Pharmaceutical Cocrystals in Drug-Delivery Technologies: Advances from Rational Design to Therapeutic Applications
Abstract
1. Introduction
2. Traditional Cocrystal-Based Formulations
2.1. Oral Formulations
2.1.1. From Formulation Challenges to Preclinical Advances
2.1.2. Clinical Translation of Oral Cocrystal Formulations
2.2. Inhalable Formulations
2.2.1. Cocrystallization Strategies to Overcome Limitations of Inhaled Drugs
2.2.2. Case Studies of Inhalable Cocrystals
2.3. Intranasal Formulations
2.3.1. Limitations of Intranasal Administration
2.3.2. Reports of Intranasal Cocrystals
2.4. Topical, Transdermal, and Wound-Healing Applications
2.4.1. Cocrystals of Nonsteroidal Anti-Inflammatory Drugs
2.4.2. Antimicrobial and Antifungal Cocrystals
2.4.3. Cocrystals in Wound Healing and Regenerative Applications
3. Emerging Drug-Delivery Platforms for Cocrystals
3.1. 3D Printing
3.2. Nano-Cocrystals
| Nano-Cocrystal | Method of Preparation | Particle Size (nm) | Observations | Ref. |
|---|---|---|---|---|
| Carbamazepine–saccharin, indomethacin–saccharin, furosemide–caffeine | Two-step procedure; a nanonizing by wet milling with stabilizers. | <300 (suspensions) | Dissolution profiles improved compared to cocrystals and nanocrystals. Formation of nano-cocrystals suspensions required a rigid lattice and strong binding energy. | [106] |
| Myricetin–nicotinamide | One-step procedure b using top-down (grinding) and bottom-up (solution method with sonochemistry) approaches. | <1000 | Both methods successfully generated nano-cocrystals, but the nano-cocrystal obtained by sonochemistry was more uniform. Improved dissolution rate for the nano-cocrystals prepared by the bottom-up approach in comparison with the nano-cocrystals prepared by grinding and the cocrystals. | [89] |
| Phenazopyridine–phthalimide | One-step procedure using a sonochemical approach. | 21.4 ± 0.1 (diameter) | Greater in vitro dissolution rate and oral absorption in rats than the hydrochloride salt and cocrystals. | [97] |
| Paclitaxel (PTX)–disulfiram (DSF) | One-step procedure using antisolvent precipitation in presence of stabilizer (β-lactoglobulin). | 160 | Enhanced cytotoxicity toward taxol-resistant cells in comparison to free PTX-DSF formulation. Enhanced apoptosis in A549/TAX cells compared to free PTX-DSF formulation, improving the antitumor efficiency in vitro. Reduced IC50 (7-fold) and decreased dose (8.9-fold) compared to PTX. | [101] |
| Indomethacin–saccharin | One-step procedure using electrospray deposition. | 219 | Higher dissolution rate (3-fold) in comparison to the cocrystal prepared by solvent evaporation. | [107] |
| Baicalein–nicotinamide | Two-step procedure; nanonizing by high-pressure homogenization. | 251.53 | Improved in vitro dissolution rate in FaSSIF-V2 (2.17-fold) and FaSSGF (2.54-fold) in comparison to Baicalein coarse powder. Greater oral bioavailability in rats (6.02-fold) compared to Baicalein coarse suspension. | [98] |
| Ezetimibe–oxalic acid, ezetimibe–succinic acid, ezetimibe–maleic acid | One-step procedure using solvent evaporation and antisolvent precipitation. | 226.4 ± 53 (ezetimibe-maleic acid nano-cocrystal by solvent evaporation) | Nano-cocrystals prepared with maleic acid as coformer showed higher solubility and dissolution than the nano-cocrystals prepared with oxalic acid and SUC, and pure ezetimibe. | [108] |
| Diclofenac–proline | Two-step procedure; nanonizing by top-down (wet milling and neat grinding) and bottom-up (globule inversion phase and fast evaporation assisted microwaving) approaches. | 598.2 ± 63.2 (nano-cocrystals prepared by fast evaporation) | Superior dissolution and diffusion profile than the cocrystal. | [109] |
| Lamivudine (3TC)–zidovudine (AZT) | One-step procedure using bottom-up approaches (pseudo one-solvent cold-sonochemical precipitation with/without stabilizers). | <1000 (surfactant-coated nano-cocrystal) | Surfactants during sonication were necessary to produce surfactant-coated nano-cocrystal. | [105] |
| 3TC-AZT (stabilized with SDS 0.90% w/v and TPGS 1000 1.40% w/v) | One-step procedure using bottom-up approaches (pseudo one-solvent cold-sonochemical precipitation). | 332.9 ± 42.85 | Improved cell viability (HeLa cells) in comparison to individual APIs and the 3TC-AZT physical mixture. | [100] |
| Carbamazepine–nicotinamide | One-step procedure using antisolvent precipitation with stabilizers. | D10 = 68.9 ± 9.5, D50 = 138.2 ± 16.6, D90 = 260.3 ± 17.96 (with 0.3% PVPVA-64) | Stabilizer type and its concentration affected the nano-cocrystal particle size. | [90] |
| 4-Aminosalysilic acid–sulfamethazine (SUL) | One-step procedure using high-pressure homogenization (HPH) and high-power ultrasound (HPU). | HPH yielded nano-cocrystals, HPU micron-sized cocrystals | Nano-cocrystals showed a higher enhancement in dissolution rate; however, both the nano-cocrystals and micron-sized cocrystals enhanced the dissolution of SUL. | [110] |
| Carvedilol (CAR)–tartaric acid | One-step procedure using antisolvent precipitation (in presence of POL 188) with ultrasonication, followed by lyophilization. | 0.98 | Increased solubility (2000-fold) in comparison to pure CAR. Long-term physical stability for PEG protected slow-frozen nano-cocrystals. | [102] |
| 3TC-AZT | Two-step procedure; nanonizing by top-down approach (wet media milling with surfactants). | 271.0 ± 92.0 | Improved cell viability (HeLa cells) in comparison to individual raw materials and the 3TC-AZT physical mixture. Statistically similar cell viability in comparison to the bottom-up nano-cocrystal. | [100] |
| 3TC-AZT (redispersed in a stimuli-responsive carrier) | One-step procedure using bottom-up approach (cold-sonochemical precipitation with sodium lauryl sulfate and TPGS 1000) followed by redispersion in F-127 gel). | 332.9 ± 42.85 (nano-cocrystal) 243.6 ± 26.58 (nano-cocrystal in gel) | Complete release of APIs from the nano-cocrystal-loaded-gel, but incomplete from the cocrystal-loaded gel and the physical mixture. Improved HeLa cell viability (88.0% ± 5.0%) for the nano-cocrystal-loaded-gel compared to the nano-cocrystal in aqueous media (76.9% ± 5.0%). | [111] |
