Pharmacogenomics of Antineoplastic Therapy in Children: Genetic Determinants of Toxicity and Efficacy
Abstract
1. Introduction
2. Genetic Determinants of Chemotherapy Response and Toxicity
| Drug Class/Agent | Key Genes/Variants | Pharmacogenomic Effect | Clinical Consequences | Potential Clinical Application | Ref. |
|---|---|---|---|---|---|
| Antimetabolites (Thiopurines: 6-mercaptopurine, Azathioprine) | TPMT, NUDT15 | Reduced enzymatic activity leads to accumulation of cytotoxic thioguanine nucleotides | Severe myelosuppression, hematologic toxicity | Pre-treatment TPMT/NUDT15 genotyping or phenotyping to guide thiopurine dose adjustment | [21] |
| Antimetabolites (Methotrexate) | MTHFR (C677T, A1298C), SLCO1B1 | Altered folate metabolism and impaired methotrexate transport | Increased risk of mucositis, hepatotoxicity, neurotoxicity | Genetic testing for MTHFR and SLCO1B1 variants to predict methotrexate clearance and toxicity | [22] |
| Alkylating Agents (Cyclophosphamide, Ifosfamide) | CYP2B6, ALDH1A1, GSTA1 | Variants affect drug activation/detoxification and glutathione conjugation | Cardiotoxicity, hemorrhagic cystitis, hepatic veno-occlusive disease | Genotyping to identify poor metabolizers and adjust dosing or protective regimens | [13] |
| Anthracyclines (Doxorubicin, Daunorubicin) | SLC28A3, RARG | Variants influence anthracycline uptake and retinoic acid signaling | Anthracycline-induced cardiomyopathy | Screening for SLC28A3 and RARG variants to identify high-risk patients and guide cardioprotective strategies (e.g., dexrazoxane) | [23] |
| Vinca Alkaloids (Vincristine) | CYP3A5 | Reduced enzyme activity increases vincristine plasma levels | Peripheral neuropathy | Genotyping to predict neuropathy risk and adjust dosage | [24] |
| Platinum Compounds (Cisplatin, Carboplatin) | ERCC1, GSTP1 | Impaired DNA repair and detoxification pathways | Ototoxicity, nephrotoxicity, neurotoxicity | Pre-treatment screening to anticipate toxicity and guide protective interventions | [25] |
3. Implementation of Pharmacogenomic Testing in Pediatric Oncology
| Implementation Domain | Key Issues/Barriers | Examples and Evidence | Proposed Solutions/ Strategies | Ref. |
|---|---|---|---|---|
| Clinical Validation and Guidelines | Limited number of pharmacogenes with strong clinical evidence | CPIC and DPWG guidelines: TPMT and NUDT15 (thiopurines), DPYD (fluoropyrimidines), CYP2D6 (tamoxifen) | Expand pediatric-specific validation studies; harmonize international dosing guidelines | [36] |
| Population Diversity and Genetic Variability | Lack of large, ethnically diverse pediatric cohorts; regional allele frequency differences | Variants such as NUDT15, SLCO1B1, GSTA1 vary among populations; limited data in Central and South Asia | Establish national and multicenter studies to build population-specific pharmacogenomic databases | [37] |
| Infrastructure and Operational Capacity | Limited access to certified molecular laboratories and standardized workflows | Variability in sample handling, test turnaround times, and data reporting | Develop centralized genomic testing centers; integrate results into electronic health records and clinical decision-support systems | [38] |
| Economic and Resource Constraints | High initial costs of infrastructure and personnel training despite decreasing genotyping costs | Preemptive testing for TPMT and DPYD shown to prevent severe toxicities and reduce long-term costs | Initiate pilot projects focused on high-risk gene–drug pairs; seek government and institutional funding | [39] |
