; Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today 2016, 19, 274–283. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Hu, Y.; Fei, Y.; Zhao, Y.; Xue, C.; Cai, K.; Li, M.; Luo, Z. Activatable Biomineralized Nanoplatform Remodels the Intracellular Environment of Multidrug-Resistant Tumors for Enhanced Ferroptosis/Apoptosis Therapy. Small 2021, 17, 2102269. [Google Scholar] [CrossRef]
- Gao, S.; Lin, H.; Zhang, H.; Yao, H.; Chen, Y.; Shi, J. Nanocatalytic Tumor Therapy by Biomimetic Dual Inorganic Nanozyme-Catalyzed Cascade Reaction. Adv. Sci. 2019, 6, 1801733. [Google Scholar] [CrossRef]
- Fan, J.-X.; Peng, M.-Y.; Wang, H.; Zheng, H.-R.; Liu, Z.-L.; Li, C.-X.; Wang, X.-N.; Liu, X.-H.; Cheng, S.-X.; Zhang, X.-Z. Engineered Bacterial Bioreactor for Tumor Therapy via Fenton-Like Reaction with Localized H2O2 Generation. Adv. Mater. 2019, 31, 1808278. [Google Scholar] [CrossRef]
- Chen, H.; Wang, L.; Long, D.; Zeng, Y.; Jiang, S.; Chen, W.; Zhao, C.; Cheng, C.; Chen, Y.; Lu, M.; et al. Advancing the ethanol pathway during the competitive photocatalytic CO2 reduction in a defective transition metal dichalcogenide. Appl. Catal. B-Environ. Energy 2024, 357, 124260. [Google Scholar] [CrossRef]
- Oh, J.Y.; Yang, G.; Choi, E.; Ryu, J.-H. Mesoporous silica nanoparticle-supported nanocarriers with enhanced drug loading, encapsulation stability, and targeting efficiency. Biomater. Sci. 2022, 10, 1448–1455. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zhou, S.; Zeng, J.; Zhang, L.; Zhang, R.; Liang, K.; Xie, L.; Shao, B.; Song, S.; Huang, G.; et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020, 13, 1013–1019. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, X.; Chen, L.; Wu, X.; Wang, D.; Wang, H.; Liang, C. Fe3O4@TiO2 Microspheres: Harnessing O2 Release and ROS Generation for Combination CDT/PDT/PTT/Chemotherapy in Tumours. Nanomaterials 2024, 14, 498. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, S.; Deng, K.; Qian, W.; Liu, Y.; Li, Y.; Jin, S.; Suo, R.; Xu, H.; Wu, B. Nanoscintillator-Mediated X-Ray-Triggered Boosting Transformation of Fe3+ into Fe2+ for Enhancing Tumor Ferroptosis/Immunotherapy. Adv. Funct. Mater. 2023, 33, 2301462. [Google Scholar] [CrossRef]
- Zhai, J.; Hu, Y.; Su, M.; Shi, J.; Li, H.; Qin, Y.; Gao, F.; Lu, Q. One-Step Phase Separation for Core-Shell Carbon@Indium Oxide@Bismuth Microspheres with Enhanced Activity for CO2 Electroreduction to Formate. Small 2023, 19, 2206440. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.D.; Chen, W.L.; Li, W.; Song, J.C.; Gao, Y.; Si, W.H.; Li, X.P.; Cui, B.W.; Yu, T.T. CD44-targeted pH-responsive micelles for enhanced cellular internalization and intracellular on-demand release of doxorubicin. Artif. Cells Nanomed. Biotechnol. 2021, 49, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Gao, F.; Wang, P.Z.; Bai, S.W.; Li, H.; Li, J.B. Supramolecular assembly of Polydopamine@Fe nanoparticles with near-infrared light-accelerated cascade catalysis applied for synergistic photothermal-enhanced chemodynamic therapy. J. Colloid Interface Sci. 2024, 676, 626–635. [Google Scholar] [CrossRef]
- Nanthini, K.C.; Thangam, R.; Karthikeyan, L.; Rithisa, B.; Rasheed, P.A.; Min, S.; Kang, H.; Kannikaparameswari, N.; Vivek, R. Transformative breakthrough in cancer phototheranostics utilizing bioinspired chemistry of polydopamine-based multifunctional nanostructures. Coord. Chem. Rev. 2024, 518, 216043. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, L.; Hu, Y.; Zhang, X.; Huang, G.; Liang, X.; Wang, S.; Tian, L.; Jia, C. Construction of Multifunctional Fe3O4@MSN@PDA-HA-FA Nanocarriers and Research on Synergistic Tumor Therapy. Pharmaceutics 2026, 18, 195. https://doi.org/10.3390/pharmaceutics18020195
Liu L, Hu Y, Zhang X, Huang G, Liang X, Wang S, Tian L, Jia C. Construction of Multifunctional Fe3O4@MSN@PDA-HA-FA Nanocarriers and Research on Synergistic Tumor Therapy. Pharmaceutics. 2026; 18(2):195. https://doi.org/10.3390/pharmaceutics18020195
Chicago/Turabian StyleLiu, Lijie, Yunxia Hu, Xinyuan Zhang, Guoying Huang, Xiayu Liang, Shige Wang, Lei Tian, and Chengzheng Jia. 2026. "Construction of Multifunctional Fe3O4@MSN@PDA-HA-FA Nanocarriers and Research on Synergistic Tumor Therapy" Pharmaceutics 18, no. 2: 195. https://doi.org/10.3390/pharmaceutics18020195
APA StyleLiu, L., Hu, Y., Zhang, X., Huang, G., Liang, X., Wang, S., Tian, L., & Jia, C. (2026). Construction of Multifunctional Fe3O4@MSN@PDA-HA-FA Nanocarriers and Research on Synergistic Tumor Therapy. Pharmaceutics, 18(2), 195. https://doi.org/10.3390/pharmaceutics18020195

