Navigating the Global Regulatory Landscape for Exosome-Based Therapeutics: Challenges, Strategies, and Future Directions
Abstract
1. Introduction
2. Exosome-Based Therapeutics in Clinical Trials
3. Global Regulatory Frameworks for EV
3.1. United States Regulatory Framework
3.2. European Union Regulatory Framework
3.3. Japan Regulatory Framework
3.4. South Korea Regulatory Framework
3.5. Taiwan Regulatory Framework
3.6. Chinese Regulatory Framework
3.7. Indian Regulatory Framework
3.8. United Kingdom Regulatory Framework
3.9. Switzerland Regulatory Framework
4. Regulatory Challenges in Clinical Trials and EV Research
5. Harmonization of the EV Regulatory Framework
6. Future Directions, Opportunities, and Policy Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATMP | Advanced Therapy Medicinal Products |
CBER | Center for Biologics Evaluation and Research |
CDER | Center for Drug Evaluation and Research |
ISEV | International Society for Extracellular |
FDA | Food and Drug Administration |
GMP | Good Manufacturing Practices |
MSC | Mesenchymal Stem Cell |
PMD | Pharmaceuticals and Medical Devices |
ASRM | Act on the Safety of Regenerative Medicine |
EMA | European Medicines Agency |
PMDA | Pharmaceuticals and Medical Devices Agency |
MFDS | Ministry of Food and Drug Safety |
TFDA | Taiwan Food and Drug Administration |
CDSCO | Central Drugs Standard Control Organization |
ICMR | Indian Council of Medical Research |
TGA | Therapeutic Goods Administration |
NMPA | National Medical Products Administration |
MHRA | Medicines and Healthcare Products Regulatory Agency |
PHS | Public Health Service |
IND | Investigational New Drug |
BLA | Biologics License Application |
CMC | Chemical, Manufacturing, and Control |
CAT | Committee for Advanced Therapies |
RMA | Regenerative Medicine Act |
GTP | Good Tissue Practice |
GCP | Good Clinical Practice |
MISEV | Minimal Information for Studies of Extracellular Vesicles |
EV | Extracellular Vesicles |
MOA | Mechanism of Action |
ICH | International Conference on Harmonization |
CTN | Clinical Trial Notification |
CTX | Clinical Trial Exemption |
CTA | Clinical Trial Application |
ICTRP | International Clinical Trials Registry Platform |
References
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Lee, K.W.A.; Chan, L.K.W.; Hung, L.C.; Lam, P.K.W.; Park, Y.; Yi, K.H. Clinical Applications of Exosomes: A Critical Review. Int. J. Mol. Sci. 2024, 25, 7794. [Google Scholar] [CrossRef]
- Cheng, C.H.; Hao, W.R.; Cheng, T.H. Stem cell exosomes: New hope for recovery from diabetic brain hemorrhage. World J. Diabetes 2024, 15, 2264–2271. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Xu, K.; Zheng, X.; Chen, T.; Wang, J.; Song, Y.; Shao, Y.; Zheng, S. Application of Exosomes as Liquid Biopsy in Clinical Diagnosis. Signal Transduct. Target. Ther. 2020, 5, 144. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, J.; Feghhi, M.; Etemadi, T. A Review on Exosomes Application in Clinical Trials: Perspective, Questions, and Challenges. Cell Commun. Signal 2022, 20, 145. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Luh, F.; Ho, Y.S.; Yen, Y. Exosomes: A review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J. Biomed. Sci. 2024, 31, 67. [Google Scholar] [CrossRef]
- Choudhery, M.S.; Arif, T.; Mahmood, R.; Harris, D.T. Stem Cell-Based Acellular Therapy: Insight into Biogenesis, Bioengineering and Therapeutic Applications of Exosomes. Biomolecules 2024, 14, 792. [Google Scholar] [CrossRef]