| Ethical and Legal Considerations | Informed consent in minors; data privacy and psychosocial implications for families | Parental consent and interpretation challenges in pediatric settings | Establish ethical frameworks and data governance policies; ensure transparency and family counseling | [40] |
| Education and Professional Training | Limited genetic literacy among clinicians and oncology staff | Clinicians may struggle to interpret or apply genomic data | Integrate pharmacogenomics into medical and pharmacy curricula; provide continuous professional development | [41] |
| Data Integration and Innovation | Fragmented data systems and lack of real-time clinical support | Absence of linked databases and decision-support tools | Create centralized pharmacogenomic registries linked to cancer databases; apply AI/ML models for predictive analytics | [42] |
4. Emerging Approaches
5. Challenges in Clinical Implementation
6. Discussion and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Yang, W.; Roberts, C.W.M.; Zhang, J. Developmental origins shape the paediatric cancer genome. Nat. Rev. Cancer 2024, 24, 382–398. [Google Scholar] [CrossRef]
- Orbach, D.; Brecht, I.B.; Corradini, N.; Bouchoucha, Y.; Roganovic, J.; Bourdeaut, F.; Reguerre, Y.; Kuiper, R.P.; Bressac de Paillerets, B.; Ferrari, A.; et al. The role of cancer predisposition syndrome in children and adolescents with very rare tumours. EJC Paediatr. Oncol. 2023, 2, 100023. [Google Scholar] [CrossRef]
- Coluzzi, F.; Di Stefano, G.; Scerpa, M.S.; Rocco, M.; Di Nardo, G.; Innocenti, A.; Vittori, A.; Ferretti, A.; Truini, A. The Challenge of Managing Neuropathic Pain in Children and Adolescents with Cancer. Cancers 2025, 17, 460. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Li, H.; Hu, T.Y. Recent advances in the bench-to-bedside translation of cancer nanomedicines. Acta Pharm. Sin. B 2025, 15, 97–122. [Google Scholar] [CrossRef] [PubMed]
- Qahwaji, R.; Ashankyty, I.; Sannan, N.S.; Hazzazi, M.S.; Basabrain, A.A.; Mobashir, M. Pharmacogenomics: A Genetic Approach to Drug Development and Therapy. Pharmaceuticals 2024, 17, 940. [Google Scholar] [CrossRef]
- Sánchez-Bayona, R.; Catalán, C.; Cobos, M.A.; Bergamino, M. Pharmacogenomics in Solid Tumors: A Comprehensive Review of Genetic Variability and Its Clinical Implications. Cancers 2025, 17, 913. [Google Scholar] [CrossRef]
- Tremmel, R.; Hübschmann, D.; Schaeffeler, E.; Pirmann, S.; Fröhling, S.; Schwab, M. Innovation in cancer pharmacotherapy through integrative consideration of germline and tumor genomes. Pharmacol. Rev. 2025, 77, 100014. [Google Scholar] [CrossRef]
- Wu, X.; Xiong, H. The Role of Pharmacogenetic-Based Pharmacokinetic Analysis in Precise Breast Cancer Treatment. Pharmaceutics 2024, 16, 1407. [Google Scholar] [CrossRef] [PubMed]
- Lubis, I.S.; Anggadiredja, K.; Artarini, A.A.; Sari, N.M.; Suryawan, N.; Zazuli, Z. NUDT15 Pharmacogenetics in Acute Lymphoblastic Leukemia: Synthesizing Progress for Personalized Thiopurine Therapy. Med. Sci. 2025, 13, 112. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Huang, X.; He, X.; Mao, M.; Chen, M.; Zhang, R.; Shao, H.; Lv, Z.; Liu, X.; Chuan, J. Association of NUDT15 gene polymorphism with adverse reaction, treatment efficacy, and dose of 6-mercaptopurine in patients with acute lymphoblastic leukemia: A systematic review and meta-analysis. Haematologica 2023, 109, 1053–1068. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, J.-L.; Li, R.; Li, X. Involvement of the ABCB1 C3435T Variant but Not the MTHFR C677T or MTHFR A1298C Variant in High-Dose Methotrexate-Induced Toxicity in Pediatric Acute Lymphoblastic Leukemia Patients in China. Int. J. Gen. Med. 2024, 17, 1221–1231. [Google Scholar] [CrossRef]