| Itraconazole–fumaric acid, Itraconazole– succinic acid, indomethacin–saccharin, indomethacin–nicotinamide | Two-step procedure; nanonizing by wet milling. | 300–450 | Increased kinetic solubility and dissolution rate compared to nanocrystals and cocrystals. | [112] |
| (S)-Naproxen–nicotinamide | One-step procedure using surfactant-assisted grinding (with solutions of non-ionic surfactants or PEG 6000) and top-down wet milling. | <1000 | Surfactant-assisted grinding generated the nano-cocrystal in a single-step process. | [113] |
| Cytarabine (ARA)–uracil (UR) | Two-step procedure; nanonizing by antisolvent precipitation. | 562.70 ± 30.79 | Diminished solubility but increased in vitro permeability. Enhanced antitumor activity in vitro compared to the ARA-UR cocrystal. Increased bioavailability and extended half-life in rats compared to pure ARA and the ARA-UR cocrystal. | [99] |
| Andrographolide (AG)–SA | Two-step procedure; nanonizing by hummer acoustic resonance. | 190 | Increased solubility in pH 1.2 HCl buffer (5.74 times) and pH 6.8 phosphate buffer (6.82 times) compared to raw AG. | [114] |
3.3. Other Innovative Platforms
4. Cocrystal Screening by Artificial Intelligence
5. Patents
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 3TC | Lamivudine |
| AG | Andrographolide |
| API | Active pharmaceutical ingredient |
| ARA | Cytarabine |
| AUC | Area Under the Curve |
| AZT | Zidovudine |
| Be | Betaine |
| CAR | Carvedilol |
| CBZ | Carbamazepine |
| CNS | Central Nervous System |
| CTC | Tramadol–celecoxib cocrystal |
| DSF | Disulfiram |
| EMA | European Medicines Agency |
| FAV | Favipiravir |
| FDA | Food and Drug Administration |
| FFA | Flufenamic acid |
| HPH | High-Pressure Homogenization |
| HPU | High-Power Ultrasound |
| INA | Isonicotinamide |
| NSAID | Nonsteroidal Anti-Inflammatory Drug |
| PIC | Picolinamide |
| PTX | Paclitaxel |
| RDV | Remdesivir |
| SA | Salicylic acid |
| SUC | Succinic acid |
| SUL | 4-Aminosalysilic acid-sulfamethazine |
| US | United States |
References
- Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating Cocrystals: A Review of Pharmaceutical Cocrystal Preparation Routes and Applications. Cryst. Growth Des. 2018, 18, 6370–6387. [Google Scholar] [CrossRef]
- Bashimam, M.; El-Zein, H. Pharmaceutical cocrystal of antibiotic drugs: A comprehensive review. Heliyon 2022, 8, e11872. [Google Scholar] [CrossRef]
- Guo, M.; Sun, X.; Chen, J.; Cai, T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm. Sin. B 2021, 11, 2537–2564. [Google Scholar] [CrossRef]
- Li, Q.; Xie, Y.; Wang, Z.; Li, S.; Yang, S.; Yang, D.; Zhang, L.; Du, G.; Lu, Y. Optimization of physicochemical properties of theophylline by forming cocrystals with amino acids. RSC Adv. 2024, 14, 40006–40017. [Google Scholar] [CrossRef] [PubMed]
- Nikam, V.J.; Patil, S.B. Pharmaceutical cocrystals of nebivolol hydrochloride with enhanced solubility. J. Cryst. Growth 2020, 534, 125488. [Google Scholar] [CrossRef]
- Teng, R.; Wang, L.; Chen, M.; Fang, W.; Gao, Z.; Chai, Y.; Zhao, P.; Bao, Y. Amino acid based pharmaceutical cocrystals and hydrate cocrystals of the chlorothiazide: Structural studies and physicochemical properties. J. Mol. Struct. 2020, 1217, 128432. [Google Scholar] [CrossRef]
- Zhu, B.; Xia, M.; Ding, Z.; Rong, X.; Mei, X. Enhancing physical and chemical stability of hygroscopic hydroxytyrosol by cocrystal formation. Int. J. Pharm. 2023, 646, 123470. [Google Scholar] [CrossRef]
- Luo, Z.-K.; Qin, H.-M.; Han, J.-M.; Zhu, J.; Zeng, Y.-Y.; Fan, C.-P.; Liu, S.-X.; Hao, C.; Zhang, J.; Zhuang, T. Novel drug-drug co-amorphous systems of olaparib with nonsteroidal anti-inflammatory drugs with improved solubility, physical stability, antitumor activity and pharmacokinetics. J. Drug Deliv. Sci. Technol. 2024, 101, 106232. [Google Scholar] [CrossRef]
- Shaikh, R.; Singh, R.; Walker, G.M.; Croker, D.M. Pharmaceutical cocrystal drug products: An outlook on product development. Trends Pharmacol. Sci. 2018, 39, 1033–1048. [Google Scholar] [CrossRef]
- Wong, S.N.; Chen, Y.C.S.; Xuan, B.; Sun, C.C.; Chow, S.F. Cocrystal engineering of pharmaceutical solids: Therapeutic potential and challenges. CrystEngComm 2021, 23, 7005–7038. [Google Scholar] [CrossRef]
- Bolla, G.; Sarma, B.; Nangia, A.K. Crystal engineering of pharmaceutical cocrystals in the discovery and development of improved drugs. Chem. Rev. 2022, 122, 11514–11603. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Nanda, A. In-silico methods of cocrystal screening: A review on tools for rational design of pharmaceutical cocrystals. J. Drug Deliv. Sci. Technol. 2021, 63, 102527. [Google Scholar] [CrossRef]
- Sakhiya, D.C.; Borkhataria, C.H. A review on advancement of cocrystallization approach and a brief on screening, formulation and characterization of the same. Heliyon 2024, 10, e29057. [Google Scholar] [CrossRef]
- Parkes, A.; Ziaee, A.; O’Reilly, E. Evaluating experimental, knowledge-based and computational cocrystal screening methods to advance drug-drug cocrystal fixed-dose combination development. Eur. J. Pharm. Sci. 2024, 203, 106931. [Google Scholar] [CrossRef]
- Guidetti, M.; Hilfiker, R.; Kuentz, M.; Bauer-Brandl, A.; Blatter, F. Exploring the cocrystal landscape of Posaconazole by combining high-throughput screening experimentation with computational chemistry. Cryst. Growth Des. 2023, 23, 842–852. [Google Scholar] [CrossRef]
- Singh, M.; Barua, H.; Jyothi, V.G.S.S.; Dhondale, M.R.; Nambiar, A.G.; Agrawal, A.K.; Kumar, P.; Shastri, N.R.; Kumar, D. Cocrystals by Design: A Rational Coformer Selection Approach for Tackling the API Problems. Pharmaceutics 2023, 15, 1161. [Google Scholar] [CrossRef]