- Newton, W.C.; Kim, J.W.; Luo, J.Z.Q.; Luo, L. Stem cell-derived exosomes: A novel vector for tissue repair and diabetic therapy. J. Mol. Endocrinol. 2017, 59, R155–R165. [Google Scholar] [CrossRef]
- Chu, C.-H.; Lee, R.P.; Wu, W.T.; Chen, I.-H.; Yeh, K.T.; Wang, C.C. Advancing Osteoarthritis Treatment: The Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes and Biomaterial Integration. Biomedicines 2024, 12, 2478. [Google Scholar] [CrossRef]
- Kar, R.; Dhar, R.; Mukherjee, S.; Nag, S.; Gorai, S.; Mukerjee, N.; Mukherjee, D.; Vatsa, R.; Jadhav, M.; Ghosh, A.; et al. Exosome-Based Smart Drug Delivery Tool for Cancer Theranostics. ACS Biomater. Sci. Eng. 2023, 9, 577–594. [Google Scholar] [CrossRef]
- Yong, T.; Zhang, X.; Bie, N.; Zhang, H.; Zhang, X.; Li, F.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H.A.; et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 2019, 10, 3838. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.; Lopes, B.; Sousa, A.C.; Moreira, A.; Coelho, A.; Alvites, R.; Alves, N.; Geuna, S.; Mauricio, A.C. Advancements and Insights in Exosome-Based Therapies for Wound Healing: A Comprehensive Systematic Review (2018–June 2023). Biomedicines 2023, 11, 2099. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zeng, S.; Gong, Z.; Yan, Y. Exosome-based immunotherapy: A promising approach for cancer treatment. Mol. Cancer 2020, 19, 160. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Lei, C.; Liu, S.; Cui, Y.; Wang, C.; Qian, K.; Li, T.; Shen, Y.; Fan, X.; Lin, F.; et al. CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat. Commun. 2019, 10, 4355. [Google Scholar] [CrossRef]
- Wang, C.K.; Tsai, T.H.; Lee, C.H. Regulation of exosomes as biologic medicines: Regulatory challenges faced in exosome development and manufacturing processes. Clin. Transl. Sci. 2024, 17, e13904. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lin, E.Y.; Chiou, T.W.; Harn, H.J. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Tzu Chi Med. J. 2020, 32, 113–120. [Google Scholar] [CrossRef]
- Steven, R.B.; Steven, M.J. Engineering Quality Control into Biomanufacturing of Extracellular Vesicle-Based Products; University of Maryland: Washington, DC, USA, 2025. [Google Scholar]
- U.S. Food and Drug Administration. Facts About the Current Good Manufacturing Practice (CGMP); U.S. Food and Drug Administration: Silver Spring, MD, USA, 2025. [Google Scholar]
- EMA. Good Manufacturing Practice; European Medicines Agency: Amsterdam, The Netherlands, 2025. [Google Scholar]
- Wiest, E.F.; Zubair, A.C. Generation of Current Good Manufacturing Practices-Grade Mesenchymal Stromal Cell-Derived Extracellular Vesicles Using Automated Bioreactors. Biology 2025, 14, 313. [Google Scholar] [CrossRef]
- Nolan, K.J. Enforcement of Current Good Manufacturing Practices. In Pharmaceutical Sciences Encyclopedia; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 1–22. [Google Scholar]
- Harris, J.R. Good Manufacturing Practices (GMP) and Related FDA Guidelines. In Pharmaceutical Manufacturing Handbook; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 1–43. [Google Scholar]
- Mukherjee, R. The Silent Battle for Extracellular Vesicle Regulation: Why Extracellular Vesicle Therapies Remain in Legal Grey Zones Worldwide. 2025.