- Krüger-Genge, A.; Köhler, S.; Laube, M.; Haileka, V.; Lemm, S.; Majchrzak, K.; Kammerer, S.; Schulz, C.; Storsberg, J.; Pietzsch, J.; et al. Anti-Cancer Prodrug Cyclophosphamide Exerts Thrombogenic Effects on Human Venous Endothelial Cells Independent of CYP450 Activation—Relevance to Thrombosis. Cells 2023, 12, 1965. [Google Scholar] [CrossRef]
- El-Serafi, I.; Steele, S.; Mudigonda, K. Cyclophosphamide Pharmacogenomic Variation in Cancer Treatment and Its Effect on Bioactivation and Pharmacokinetics. Adv. Pharmacol. Pharm. Sci. 2024, 2024, 4862706. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.-H.; Biswas, M.; Puangpetch, A.; Prommas, S.; Pakakasama, S.; Anurathapan, U.; Rachanakul, J.; Sukprasong, R.; Nuntharadtanaphong, N.; Jongjitsook, N.; et al. Effect of GSTA1 Variants on Busulfan-Based Conditioning Regimen Prior to Allogenic Hematopoietic Stem-Cell Transplantation in Pediatric Asians. Pharmaceutics 2022, 14, 401. [Google Scholar] [CrossRef] [PubMed]
- Ryan, T.D.; Bates, J.E.; Kinahan, K.E.; Leger, K.J.; Mulrooney, D.A.; Narayan, H.K.; Ness, K.; Okwuosa, T.M.; Rainusso, N.C.; Steinberger, J.; et al. Cardiovascular Toxicity in Patients Treated for Childhood Cancer: A Scientific Statement from the American Heart Association. Circulation 2025, 151, e926–e943. [Google Scholar] [CrossRef] [PubMed]
- Spadafora, L.; Di Muro, F.M.; Intonti, C.; Massa, L.; Monelli, M.; Pedretti, R.F.E.; Palazzo Adriano, E.; Guarini, P.; Cantiello, G.; Bernardi, M.; et al. Lifestyle and Pharmacological Interventions to Prevent Anthracycline-Related Cardiotoxicity in Cancer Patients. J. Cardiovasc. Dev. Dis. 2025, 12, 212. [Google Scholar] [CrossRef]
- Wong-Siegel, J.R.; Kim, Y.; Stitziel, N.O.; Javaheri, A. Genetic Testing in Evaluating Risk of Anthracycline Cardiomyopathy. JACC CardioOncol. 2023, 5, 406–408. [Google Scholar] [CrossRef]
- Tay, N.; Laakso, E.L.; Schweitzer, D.; Endersby, R.; Vetter, I.; Starobova, H. Chemotherapy-induced peripheral neuropathy in children and adolescent cancer patients. Front. Mol. Biosci. 2022, 9, 1015746. [Google Scholar] [CrossRef]
- Mufti, K.; Cordova, M.; Scott, E.N.; Trueman, J.N.; Lovnicki, J.M.; Loucks, C.M.; Rassekh, S.R.; Ross, C.J.D.; Carleton, B.C.; Groeneweg, G.S.S.; et al. Genomic variations associated with risk and protection against vincristine-induced peripheral neuropathy in pediatric cancer patients. NPJ Genom. Med. 2024, 9, 56. [Google Scholar] [CrossRef]
- Romano, A.; Attinà, G.; Maurizi, P.; Talloa, D.; Mastrangelo, S.; Ruggiero, A. Platinum-induced ototoxicity and hearing impairment in children and adolescents. Drugs Context 2025, 14, 1–13. [Google Scholar] [CrossRef]
- Díaz-Villamarín, X.; Fernández-Varón, E.; Rojas Romero, M.C.; Callejas-Rubio, J.L.; Cabeza-Barrera, J.; Rodríguez-Nogales, A.; Gálvez, J.; Morón, R. Azathioprine dose tailoring based on pharmacogenetic information: Insights of clinical implementation. Biomed. Pharmacother. 2023, 168, 115706. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, P.; Yang, Z.; Miao, R.-R. Relationship between the efficacy and adverse effects of methotrexate and gene polymorphism. Egypt. J. Med. Hum. Genet. 2024, 25, 89. [Google Scholar] [CrossRef]
- Berkman, A.M.; Hildebrandt, M.A.T.; Landstrom, A.P. The genetic underpinnings of anthracycline-induced cardiomyopathy predisposition. Clin. Genet. 2021, 100, 132–143. [Google Scholar] [CrossRef]