- Molajafari, F.; Li, T.; Abbasichaleshtori, M.; Moein Hajian, D.Z.; Cozzolino, A.F.; Fandrick, D.R.; Howe, J.D. Computational screening for prediction of co-crystals: Method comparison and experimental validation. CrystEngComm 2024, 26, 1620–1636. [Google Scholar] [CrossRef]
- Solares-Briones, M.; Coyote-Dotor, G.; Páez-Franco, J.C.; Zermeño-Ortega, M.R.; De la o Contreras, C.M.; Canseco-González, D.; Avila-Sorrosa, A.; Morales-Morales, D.; Germán-Acacio, J.M. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021, 13, 790. [Google Scholar] [CrossRef]
- Aitipamula, S.; Bolla, G. Optimizing Drug Development: Harnessing the Sustainability of Pharmaceutical Cocrystals. Mol. Pharm. 2024, 21, 3121–3143. [Google Scholar] [CrossRef] [PubMed]
- Chettri, A.; Subba, A.; Singh, G.P.; Bag, P.P. Pharmaceutical co-crystals: A green way to enhance drug stability and solubility for improved therapeutic efficacy. J. Pharm. Pharmacol. 2024, 76, 1–12. [Google Scholar] [CrossRef]
- Baldea, I.; Moldovan, R.; Nagy, A.-L.; Filip, G.A.; David, L.; Olteanu, D.E.; Ionescu, C.M.; Filip, C.; Dehelean, C.A. Ketoconazole–fumaric acid pharmaceutical cocrystal: From formulation design for bioavailability improvement to biocompatibility testing and antifungal efficacy evaluation. Int. J. Mol. Sci. 2024, 25, 13346. [Google Scholar] [CrossRef]
- Paulazzi, A.R.; Alves, B.O.; Zilli, G.A.; Diniz, A.; Mussi, S.V.; Almeida, L.; Pergher, S.B.C.; Nunes, R.J.; de Araujo, M.B. Curcumin–N-acetylcysteine cocrystal produced with supercritical solvent: Characterization, solubility, and preclinical evaluation of antinociceptive and anti-inflammatory activities. Inflammopharmacology 2022, 30, 1671–1685. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.N.; Low, K.-H.; Poon, Y.L.; Zhang, X.; Chan, H.W.; Chow, S.F. Synthesis of the first remdesivir cocrystal: Design, characterization, and therapeutic potential for pulmonary delivery. Int. J. Pharm. 2023, 640, 122983. [Google Scholar] [CrossRef]
- Wong, S.N.; Li, S.; Low, K.-H.; Chan, H.W.; Zhang, X.; Chow, S.; Hui, B.; Chow, P.C.Y.; Chow, S.F. Development of favipiravir dry powders for intranasal delivery: An integrated cocrystal and particle engineering approach via spray freeze drying. Int. J. Pharm. 2024, 653, 123896. [Google Scholar] [CrossRef] [PubMed]
- Machado, T.C.; Gelain, A.B.; Rosa, J.; Cardoso, S.G.; Caon, T. Cocrystallization as a novel approach to enhance the transdermal administration of meloxicam. Eur. J. Pharm. Sci. 2018, 123, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Samie, A.; Alavian, H.; Vafaei-Pour, Z.; Mohammadpour, A.H.; Jafarian, A.H.; Danesh, N.M.; Abnous, K.; Taghdisi, S.M. Accelerated Wound Healing with a Diminutive Scar through Cocrystal Engineered Curcumin. Mol. Pharm. 2023, 20, 5090–5107. [Google Scholar] [CrossRef] [PubMed]
- Qiao, N.; Wang, K.; Schlindwein, W.; Davies, A.; Li, M. In situ monitoring of carbamazepine–nicotinamide cocrystal intrinsic dissolution behaviour. Eur. J. Pharm. Biopharm. 2013, 83, 415–426. [Google Scholar] [CrossRef]
- Alhalaweh, A.; Roy, L.; Rodríguez-Hornedo, N.; Velaga, S.P. pH-dependent solubility of indomethacin–saccharin and carbamazepine–saccharin cocrystals in aqueous media. Mol. Pharm. 2012, 9, 2605–2612. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Lipert, M.P.; Bak, A. Mitigating cocrystal physical-stability liabilities in preclinical formulations. J. Pharm. Sci. 2017, 106, 31–38. [Google Scholar] [CrossRef]
- Yamashita, H.; Sun, C.C. Improving Dissolution Rate of Carbamazepine-Glutaric Acid Cocrystal Through Solubilization by Excess Coformer. Pharm. Res. 2018, 35, 4. [Google Scholar] [CrossRef]
- Omori, M.; Sugano, K. Solution-Mediated Phase Transformation on Crystal Facets of Carbamazepine–Saccharin Cocrystals. Cryst. Growth Des. 2021, 21, 6237–6244. [Google Scholar] [CrossRef]
- Tatsumi, Y.; Shimoyama, Y.; Kazarian, S.G. Analysis of the Dissolution Behavior of Theophylline and Its Cocrystal Using ATR-FTIR Spectroscopic Imaging. Mol. Pharm. 2024, 21, 3233–3239. [Google Scholar] [CrossRef]
- Jia, Y.; Yang, D.; Wang, W.; Hu, K.; Yan, M.; Zhang, L.; Gao, L.; Lu, Y. Recent advances in pharmaceutical cocrystals of theophylline. Nat. Prod. Bioprospect. 2024, 14, 53. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, Z.; Yang, E.; Pan, B.; Dang, L.; Wei, H. Insights into cocrystal polymorphic transformation mechanism of ethenzamide-saccharin: A combined experimental and simulative study. Cryst. Growth Des. 2016, 16, 5118–5126. [Google Scholar] [CrossRef]
- Xuan, B.; Chen, Y.C.S.; Wong, K.C.; Chen, R.; Lo, P.S.; Lakerveld, R.; Tong, H.H.Y.; Chow, S.F. Impacto f cocrystal solution-state stability on cocrystal dissociation and polymorphic Drug recrystallization during dissolution. Int. J. Pharm. 2021, 610, 121239. [Google Scholar] [CrossRef]
- Kimoto, K.; Yamamoto, M.; Karashima, M.; Hohokabe, M.; Takeda, J.; Yamamoto, K.; Ikeda, Y. Pharmaceutical cocrystal development of TAK-020 with enhanced oral absorption. Crystals 2020, 10, 211. [Google Scholar] [CrossRef]
- Shi, K.; Li, M. Optimisation of pharmaceutical cocrystal dissolution performance through a synergistic precipitation inhibition. Pharm. Res. 2023, 40, 2051–2069. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhang, Q.; Zhu, B.; Zhang, Z.; Bao, J.; Ding, Q.; Ren, G.; Mei, X. Pharmaceutical Cocrystals of Nicorandil with Enhanced Chemical Stability and Sustained Release. Cryst. Growth Des. 2020, 20, 6995–7005. [Google Scholar] [CrossRef]
- Alvani, A.; Shayanfar, A. Solution Stability of Pharmaceutical Cocrystals. Cryst. Growth Des. 2022, 22, 6323–6337. [Google Scholar] [CrossRef]
- Xuan, B.; Wong, S.N.; Zhang, Y.; Weng, J.; Tong, H.H.Y.; Wang, C.; Sun, C.C.; Chow, S.F. Extended reléase of highly wáter soluble isoniazid attained through cocrystallization with curcumin. Cryst. Growth Des. 2020, 20, 1951–1960. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Efficacy and Safety of LCZ696 Compared to Enalapril in Patients with Heart Failure (PARADIGM-HF), NCT01035255. Available online: https://clinicaltrials.gov/study/NCT01035255 (accessed on 14 January 2025).