- FDA. International Regulatory Harmonization; FDA: Silver Spring, MD, USA, 2025. [Google Scholar]
- Chu, M.; Wang, H.; Bian, L.; Huang, J.; Wu, D.; Zhang, R.; Fei, F.; Chen, Y.; Xia, J. Nebulization Therapy with Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes for COVID-19 Pneumonia. Stem Cell Rev. Rep. 2022, 18, 2152–2163. [Google Scholar] [CrossRef]
- Raghav, A.; Khan, Z.A.; Upadhayay, V.K.; Tripathi, P.; Gautam, K.A.; Mishra, B.K.; Ahmad, J.; Jeong, G.B. Mesenchymal Stem Cell-Derived Exosomes Exhibit Promising Potential for Treating SARS-CoV-2-Infected Patients. Cells 2021, 10, 587. [Google Scholar] [CrossRef]
- Zani-Ruttenstock, E.; Antounians, L.; Khalaj, K.; Figueira, R.L.; Zani, A. The Role of Exosomes in the Treatment, Prevention, Diagnosis, and Pathogenesis of COVID-19. Eur. J. Pediatr. Surg. 2021, 31, 326–334. [Google Scholar] [CrossRef]
- Park, H.S.; Cetin, E.; Siblini, H.; Seok, J.; Alkelani, H.; Alkhrait, S.; Liakath Ali, F.; Mousaei Ghasroldasht, M.; Beckman, A.; Al-Hendy, A. Therapeutic Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles to Treat PCOS. Int. J. Mol. Sci. 2023, 24, 11151. [Google Scholar] [CrossRef]
- Lee, B.C.; Kang, I.; Yu, K.R. Therapeutic Features and Updated Clinical Trials of Mesenchymal Stem Cell (MSC)-Derived Exosomes. J. Clin. Med. 2021, 10, 711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Q.; Zhang, X.; Huang, H.; Tang, S.; Chai, Y.; Xu, Z.; Li, M.; Chen, X.; Liu, J.; et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J. Nanobiotechnology 2022, 20, 279. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, W.; Li, M.; Zheng, A. Exosome-Based Carrier for RNA Delivery: Progress and Challenges. Pharmaceutics 2023, 15, 598. [Google Scholar] [CrossRef] [PubMed]
- Chew, F.Y.; Tsai, C.H.; Chang, K.H.; Chang, Y.K.; Chou, R.H.; Liu, Y.J. Exosomes as promising frontier approaches in future cancer therapy. World J. Gastrointest. Oncol. 2025, 17, 100713. [Google Scholar] [CrossRef] [PubMed]
- Sonar, S. Clinical trial status of exosomes-based cancer theranostics. Clin. Transl. Discov. 2024, 4, e327. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Y.; Yang, G.Y. Therapeutic application of exosomes in ischaemic stroke. Stroke Vasc. Neurol. 2021, 6, 483–495. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, W.; Ye, J.; Wang, Y. Potential Role of Exosomes in Ischemic Stroke Treatment. Biomolecules 2022, 12, 115. [Google Scholar] [CrossRef]
- Baghaei, K.; Tokhanbigli, S.; Asadzadeh, H.; Nmaki, S.; Reza Zali, M.; Hashemi, S.M. Exosomes as a novel cell-free therapeutic approach in gastrointestinal diseases. J. Cell. Physiol. 2019, 234, 9910–9926. [Google Scholar] [CrossRef]
- Sharma, A.; Yadav, A.; Nandy, A.; Ghatak, S. Insight into the Functional Dynamics and Challenges of Exosomes in Pharmaceutical Innovation and Precision Medicine. Pharmaceutics 2024, 16, 709. [Google Scholar] [CrossRef]
- Li, X.; Corbett, A.L.; Taatizadeh, E.; Tasnim, N.; Little, J.P.; Garnis, C.; Daugaard, M.; Guns, E.; Hoorfar, M.; Li, I.T.S. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019, 3, 011503. [Google Scholar] [CrossRef] [PubMed]
- Ren, K. Exosomes in perspective: A potential surrogate for stem cell therapy. Odontology 2019, 107, 271–284. [Google Scholar] [CrossRef]
- Ludwig, N.; Whiteside, T.L.; Reichert, T.E. Challenges in Exosome Isolation and Analysis in Health and Disease. Int. J. Mol. Sci. 2019, 20, 4684. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Espinosa, I.; Serrato, J.A.; Ortiz-Quintero, B. The Role of Exosome-Derived microRNA on Lung Cancer Metastasis Progression. Biomolecules 2023, 13, 1574. [Google Scholar] [CrossRef] [PubMed]
- Shaun, S. Exosomes as therapeutics and drug delivery vehicles: Global regulatory perspectives. Cell Gene Ther. Insights 2020, 6, 1561–1569. [Google Scholar] [CrossRef]
- Pawanbir, S.; Laure, B.-D.; Satya, P.D. Exploratory assessment of the current EU regulatory framework for development of advanced therapies. J. Commer. Biotechnol. 2010, 16, 331–336. [Google Scholar] [CrossRef]