- Shalaby, N.; Zaki, H.F.; Badary, O.A.; Kamal, S.; Nagy, M.; Makhlouf, D.; Elnashar, A.; Elnadi, E.; Abdelshafi, S.A.; Abouelnaga, S.; et al. Efficacy and Toxicity of Vincristine and CYP3A5 Genetic Polymorphism in Rhabdomyosarcoma Pediatric Egyptian Patients. Asian Pac. J. Cancer Prev. 2024, 25, 1391–1409. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Csoszi, T.; Loriot, Y.; Matsubara, N.; Geczi, L.; Cheng, S.Y.; Fradet, Y.; Alva, A.; Oudard, S.; Vulsteke, C.; et al. Cisplatin- or Carboplatin-Based Chemotherapy Plus Pembrolizumab in Advanced Urothelial Cancer: Exploratory Analysis From the Phase 3 KEYNOTE-361 Study. Clin. Genitourin. Cancer 2025, 23, 102261. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Pratt, J.; Park, J.; Fahim, C.; Lovnicki, J.M.; Groeneweg, G.S.S.; Carleton, B.; Straus, S. Implementation of pharmacogenetic testing in pediatric oncology: Barriers and facilitators assessment at eight Canadian academic health centres. Pharmacogenomics J. 2024, 24, 36. [Google Scholar] [CrossRef]
- Díaz-Villamarín, X.; Martínez-Pérez, M.; Nieto-Sánchez, M.T.; Fernández-Varón, E.; Torres-García, A.; Blancas, I.; Cabeza-Barrera, J.; Morón, R. Clinical Pharmacogenetics: Results After Implementation of Preemptive Tests in Daily Routine. J. Pers. Med. 2025, 15, 245. [Google Scholar] [CrossRef]
- Maillard, M.; Nishii, R.; Yang, W.; Hoshitsuki, K.; Chepyala, D.; Lee, S.H.R.; Nguyen, J.Q.; Relling, M.V.; Crews, K.R.; Leggas, M.; et al. Additive effects of TPMT and NUDT15 on thiopurine toxicity in children with acute lymphoblastic leukemia across multiethnic populations. JNCI J. Natl. Cancer Inst. 2024, 116, 702–710. [Google Scholar] [CrossRef]
- Barker, C.I.S.; Groeneweg, G.; Maitland-van der Zee, A.H.; Rieder, M.J.; Hawcutt, D.B.; Hubbard, T.J.; Swen, J.J.; Carleton, B.C. Pharmacogenomic testing in paediatrics: Clinical implementation strategies. Br. J. Clin. Pharmacol. 2022, 88, 4297–4310. [Google Scholar] [CrossRef]
- Cacabelos, R.; Naidoo, V.; Corzo, L.; Cacabelos, N.; Carril, J.C. Genophenotypic Factors and Pharmacogenomics in Adverse Drug Reactions. Int. J. Mol. Sci. 2021, 22, 13302. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Sirisena, N.; Vishnukanthan, T.; Ariadurai, J.N.; Thilakarathne, S.; Priyadarshani, C.D.N.; Bhagya Hendalage, D.P.; Dissanayake, V.H.W. Frequency of pharmacogenomic variants affecting efficacy and safety of anti-cancer drugs in a south Asian population from Sri Lanka. BMC Med. Genom. 2024, 17, 143. [Google Scholar] [CrossRef]
- Mroz, P.; Michel, S.; Allen, J.D.; Meyer, T.; McGonagle, E.J.; Carpentier, R.; Vecchia, A.; Schlichte, A.; Bishop, J.R.; Dunnenberger, H.M.; et al. Development and Implementation of In-House Pharmacogenomic Testing Program at a Major Academic Health System. Front. Genet. 2021, 12, 712602. [Google Scholar] [CrossRef]
- Morris, S.A.; Nguyen, D.G.; Morris, V.; Mroz, K.; Kwange, S.O.; Patel, J.N. Integrating pharmacogenomic results in the electronic health record to facilitate precision medicine at a large multisite health system. JACCP J. Am. Coll. Clin. Pharm. 2024, 7, 845–857. [Google Scholar] [CrossRef]
- Valdez-Acosta, S.; Zubiaur, P.; Casado, M.A.; Novalbos, J.; Casajús, A.; Campodónico, D.; Oyagüez, I.; Abad-Santos, F. Preemptive TPMT Genotyping and Adherence to Genotype-Based Therapeutic Recommendations Reduces the Healthcare Cost in Patients Receiving Azathioprine or 6-Mercaptopurine for Autoimmune Diseases. J. Pers. Med. 2023, 13, 1208. [Google Scholar] [CrossRef]
- Thottunkal, S.; Spahn, C.; Wang, B.; Rohatgi, N.; Hong, J.; Khandelwal, A.; Palaniappan, L. Clinician Experiences at the Frontier of Pharmacogenomics and Future Directions. J. Pers. Med. 2025, 15, 294. [Google Scholar] [CrossRef] [PubMed]