- Khder, Y.; Shi, V.; McMurray, J.J.V.; Lefkowitz, M.P. Sacubitril/Valsartan (LCZ696) in Heart Failure. Handb. Exp. Pharmacol. 2017, 243, 133–165. [Google Scholar] [CrossRef] [PubMed]
- Novartis, A.G. Solid-State Forms of Sacubitril and Valsartan (LCZ696). U.S. Patent US20090203754A1, 13 August 2009. [Google Scholar]
- Videla, S.; Lahjou, M.; Vaqué, A.; Sust, M.; Encabo, M.; Soler, L.; Sans, A.; Sicard, E.; Gascón, N.; Encina, G.; et al. Single-dose pharmacokinetics of co-crystal of tramadol–celecoxib: Results of a four-way randomized open-label phase I clinical trial in healthy subjects. Br. J. Clin. Pharmacol. 2017, 83, 2718–2728. [Google Scholar] [CrossRef]
- Cebrecos, J.; Carlson, J.D.; Encina, G.; Lahjou, M.; Sans, A.; Sust, M.; Vaqué, A.; Morte, A.; Gascón, N.; Plata-Salamán, C. Celecoxib-tramadol co-crystal: A Randomized 4-Way Crossover Comparative Bioavailability Study. Clin. Ther. 2021, 43, 1051–1065. [Google Scholar] [CrossRef] [PubMed]
- Langford, R.; Morte, A.; Sust, M.; Cebrecos, J.; Vaqué, A.; Ortiz, E.; Fettiplace, J.; Adeyemi, S.; Raba, G.; But-Husaim, L.; et al. Efficacy and safety of co-crystal of tramadol-celecoxib (CTC) in acute moderate-to-severe pain after abdominal hysterectomy: A randomized, double-blind, phase 3 trial (STARDOM2). Eur. J. Pain. 2022, 26, 2083–2096. [Google Scholar] [CrossRef]
- Langford, R.; Viscusi, E.R.; Morte, A.; Cebrecos, J.; Sust, M.; Giménez-Arnau, J.M.; De Leon-Casasola, O. Efficacy of Co-Crystal of Tramadol-Celecoxib (CTC) in Patients with Acute Moderate-to-Severe Pain: A Pooled Analysis of Data from Two Phase 3 Randomized Clinical Trials. Drugs RD 2024, 24, 239–252. [Google Scholar] [CrossRef]
- Fediuk, D.J.; Nucci, G.; Dawra, V.K.; Cutler, D.L.; Amin, N.B.; Terra, S.G.; Boyd, R.A.; Krishna, R.; Sahasrabudhe, V. Overview of the Clinical Pharmacology of Ertugliflozin, a Novel Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor. Clin. Pharmacokinet. 2020, 59, 949–965. [Google Scholar] [CrossRef]
- Wong, S.N.; Weng, J.; Ip, I.; Chen, R.; Lakerveld, R.; Telford, R.; Blagden, N.; Scowen, I.J.; Chow, S.F. Rational Development of a Carrier-Free Dry Powder Inhalation Formulation for Respiratory Viral Infections via Quality by Design: A Drug-Drug Cocrystal of Favipiravir and Theophylline. Pharmaceutics 2022, 14, 300. [Google Scholar] [CrossRef] [PubMed]
- Alipour, S.; Mahmoudi, L.; Ahmadi, F. Pulmonary drug delivery: An effective and convenient delivery route to combat COVID-19. Drug Deliv. Transl. Res. 2022, 13, 705–715. [Google Scholar] [CrossRef]
- Boboltz, A.; Kumar, S.; Duncan, G.A. Inhaled drug delivery for the targeted treatment of asthma. Adv. Drug Deliv. Rev. 2023, 198, 114858. [Google Scholar] [CrossRef]
- Karashima, M.; Sano, N.; Yamamoto, S.; Arai, Y.; Yamamoto, K.; Amano, N.; Ikeda, Y. Enhanced pulmonary absorption of poorly soluble itraconazole by micronized cocrystal dry powder formulations. Eur. J. Pharm. Biopharm. 2017, 115, 65–72. [Google Scholar] [CrossRef]
- Al-Obaidi, H.; Granger, A.; Hibbard, T.; Opesanwo, S. Pulmonary Drug Delivery of Antimicrobials and Anticancer Drugs Using Solid Dispersions. Pharmaceutics 2021, 13, 1056. [Google Scholar] [CrossRef]
- Tanaka, R.; Hattori, Y.; Otsuka, M.; Ashizawa, K. Application of spray freeze drying to theophylline-oxalic acid cocrystal engineering for inhaled dry powder technology. Drug Dev. Ind. Pharm. 2020, 46, 179–187. [Google Scholar] [CrossRef]
- Sun, X.; Castro-Dominguez, B. Electrosprayed co-crystals of levofloxacin for inhalation: A strategy for excipient-free dry powder antibiotics. Int. J. Pharm. 2025, 688, 126454. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.-M.; Yu, M.-C.; Wang, L.-Y.; Li, Y.-T.; Wu, Z.-Y.; Yan, C.-W. A supramolecular adduct of tegafur and syringic acid: The first tegafur-nutraceutical cocrystal with perfected in vitro and in vivo characteristics as well as synergized anticancer activities. New J. Chem. 2020, 44, 15994–16005. [Google Scholar] [CrossRef]
- Ray, E.; Vaghasiya, K.; Sharma, A.; Shukla, R.; Khan, R.; Kumar, A.; Verma, R.K. Autophagy-Inducing Inhalable Co-crystal Formulation of Niclosamide-Nicotinamide for Lung Cancer Therapy. AAPS PharmSciTech 2020, 21, 260. [Google Scholar] [CrossRef]
- Safarov, R.; Fedotova, O.; Uvarova, A.; Gordienko, M.; Menshutina, N. Review of Intranasal Active Pharmaceutical Ingredient Delivery Systems. Pharmaceuticals 2024, 17, 1180. [Google Scholar] [CrossRef]
- Ghadiri, M.; Young, P.M.; Traini, D. Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics 2019, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Rai, G.; Gauba, P.; Dang, S. Recent advances in nanotechnology for Intra-nasal drug delivery and clinical applications. J. Drug Deliv. Sci. Technol. 2023, 86, 104726. [Google Scholar] [CrossRef]
- Yenigun, A.; Yilmaz, S.; Dogan, R.; Goktas, S.S.; Calim, M.; Ozturan, O. Demonstration of analgesic effect of intranasal ketamine and intranasal fentanyl for postoperative pain after pediatric tonsillectomy. Int. J. Pediatr. Otorhinolaryngol. 2017, 104, 182–185. [Google Scholar] [CrossRef]
- Martin, V.; Hoekman, J.; Aurora, S.K.; Shrewsbury, S.B. Nasal Delivery of Acute Medications for Migraine: The Upper Versus Lower Nasal Space. J. Clin. Med. Res. 2021, 10, 2468. [Google Scholar] [CrossRef]
- Chmielewska, N.; Szyndler, J. Intranasal administration of antiseizure medications in chronic and emergency treatment: Hopes and challenges. Seizure 2024, 115, 62–67. [Google Scholar] [CrossRef]
- Ryan, R.; Leslie, M.N.; He, P.; Young, P.M.; Hoyos, C.M.; Ong, H.X.; Traini, D. Intranasal and inhaled delivery systems for targeting circadian dysfunction in neurodegenerative disorders, perspective and future outlook. Adv. Drug Deliv. Rev. 2025, 220, 115575. [Google Scholar] [CrossRef]
- Desai, P.P.; Patravale, V.B. Curcumin Cocrystal Micelles—Multifunctional Nanocomposites for Management of Neurodegenerative Ailments. J. Pharm. Sci. 2017, 107, 1143–1156. [Google Scholar] [CrossRef]