- Daisuke, M.; Teruhide, Y.; Takami, I.; Masakazu, H.; Kazuhiro, T.; Daisaku, S. Regulatory Frameworks for Gene and Cell Therapies in Japan. Adv. Exp. Med. Biol. 2015, 871, 147–162. [Google Scholar]
- Lener, T.; Gimona, M.; Aigner, L.; Borger, V.; Buzas, E.; Camussi, G.; Chaput, N.; Chatterjee, D.; Court, F.A.; Del Portillo, H.A.; et al. Applying extracellular vesicles based therapeutics in clinical trials—An ISEV position paper. J. Extracell. Vesicles 2015, 4, 30087. [Google Scholar] [CrossRef]
- Batrakova, E.V.; Kim, M.S. Development and regulation of exosome-based therapy products. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 744–757. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, S.; Kim, M.J.; Kim, J.H. Brief summary of the regulatory frameworks of regenerative medicine therapies. Front. Pharmacol. 2024, 15, 1486812. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, S.; Grippin, A.J.; Teng, L.; Lee, A.S.; Kim, B.Y.S.; Jiang, W. Engineering therapeutical extracellular vesicles for clinical translation. Trends Biotechnol. 2025, 43, 61–82. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration, Center for Biologics Evaluation and Research. Guidance for Industry: Considerations for Quality Testing of Cellular and Gene Therapy Products; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2023. [Google Scholar]
- Stawarska, A.; Bamburowicz-Klimkowska, M.; Rundén-Pran, E.; Dusinska, M.; Cimpan, M.R.; Rios-Mondragon, I.; Grudzinski, I.P. Extracellular Vesicles as Next-Generation Diagnostics and Advanced Therapy Medicinal Products. Int. J. Mol. Sci. 2024, 25, 6533. [Google Scholar] [CrossRef]
- ICH. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. 2024. Available online: https://database.ich.org/sites/default/files/Q5E_Guideline.pdf (accessed on 24 July 2025).
- Fujita, M.; Hatta, T.; Ikka, T.; Onishi, T. The urgent need for clear and concise regulations on exosome-based interventions. Stem Cell Rep. 2024, 19, 1517–1519. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Consumer Alert on Regenerative Medicine Products Including Stem Cells and Exosomes; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2024. [Google Scholar]
- Clinic. Centre, Z.C. Summary of Global Requirements for the Use of Human-derived Exosomes in Cosmetic Ingredients. Available online: https://www.zmuni.com/en/news/summary-of-global-requirements-for-the-use-of-humanderived/#:~:text=European%20Union,depicted%20in%20the%20image%20below) (accessed on 29 March 2024).
- Lysaght, T. Accelerating regenerative medicine: The Japanese experiment in ethics and regulation. Regen. Med. 2017, 12, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Kawamoto, A. Regenerative medicine legislation in Japan for fast provision of cell therapy products. Clin. Pharmacol. Ther. 2016, 99, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, A.; Terai, S.; Horiguchi, I.; Homma, Y.; Saito, A.; Nakamura, N.; Sato, Y.; Ochiya, T.; Kino-Oka, M.; Working Group of Attitudes for Preparation and Treatment of Exosomes of Japanese Society of Regenerative Medicine. Basic points to consider regarding the preparation of extracellular vesicles and their clinical applications in Japan. Regen. Ther. 2022, 21, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Center for iPS Cell Research and Application, Kyoto University (CiRA). The Need for Regulatory Measures Regarding Exosome Therapy; CiRA: Kyoto, Japan, 2024. [Google Scholar]
- Verter, F. South Korea Expands Access to Regenerative Medicine for Serious Illnesses; Parent’s Guide to Cord Blood Foundation: Brookeville, MD, USA, 2019. [Google Scholar]
- Patsnap Synapse. S&E Bio Gains Korea’s First Approval for Exosome Therapy Trial; Patsnap Synapse: Singapore, 2025. [Google Scholar]
- TFDA. Association for the Advancement of Blood & Biotherapies; TFDA: Dares Salaam, Tanzania, 2025. [Google Scholar]
- Bridge, P. Taiwan’s Regulatory Framework for Regenerative Medicine. Available online: https://www.pacificbridgemedical.com/uncategorized/taiwan-regulatory-framework-for-regenerative-medicine/ (accessed on 18 May 2025).