- Rim, J.H.; Kim, Y.-g.; Kim, S.; Choi, R.; Lee, J.-S.; Park, S.; Lee, W.; Song, E.Y.; Lee, S.-Y.; Chun, S. Clinical Pharmacogenetic Testing and Application: 2024 Updated Guidelines by the Korean Society for Laboratory Medicine. Ann. Lab. Med. 2024, 45, 121–132. [Google Scholar] [CrossRef]
- Hamdani, S.; Hamijoyo, L.; Amalia, R.; Barliana, M.I. Gene polymorphisms associated with immunosuppressant adverse effects in systemic lupus erythematosus: A narrative review. Front. Genet. 2025, 16, 1594648. [Google Scholar] [CrossRef]
- Husereau, D.; Steuten, L.; Muthu, V.; Thomas, D.M.; Spinner, D.S.; Ivany, C.; Mengel, M.; Sheffield, B.; Yip, S.; Jacobs, P.; et al. Effective and Efficient Delivery of Genome-Based Testing-What Conditions Are Necessary for Health System Readiness? Healthcare 2022, 10, 2086. [Google Scholar] [CrossRef]
- Wong, L.Y.F.; Sutcliffe, A.G.; Ho, C.L.T.; Lu, Y.; Williams, C.L.; Afzal, F.; Purkayastha, M. Clinical and cost-effectiveness of pharmacogenomic testing for anthracycline-induced cardiotoxicity in childhood cancer: A systematic review and meta-analysis. Front. Pharmacol. 2025, 16, 1568320. [Google Scholar] [CrossRef] [PubMed]
- Chen, D. Ethical frameworks of informed consent in the age of pediatric precision medicine. Camb. Prism. Precis. Med. 2024, 2, e6. [Google Scholar] [CrossRef]
- Bailey, S.L.; Messersmith, D.; Empey, P.E. Pharmacogenomics education among professional societies: Assessing practices and future needs. Pharmacogenomics 2025, 26, 81–87. [Google Scholar] [CrossRef]
- Sadee, W.; Wang, D.; Hartmann, K.; Toland, A.E. Pharmacogenomics: Driving Personalized Medicine. Pharmacol. Rev. 2023, 75, 789–814. [Google Scholar] [CrossRef]
- Du, P.; Fan, R.; Zhang, N.; Wu, C.; Zhang, Y. Advances in Integrated Multi-omics Analysis for Drug-Target Identification. Biomolecules 2024, 14, 692. [Google Scholar] [CrossRef]
- Vieujean, S.; Louis, E. Precision medicine and drug optimization in adult inflammatory bowel disease patients. Ther. Adv. Gastroenterol. 2023, 16, 17562848231173331. [Google Scholar] [CrossRef]
- Song, J.; Yang, P.; Chen, C.; Ding, W.; Tillement, O.; Bai, H.; Zhang, S. Targeting epigenetic regulators as a promising avenue to overcome cancer therapy resistance. Signal Transduct. Target. Ther. 2025, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Tindall, M.J.; Cucurull-Sanchez, L.; Mistry, H.; Yates, J.W.T. Quantitative Systems Pharmacology and Machine Learning: A Match Made in Heaven or Hell? J. Pharmacol. Exp. Ther. 2023, 387, 92–99. [Google Scholar] [CrossRef]
- Cheung, S.Y.A.; Hay, J.L.; Lin, Y.-W.; de Greef, R.; Bullock, J. Pediatric oncology drug development and dosage optimization. Front. Oncol. 2024, 13, 1235947. [Google Scholar] [CrossRef] [PubMed]
- Hashem, H.; Sultan, I. Revolutionizing precision oncology: The role of artificial intelligence in personalized pediatric cancer care. Front. Med. 2025, 12, 1555893. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, X.; Chen, Y.; Yu, C.; Zhang, S. Advancing drug-drug interactions research: Integrating AI-powered prediction, vulnerable populations, and regulatory insights. Front. Pharmacol. 2025, 16, 1618701. [Google Scholar] [CrossRef]
- McDermott, J.H.; Tsakiroglou, M.; Newman, W.G.; Pirmohamed, M. Pharmacogenomics in the UK National Health Service: Progress towards implementation. Br. J. Clin. Pharmacol. 2025, 91, 2241–2250. [Google Scholar] [CrossRef]
- Huhulea, E.N.; Huang, L.; Eng, S.; Sumawi, B.; Huang, A.; Aifuwa, E.; Hirani, R.; Tiwari, R.K.; Etienne, M. Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions. Biomedicines 2025, 13, 951. [Google Scholar] [CrossRef]