- Vora, D.; Banga, A.K. Development and evaluation of a drug-in-adhesive transdermal delivery system for delivery of olanzapine. Expert Opin. Drug Deliv. 2022, 19, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Alkilani, A.Z.; Hamed, R.; Musleh, B.; Sharaire, Z. Breaking boundaries: The advancements in transdermal delivery of antibiotics. Drug Deliv. 2024, 31, 2304251. [Google Scholar] [CrossRef] [PubMed]
- Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm. 2017, 535, 1–17. [Google Scholar] [CrossRef]
- Antonara, L.; Triantafyllopoulou, E.; Chountoulesi, M.; Pippa, N.; Dallas, P.P.; Rekkas, D.M. Lipid-Based Drug Delivery Systems: Concepts and Recent Advances in Transdermal Applications. Nanomaterials 2025, 15, 1326. [Google Scholar] [CrossRef]
- Samie, A.; Alavian, H. Crystal Engineering Strategies for Optimizing Skin Permeation. Cryst. Growth Des. 2025, 25, 3595–3626. [Google Scholar] [CrossRef]
- Li, S.; Xuan, B.; Wong, S.N.; Lee, H.W.; Low, K.-H.; Chow, S.F. Towards the discovery of unrevealed flufenamic acid cocrystals via structural resemblance for enhanced topical drug delivery. Int. J. Pharm. 2024, 668, 124959. [Google Scholar] [CrossRef]
- Rosa, J.; Machado, T.C.; Da Silva, A.K.; Kuminek, G.; Bortolluzzi, A.J.; Caon, T.; Cardoso, S.G. Isoniazid-Resveratrol Cocrystal: A Novel Alternative for Topical Treatment of Cutaneous Tuberculosis. Cryst. Growth Des. 2019, 19, 5029–5036. [Google Scholar] [CrossRef]
- Danescu, S.; Filip, G.A.; Moldovan, R.; Olteanu, D.; Nagy, A.; Filip, X.; Martin, F.; Kacso, I.; Baldea, I. Ketoconazole-p Aminobenzoic Cocrystal Exhibits a Potent Anti-inflammatory Effect on the Skin of BALBc Mice  Research Square (Research Square). Inflammopharmacology 2021, 29, 721–733. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, M.; Tao, Q.; Li, Y.; Wang, H.; Zhang, M.; Liu, X.; Zhang, J. Betaine–salicylic acid cocrystal for enhanced skincare and acne treatment. RSC Med. Chem. 2025, 16, 1705–1714. [Google Scholar] [CrossRef]
- Kiti, K.; Suwantong, O. The potential use of curcumin-β-cyclodextrin inclusion complex/chitosan-loaded cellulose sponges for the treatment of chronic wound. Int. J. Biol. Macromol. 2020, 164, 3250–3258. [Google Scholar] [CrossRef]
- Roney, M.; Issahaku, A.R.; Zamri, N.B.; Aluwi, M.F.F.M. Mefenamic acid inhibit transforming growth factor-beta type-1: Repurposing anti-inflammatory drugs in wound healing using in-silico approaches. Asp. Mol. Med. 2023, 2, 100031. [Google Scholar] [CrossRef]
- Khan, A.; Usman, R.; Xiang, S.; Tamboli, Y.; Umair, M.; Alshehri, A.M.; Bushnak, I.; Deng, Y.; He, N. Turning on the Heat by Cocrystal Engineering: The Rise of Organic Charge Transfer Photothermal Cocrystals as an Emerging Therapeutic Frontier in Biomedical Application. Aggregate 2025, 6, e70045. [Google Scholar] [CrossRef]
- Kara, A.; Kumar, D.; Healy, A.M.; Lalatsa, A.; Serrano, D.R. Continuous Manufacturing of Cocrystals Using 3D-Printed Microfluidic Chips Coupled with Spray Coating. Pharmaceuticals 2023, 16, 1064. [Google Scholar] [CrossRef]
- Fratini, C.; Zhang, Y.; Moroni, S.; Tiboni, M.; Ong, H.X.; Young, P.M.; Casettari, L.; Traini, D. Combining innovation and sustainable development in the 3D printing manufacturing of drug delivery and testing devices. Int. J. Pharm. 2025, 679, 125751. [Google Scholar] [CrossRef] [PubMed]
- Borkhataria, C.; Mehta, J.; Vaja, P. 3D Printing is Emergency Technology for Pharmaceutical and Medical Field. Afr. J. Pharm. Sci. 2024, 4, 33–50. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X.; Han, X.; Hong, X.; Li, X.; Zhang, H.; Li, M.; Wang, Z.; Zheng, A. AReviewof3DPrinting Technology in Pharmaceutics: Technology and Applications, Now and Future. Pharmaceutics 2023, 15, 416. [Google Scholar] [CrossRef]
- Nyavanandi, D.; Mandati, P.; Narala, S.; Alzahrani, A.; Kolimi, P.; Pradhan, A.; Bandari, S.; Repka, M.A. Feasibility of high melting point hydrochlorothiazide processing via cocrystal formation by hot melt extrusion paired fused filament fabrication as a 3D-printed cocrystal tablet. Int. J. Pharm. 2022, 628, 122283. [Google Scholar] [CrossRef]
- Mandati, P.; Nyavanandi, D.; Narala, S.; Alzahrani, A.; Vemula, S.K.; Repka, M.A. A Comparative Assessment of Cocrystal and Amorphous Solid Dispersion Printlets Developed by Hot Melt Extrusion Paired Fused Deposition Modeling for Dissolution Enhancement and Stability of Ibuprofen. AAPS PharmSciTech 2023, 24, 203. [Google Scholar] [CrossRef]
- Huang, L.; Yang, T.; Jia, Y.; Li, D.; Li, X.; Guo, J.; Ni, W.; Yu, M.; Zhang, J. Preparation of IBU-NTM cocrystals via HME and their exploitation in FDM-3D printing for advanced pharmaceutical applications. J. Drug Deliv Sci. Technol. 2025, 108, 106917. [Google Scholar] [CrossRef]
- Amin, O.M.; El Qady, H.N.; El-Fattah, M.A.A. An Intragastric Delivery Device Employing FDM Technology: 3D-Printed Tablet Containing Green Developed Mosapride-Saccharin Co-crystals. AAPS PharmSciTech 2023, 24, 127. [Google Scholar] [CrossRef] [PubMed]
- Buanz, A.B.M.; Telford, R.; Scowen, I.; Gaisford, S. Rapid preparation of pharmaceutical co-crystals with thermal ink-jet printing. CrystEngComm 2013, 15, 1031–1035. [Google Scholar] [CrossRef]
- Seera, R.; Guru Row, T.N. Evaluation of Co-crystallization Outcomes of MultiComponent Adducts: Rapid Fabrication to Achieve Uniform Particle Size Distribution using Thermal Ink-Jet Printing. Cryst. Growth Des. 2020, 20, 4667–4677. [Google Scholar] [CrossRef]
- Witika, B.A.; Smith, V.J.; Walker, R.B. Top-Down Synthesis of a Lamivudine-Zidovudine Nano Co-Crystal. Crystals 2021, 11, 33. [Google Scholar] [CrossRef]
- Liu, M.; Hong, C.; Li, G.; Ma, P.; Xie, Y. The generation of myricetin-nicotinamide nanococrystals by top down and bottom up technologies. Nanotechnology 2016, 27, 395601–395608. [Google Scholar] [CrossRef]