- Chao, W.Y.; Chang, Y.T.; Tsai, Y.T.; Huang, M.C.; Lin, Y.C.; Wu, M.M.; Chi, J.F.; Lin, C.L.; Cheng, H.F.; Wu, S.M. Update on Regulation of Regenerative Medicine in Taiwan. Adv. Exp. Med. Biol. 2023, 1430, 211–219. [Google Scholar] [CrossRef]
- Chen, Y.C.; Cheng, H.F.; Yeh, M.K. Cell Therapy Regulation in Taiwan. Cell Transplant. 2017, 26, 483–492. [Google Scholar] [CrossRef]
- EverRise Biomedical Co., Ltd. ExoOne Has Been Granted Approval by the Ministry of Health and Welfare to Use Human-Derived Exosomes as Cosmetic Ingredients, Marking the First Case in Taiwan. Available online: https://www.taiwan-healthcare.org/en/news-detail?id=0scizkifbr66p1ui (accessed on 18 March 2025).
- Atlantis Bioscience. Navigating Cell & Gene Therapy Regulations in China—How Does the Dual-Track System Works? 2024. Available online: https://www.atlantisbioscience.com/blog/how-does-chinas-dual-track-regulatory-system-works-for-cell-therapy-reasearch-and-commercialization/?srsltid=AfmBOorTXQOzw0hi_dOkKxKJsp_c_R3S0T9ZtjwH-7UuJZ4zv2E6053F#:~:text=Since%202017%2C%20China%20has,for%20investigator&text=implemented%20a%20dual%2Dtrack%20regulatory,for%20investigator&text=framework%20for%20cell%20therapy%2C,for%20investigator&text=providing%20distinct%20and%20clear,for%20investigator (accessed on 24 July 2025).
- AstuteAnalytica India Pvt. Ltd. Exosome Research Products Market in China Is Rapidly Expanding, Driven by Significant Government Funding, Cutting-Edge Applications in Diagnostics and Drug Delivery, and Increasing Collaborations Among Research Institutions and Biotech Firms, Positioning China as a Leader in Biomedical Innovation. 2024. Available online: https://www.globenewswire.com/news-release/2024/11/12/2979489/0/en/China-Exosome-Research-Products-Market-is-Poised-to-Reach-Valuation-of-Over-US-148-93-Million-By-2032-Astute-Analytica.html (accessed on 24 July 2025).