- Forrest, S.J.; Gupta, H.; Ward, A.; Li, Y.Y.; Doan, D.; Al-Ibraheemi, A.; Alexandrescu, S.; Bandopadhayay, P.; Shusterman, S.; Mullen, E.A.; et al. Molecular profiling of 888 pediatric tumors informs future precision trials and data-sharing initiatives in pediatric cancer. Nat. Commun. 2024, 15, 5837. [Google Scholar] [CrossRef]
- Jezkova, J.; Shaw, S.; Taverner, N.V.; Williams, H.J. Rapid genome sequencing for pediatrics. Hum. Mutat. 2022, 43, 1507–1518. [Google Scholar] [CrossRef]
- Tariq, S.; Tariq, S.; Shoukat, A.A. Centralized healthcare database for ensuring better healthcare: Are we lagging behind? Pak. J. Med. Sci. 2023, 40, 257–258. [Google Scholar] [CrossRef] [PubMed]
- Refolo, P.; Ferracuti, S.; Grassi, S.; Raimondi, C.; Mercuri, G.; Zedda, M.; Aulino, G.; Spagnolo, A.G.; Oliva, A. Ethical issues in the use of genetic predictions of aggressive behavior in the criminal justice system: A systematic review. Front. Genet. 2025, 16, 1599750. [Google Scholar] [CrossRef] [PubMed]
- Alkilani, H.M.; El-Akouri, K.; Farooq, A.; Shi, Z.; Al-Shafai, M.; Stotland, M.; Khodjet-El-khil, H. Parental knowledge and attitudes toward genetic counseling and childhood genetic testing for congenital anomalies in Qatar. J. Genet. Couns. 2025, 34, e70096. [Google Scholar] [CrossRef] [PubMed]
- Jamalinia, M.; Weiskirchen, R. Advances in personalized medicine: Translating genomic insights into targeted therapies for cancer treatment. Ann. Transl. Med. 2025, 13, 18. [Google Scholar] [CrossRef]
- Elzagallaai, A.A.; Carleton, B.C.; Rieder, M.J. Pharmacogenomics in Pediatric Oncology: Mitigating Adverse Drug Reactions While Preserving Efficacy. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 679–699. [Google Scholar] [CrossRef]
- Roberts, C.; Peters, J.; Sazonvos, A.; Goodman, N.; Sharip, M.; Smith, R.; Bishara, M.; Bewshea, C.; Lin, S.; Chanchlani, N.; et al. Clinical Utility and Cost-Effectiveness of Pretreatment NUDT15 Pharmacogenetic Testing to Prevent Thiopurine-Induced Myelosuppression: A Genotype-First Reverse Phenotyping Cohort Study Within the UK NIHR Inflammatory Bowel Disease Bioresource. Aliment. Pharmacol. Ther. 2025, 62, 630–645. [Google Scholar] [CrossRef]
- Leitch, T.M.; Killam, S.R.; Brown, K.E.; Katseanes, K.C.; George, K.M.; Schwanke, C.; Loveland, J.; Elias, A.F.; Haney, K.; Krebsbach, K.; et al. Ensuring equity: Pharmacogenetic implementation in rural and tribal communities. Front. Pharmacol. 2022, 13, 953142. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Dushimova, Z.; Saliev, T.; Bazarbayeva, A.; Nurzhanova, G.; Baibadilova, A.; Abdilova, G.; Fakhradiyev, I. Pharmacogenomics of Antineoplastic Therapy in Children: Genetic Determinants of Toxicity and Efficacy. Pharmaceutics 2026, 18, 165. https://doi.org/10.3390/pharmaceutics18020165
Dushimova Z, Saliev T, Bazarbayeva A, Nurzhanova G, Baibadilova A, Abdilova G, Fakhradiyev I. Pharmacogenomics of Antineoplastic Therapy in Children: Genetic Determinants of Toxicity and Efficacy. Pharmaceutics. 2026; 18(2):165. https://doi.org/10.3390/pharmaceutics18020165
Chicago/Turabian StyleDushimova, Zaure, Timur Saliev, Aigul Bazarbayeva, Gaukhar Nurzhanova, Ainura Baibadilova, Gulnara Abdilova, and Ildar Fakhradiyev. 2026. "Pharmacogenomics of Antineoplastic Therapy in Children: Genetic Determinants of Toxicity and Efficacy" Pharmaceutics 18, no. 2: 165. https://doi.org/10.3390/pharmaceutics18020165
APA StyleDushimova, Z., Saliev, T., Bazarbayeva, A., Nurzhanova, G., Baibadilova, A., Abdilova, G., & Fakhradiyev, I. (2026). Pharmacogenomics of Antineoplastic Therapy in Children: Genetic Determinants of Toxicity and Efficacy. Pharmaceutics, 18(2), 165. https://doi.org/10.3390/pharmaceutics18020165