- Thakor, P.; Yadav, B.; Modani, S.; Shastri, N.R. Preparation and optimization of nano-sized cocrystals using a quality by design approach. CrystEngComm 2020, 22, 2304–2314. [Google Scholar] [CrossRef]
- Kiyonga, E.M.; Kekani, L.N.; Chidziwa, T.V.; Kahwenga, K.D.; Bronkhorst, E.; Milne, M.; Poka, M.S.; Mokhele, S.; Demana, P.H.; Witika, B.A. Nano- and Crystal Engineering Approaches in the Development of Therapeutic Agents for Neoplastic Diseases. Crystals 2022, 12, 926. [Google Scholar] [CrossRef]
- Ramanan, D.G.; Bandara, R.T.; Thakuria, R.; Adassooriya, N.M. Nanococrystals: A promising strategy for improved drug performance. CrystEngComm 2025, 27, 2260–2280. [Google Scholar] [CrossRef]
- Fontana, F.; Figueiredo, P.; Zhang, P.; Hirvonen, J.T.; Liu, D.; Santos, H.A. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv. Drug Deliv. Rev. 2018, 131, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Eslami, F.; Elliott, J.A.W. Role of Precipitating Solute Curvature on Microdrops and Nanodrops during Concentrating Processes: The Nonideal Ostwald–Freundlich Equation. J. Phys. Chem. B 2014, 118, 14675–14686. [Google Scholar] [CrossRef]
- Tan, J.; Liu, J.; Ran, L.A. Review of Pharmaceutical Nano-Cocrystals: A Novel Strategy to Improve the Chemical and Physical Properties for Poorly Soluble Drugs. Crystals 2021, 11, 463. [Google Scholar] [CrossRef]
- Witika, B.A.; Choonara, Y.E.; Demana, P.H. A SWOT analysis of nano co-crystals in drug delivery: Present outlook and future perspectives. RSC Adv. 2023, 13, 7339–7351. [Google Scholar] [CrossRef]
- Huang, Y.; Li, J.M.; Lai, Z.H.; Wu, J.; Lu, T.B.; Chen, J.M. Phenazopyridine-phthalimide nano-cocrystal: Release rate and oral bioavailability enhancement. Eur. J. Pharm. Sci. 2017, 109, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Pi, J.; Wang, S.; Li, W.; Kebebe, D.; Zhang, Y.; Zhang, B.; Qi, D.; Guo, P.; Li, N.; Liu, Z. A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. Asian J. Pharm. Sci. 2019, 14, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.M.; Bu, F.Z.; Meng, S.S.; Yan, C.W.; Wu, Z.Y.; Li, Y.T. The first nano-cocrystal formulation of marine drug cytarabine with uracil based on cocrystal nanonization strategy for long-acting injection exhibiting enhanced antitumor activity. Int. J. Pharm. 2023, 644, 123300. [Google Scholar] [CrossRef]
- Witika, B.A.; Smith, V.J.; Walker, R.B. Quality by Design Optimization of Cold Sonochemical Synthesis of Zidovudine-Lamivudine Nanosuspensions. Pharmaceutics 2020, 12, 367. [Google Scholar] [CrossRef]
- Mohammad, I.S.; He, W.; Yin, L. A Smart Paclitaxel-Disulfiram Nanococrystals for Efficient MDR Reversal and Enhanced Apoptosis. Pharm. Res. 2018, 35, 77–94. [Google Scholar] [CrossRef]
- Mohammady, M.; Hadidi, M.; Iman Ghetmiri, S.; Yousefi, G. Design of ultra-fine carvedilol nanococrystals: Development of a safe and stable injectable formulation. Eur. J. Pharm. Biopharm. 2021, 168, 139–151. [Google Scholar] [CrossRef]
- Emami, S.; Siahi-Shadbad, M.; Adibkia, K.; Barzegar-Jalali, M. Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts 2018, 8, 305–320. [Google Scholar] [CrossRef]
- Kumar, S.; Bhushan, P.; Bhattacharya, S. Fabrication of Nanostructures with Bottom-up Approach and Their Utility in Diagnostics, Therapeutics, and Others. In Environmental, Chemical and Medical Sensors; Bhattacharya, S., Agarwal, A., Chanda, N., Pandey, A., Sen, A., Eds.; Energy, Environment, and Sustainability, Chapter 8; Springer: Singapore, 2018; pp. 167–198. [Google Scholar] [CrossRef]
- Witika, B.A.; Smith, V.J.; Walker, R.B. A Comparative Study of the Effect of Different Stabilizers on the Critical Quality Attributes of Self-Assembling Nano Co-Crystals. Pharmaceutics 2020, 12, 182. [Google Scholar] [CrossRef]
- Karashima, M.; Kimoto, K.; Yamamoto, K.; Kojima, T.; Ikeda, Y. A novel solubilization technique for poorly soluble drugs through the integration of nanocrystal and cocrystal technologies. Eur. J. Pharm. Biopharm. 2016, 107, 142–150. [Google Scholar] [CrossRef]
- Emami, S.; Siahi-Shadbad, M.; Barzegar-Jalali, M.; Adibkia, K. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals. Drug Dev. Ind. Pharm. 2018, 44, 1034–1047. [Google Scholar] [CrossRef]
- Bhandari, J.; Kanswami, N.; Lakshmi, P.K. Nano Co-crystal Engineering Technique to Enhance the Solubility of Ezetimibe. J. Young Pharm. 2020, 12, s10–s15. [Google Scholar] [CrossRef]
- Nugrahani, I.; Auli, W.N. Diclofenac-proline nano-co-crystal development, characterization, in vitro dissolution and diffusion study. Heliyon 2020, 6, e04864. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.; Takácsi-Nagy, A.; Nagy, S.; Hagymási, A.; Gősi, F.; Vörös-Horváth, B.; Balić, T.; Pál, S.; Széchenyi, A. Synthesis and Characterization of Nano-Sized 4-Aminosalicylic Acid–Sulfamethazine Cocrystals. Pharmaceutics 2021, 13, 277. [Google Scholar] [CrossRef] [PubMed]
- Witika, B.A.; Stander, J.C.; Smith, V.J.; Walker, R.B. Nano Co-Crystal Embedded Stimuli-Responsive Hydrogels: A Potential Approach to Treat HIV/AIDS. Pharmaceutics 2021, 13, 127. [Google Scholar] [CrossRef]
- Huang, Z.; Staufenbiel, S.; Bodmeier, R. Combination of co-crystal and nanocrystal techniques to improve the solubility and dissolution rate of poorly soluble drugs. Pharm. Res. 2022, 39, 949–961. [Google Scholar] [CrossRef]
- Santos, J.A.V.; Baptista, J.A.; Santos, I.C.; Maria, T.R.M.; Canotilho, J.; Castro, R.A.E.; Eusébio, M.E.S. Pharmaceutical nanococrystal synthesis: A novel grinding approach. CrystEngComm 2022, 24, 947–961. [Google Scholar] [CrossRef]
- Qu, J.; Wang, L.; Jia, C.; Zhang, S.; Li, C.; Wu, W.; Li, W. Preparation and characterization of andrographolide nano-cocrystals using hummer acoustic resonance technology. Int. J. Pharm. 2025, 668, 124993. [Google Scholar] [CrossRef]
- Sosnik, A.; Mühlebach, S. Editorial: Drug Nanoparticles and Nano-Cocrystals: From Production and Characterization to Clinical Translation. Adv. Drug Deliv. Rev. 2018, 131, 1–2. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Regulatory Classification of Pharmaceutical Co-Crystals, 1st ed.; Guidance for Industry; U.S. Department of Health and Human Services (HHS): Rockville, MD, USA, 2018. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/regulatory-classification-pharmaceutical-co-crystals (accessed on 19 August 2025).
- U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER). Drug Products, Including Biological Products, that Contain Nanomaterials; Guidance for Industry; U.S. Department of Health and Human Services (HHS): Rockville, MD, USA, 2022. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/drug-products-including-biological-products-contain-nanomaterials-guidance-industry (accessed on 26 September 2025).
- European Medicines Agency. Reflection Paper on the Use of Cocrystals of Active Substances in Medicinal Products. EMA/CHMP/CVMP/QWP/284008/2015. July 2015. Available online: https://www.ema.europa.eu/en/use-cocrystals-active-substances-medicinal-products-scientific-guideline (accessed on 6 September 2025).
- European Medicines Agency. Nanotechnology-Based Medicinal Products for Human Use EU-IN Horizon Scanning Report. EMA/20989/2025. January 2025. Available online: https://www.ema.europa.eu/en/documents/report/nanotechnology-based-medicinal-products-human-use-eu-horizon-scanning-report_en.pdf (accessed on 6 September 2025).
- Avcil, M.; Çelik, A. Microneedles in Drug Delivery: Progress and Challenges. Micromachines 2021, 12, 1321. [Google Scholar] [CrossRef]
- Azarikhah, P.; Mushtaq, A.; Saifullah, K.M.; Prewett, P.D.; Davies, G.J.; Rad, Z.F. A critical review of advances and challenges in microinjection moulding of polymeric microneedles. J. Drug Deliv. Sci. Technol. 2025, 114, 107435. [Google Scholar] [CrossRef]
- Moawad, F.; Pouliot, R.; Brambilla, D. Dissolving microneedles in transdermal drug delivery: A critical analysis of limitations and translation challenges. J. Control. Release 2025, 383, 113794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, H.; Li, G.; Chen, Y.; Zeng, Y. Hydrogel-forming microneedles for the treatment of skin diseases. Mater. Today Bio 2025, 35, 102448. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Sun, X.; Liu, Y.; Li, S.; Meng, D. Advances in clinical applications of microneedle. Front. Pharmacol. 2025, 16, 1607210. [Google Scholar] [CrossRef]
- Kenchegowda, M.; Angolkar, M.; Hani, U.; Fatease, A.A.; Fatima, F.; Talath, S.; Dera, A.A.; Paramshetti, S.; Gangadharappa, H.V.; Osmani, R.A.M.; et al. Polymeric microneedle advancements in macromolecule drug delivery: Current trends, challenges, and future perspectives. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 398, 12951–12985. [Google Scholar] [CrossRef] [PubMed]
- Agostini, S.B.N.; Borges, B.A.; De Araújo, M.B.; Bonfilio, R. Growing Interest in Pharmaceutical Cocrystals: A Comprehensive Review of Applications and Trends. ChemistrySelect 2025, 10, e00831. [Google Scholar] [CrossRef]
- Fandiño, O.E.; Hutton, A.R.J.; Zhang, C.; Abbate, M.T.A.; Naser, Y.A.; Li, Y.; Paredes, A.J.; Donnelly, R.F. Application of microarray patches for the transdermal administration of psychedelic drugs in micro-doses. Eur. J. Pharm. Biopharm. 2024, 207, 114603. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Wang, Z.; Tang, W.; Wang, J.; Gong, J. Artificial Intelligence Assisted Pharmaceutical Crystallization. Cryst. Growth Des. 2025, 24, 4245–4270. [Google Scholar] [CrossRef]
- Heng, T.; Yang, D.; Wang, R.; Zhang, L.; Lu, Y.; Du, G. Progress in Research on Artificial Intelligence Applied to Polymorphism and Cocrystal Prediction. ACS Omega 2021, 6, 15543–15550. [Google Scholar] [CrossRef]
- Mswahili, M.E.; Lee, M.-J.; Martin, G.L.; Kim, J.; Kim, P.; Choi, G.J.; Jeong, Y.-S. Cocrystal Prediction Using Machine Learning Models and Descriptors. Appl. Sci. 2021, 11, 1323. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.; Yuan, P.; An, Q.; Su, B.; Yu, M.; Chen, T.; Hu, K.; Zhang, L.; Lu, Y.; et al. Cocrystal virtual screening based on the XGBoost machine learning model. Chin. Chem. Lett. 2023, 34, 107964. [Google Scholar] [CrossRef]
- Alharby, T.N.; Huwaimel, B. Machine learning analysis of pharmaceutical cocrystals solubility parameters in enhancing the drug properties for advanced pharmaceutical manufacturing. Sci. Rep. 2025, 15, 29970. [Google Scholar] [CrossRef]
- Gubina, N.; Dmitrenko, A.; Kirgizov, G.; Lebedev, I.; Nikitin, N.; Petrov, O.; Serov, N.; Solovev, G.; Vinogradov, V.; Yamshchikova, L. Hybrid Generative AI for De Novo Design of Co-Crystals with Enhanced Tabletability. NeurIPS 2024, 37, 84606–84644. [Google Scholar] [CrossRef]
- Devogelaer, J.; Meekes, H.; Tinnemans, P.; Vlieg, E.; De Gelder, R. Co-crystal Prediction by Artificial Neural Networks **. Angew. Chem. Int. Ed. 2020, 59, 21711–21718. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, S.; Nanda, A. A Review about Regulatory Status and Recent Patents of Pharmaceutical Co-Crystals. Adv. Pharm. Bull. 2018, 8, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Rathi, R.; Guggal, Y.; Twinkle, V.; Sandhu, V.; Singh, I. Exploring the Patent Landscape and Regulatory Prospective on Pharmaceutical Cocrystals. J. Pharm. Tech. Res. Manag. 2023, 11, 49–60. [Google Scholar] [CrossRef]
- Rathi, R.; Sau, R.; Sindhu, R.K.; Singh, H.; Singh, I. Chapter 12: Patents and Regulatory Considerations of Pharmaceutical Cocrystals. In Cocrystals in Pharmaceutical Sciences: Design to Applications, 1st ed.; Singh, I., Mallick, S., Rathi, R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2025. [Google Scholar] [CrossRef]
- Brittain, H.G.; Felice, P.V. Intravenous Formulation with Water Soluble Cocrystals of Acetylsalicylic Acid and Theanine. Australian Patent No. AU2013201664 B2, 13 August 2015. Available online: https://patents.google.com/patent/AU2013201664B2/en (accessed on 21 August 2025).
- Felice, P.V.; Brittain, H.G. Sublingual Formulation with Water-Soluble Cocrystals of Acetylsalicylic Acid with Citric Acid, Sodium Bicarbonate, and l-Theanine for the Treatment of Acute Myocardial Infarction. U.S. Patent No. US20230115710A1, 13 April 2023. Available online: https://patents.google.com/patent/US20230115710A1/en (accessed on 20 August 2025).
- Felice, P.V.; Brittain, H.G. Cocrystal Antioxidants of Protocatechuic Acid with l-Theanine for the Treatment of Oxidative Stress and Inflammatory Conditions. International Publication No. WO2021226476A1, 11 November 2021. Available online: https://patents.google.com/patent/WO2021226476A1/en (accessed on 20 August 2025).
- Plata Salaman, C.R.; Tesson, N. Co-Crystals of Tramadol and Coxibs. U.S. Patent No. US8598152B2, 3 December 2013. Available online: https://patents.google.com/patent/US8598152B2/en (accessed on 21 August 2025).
- Rathi, R.; Kushwaha, R.; Goyal, A.; Singh, I. Oxaliplatin-flavone pharmaceutical cocrystal-CN111205332A: Patent spotlight. Pharm. Pat. Anal. 2022, 11, 147–154. [Google Scholar] [CrossRef]
- Rodriguez-Hornedo, N.; Kuminek, G.; Cavanagh, K.L. Cocrystals of Posaconazole, Method of Making and Using Same. International Publication No. WO2021/022103A1, 4 February 2021. Available online: https://patents.google.com/patent/WO2021022103A1/en (accessed on 25 August 2025).
- Tesson, N.; Jiménez González, C.; Nienaltowski, T.; Pogoda, D.; Krzyzanowski, M.; Pawlowska, J. Cocrystals of (r)-Baclofen. European Patent No. EP3674287A1, 1 July 2020. Available online: https://patents.google.com/patent/EP3674287A1/en (accessed on 22 August 2025).
- Tesson, N.; Trilla Castaño, M.; Comely, A.C. Solid Compositions of Cocrystals of Cannabinoids. International Publication No. WO2020089424A1, 7 May 2020. Available online: https://patents.google.com/patent/WO2020089424A1/en (accessed on 22 August 2025).
- Mkrtchyan, G.; Hoerner, J.K.; Couch, R.W.; Bis, J.A.; Caino, S.A.R. Cocrystals of Cannabinoids. European Patent No. EP4085041A1, 9 November 2022. Available online: https://patents.google.com/patent/EP4085041A1/en (accessed on 22 August 2025).
- Benita, S.; Nassar, T. Stable Efficient Cosmetic Preparations. U.S. Patent No. US20240315937A1, 26 September 2024. Available online: https://patents.google.com/patent/US20240315937A1/en (accessed on 21 August 2025).
| Administration Route | Cocrystal | Method of Preparation | Observations | Ref. |
|---|---|---|---|---|
| Oral | Ketoconazole–fumaric acid | Controlled cocrystallization process by cooling | Bioavailability improved by increased cocrystal solubility and fumaric acid-mediated controlled release of ketoconazole. | [21] |
| Oral | Curcumin–N-acetylcysteine | Antisolvent gas technique using supercritical carbon dioxide | Enhanced antinociceptive and anti-inflammatory effects, related to improved bioavailability. | [22] |
| Pulmonary | Remdesivir– salicylic acid | Combined liquid-assisted grinding and thermal annealing | Cocrystal successfully reproduced using spray drying for inhaled dry powder formulation. | [23] |
| Intranasal | Favipiravir– isonicotinamide | Neat grinding combined with spray freeze-drying for intranasal dry powder formulation | Enhanced adhesion to nasal mucosa and prolonged retention time to nasal epithelium. | [24] |
| Transdermal | Meloxicam–salicylic acid | Crystallization method at room temperature | Reduced permeation by incorporation on non-ionic gel due to higher viscosity in comparison to the suspension. | [25] |
| Topical | Curcumin–pyrogallol | Liquid-assisted grinding method | Cocrystal incorporated into ointment accelerated complete skin regeneration and minimized scar formation. | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Marcos Valdez, M.M.; Sperandeo, N.R.; Bueno, M.S.; Garnero, C. Pharmaceutical Cocrystals in Drug-Delivery Technologies: Advances from Rational Design to Therapeutic Applications. Pharmaceutics 2026, 18, 128. https://doi.org/10.3390/pharmaceutics18010128
Marcos Valdez MM, Sperandeo NR, Bueno MS, Garnero C. Pharmaceutical Cocrystals in Drug-Delivery Technologies: Advances from Rational Design to Therapeutic Applications. Pharmaceutics. 2026; 18(1):128. https://doi.org/10.3390/pharmaceutics18010128
Chicago/Turabian StyleMarcos Valdez, Marina Monserrat, Norma Rebeca Sperandeo, Maria Soledad Bueno, and Claudia Garnero. 2026. "Pharmaceutical Cocrystals in Drug-Delivery Technologies: Advances from Rational Design to Therapeutic Applications" Pharmaceutics 18, no. 1: 128. https://doi.org/10.3390/pharmaceutics18010128
APA StyleMarcos Valdez, M. M., Sperandeo, N. R., Bueno, M. S., & Garnero, C. (2026). Pharmaceutical Cocrystals in Drug-Delivery Technologies: Advances from Rational Design to Therapeutic Applications. Pharmaceutics, 18(1), 128. https://doi.org/10.3390/pharmaceutics18010128