- S, S.K.; Joga, R.; Srivastava, S.; Nagpal, K.; Dhamija, I.; Grover, P.; Kumar, S. Regulatory landscape and challenges in CAR-T cell therapy development in the US, EU, Japan, and India. Eur. J. Pharm. Biopharm. 2024, 201, 114361. [Google Scholar] [CrossRef]
- ClinRegs. Clinical Research Regulation For India—ClinRegs; NIAID: Bethesda, MD, USA, 2025. [Google Scholar]
- AABB.org-India. Stem Cell Research Guidelines; AABB: Bethesda, MD, USA, 2025. [Google Scholar]
- Jain, V. Regulation of Biologics in India; Morulaa HealthTech.: Chennai, India, 2016. [Google Scholar]
- Thakur, A.; Rai, D. Global requirements for manufacturing and validation of clinical grade extracellular vesicles. J. Liq. Biopsy 2024, 6, 100278. [Google Scholar] [CrossRef]
- Medicines and Healthcare products Regulatory Agency. Advanced Therapy Medicinal Products: Regulation and Licensing in UK; Medicines and Healthcare products Regulatory Agency: London, UK, 2015. [Google Scholar]
- Asadpour, A.; Yahaya, B.H.; Bicknell, K.; Cottrell, G.S.; Widera, D. Uncovering the gray zone: Mapping the global landscape of direct-to-consumer businesses offering interventions based on secretomes, extracellular vesicles, and exosomes. Stem Cell Res. Ther. 2023, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Basiadima, M. Can Exosomes Be Injected in the Face? Premier Laser Clinic: Sydney, Australia, 2024. [Google Scholar]
- Devlin, H. Beauty Clinics in UK Offering Banned Treatments Derived from Human Cells; The Guardian: London, UK, 2025. [Google Scholar]
- Bukovac, P.K.; Hauser, M.; Lottaz, D.; Marti, A.; Schmitt, I.; Schochat, T. The Regulation of Cell Therapy and Gene Therapy Products in Switzerland. Adv. Exp. Med. Biol. 2023, 1430, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Swissmedic. Legal Framework Governing the Use of Tissues and Cells of Human Origin; Swissmedic: Bern, Switzerland, 2019. [Google Scholar]
- Queen, D.; Avram, M.R. Exosomes for Treating Hair Loss: A Review of Clinical Studies. Dermatol. Surg. 2025, 51, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.H.; Ryu, S.W.; Choi, H.; You, S.; Park, J.; Choi, C. Manufacturing Therapeutic Exosomes: From Bench to Industry. Mol. Cells 2022, 45, 284–290. [Google Scholar] [CrossRef]
- Maitra, S.; Mukerjee, N.; Alharbi, H.M.; Ghosh, A.; Alexiou, A.; Thorat, N.D. Targeted therapies for HPV-associated cervical cancer: Harnessing the potential of exosome-based chipsets in combating leukemia and HPV-mediated cervical cancer. J. Med. Virol. 2024, 96, e29596. [Google Scholar] [CrossRef]
- Willis, G.R.; Kourembanas, S.; Mitsialis, S.A. Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency. Front. Cardiovasc. Med. 2017, 4, 63. [Google Scholar] [CrossRef]
- Singh, K.; Nalabotala, R.; Koo, K.M.; Bose, S.; Nayak, R.; Shiddiky, M.J.A. Separation of distinct exosome subpopulations: Isolation and characterization approaches and their associated challenges. Analyst 2021, 146, 3731–3749. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Qin, F.; Chen, J. Exosomes: A promising avenue for cancer diagnosis beyond treatment. Front. Cell Dev. Biol. 2024, 12, 1344705. [Google Scholar] [CrossRef]
- Kibria, G.; Ramos, E.K.; Wan, Y.; Gius, D.R.; Liu, H. Exosomes as a Drug Delivery System in Cancer Therapy: Potential and Challenges. Mol. Pharm. 2018, 15, 3625–3633. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, X.; He, M.; Shang, Y.; Tetlow, A.L.; Godwin, A.K.; Zeng, Y. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 2019, 3, 438–451. [Google Scholar] [CrossRef]
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal 2021, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. IND Applications for Clinical Investigations: Clinical Protocols; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2024. [Google Scholar]
- The European Parliament; The Council of The European Union. Regulation (EC) No 1394/2007 of 13 November 2007 on Advanced Therapy Medicinal Products; The European Parliament: Strasbourg, France, 2007; L 324; pp. 121–137. [Google Scholar]
- The European Parliament; The Council of The European Union. Regulation (EU) No 536/2014 of 16 April 2014 on Clinical Trials on Medicinal Products for Human Use; The European Parliament: Strasbourg, France, 2014; L 158; pp. 1–76. [Google Scholar]
- Pharmaceuticals and Medical Devices Agency. Clinical Trial Notification (CTN)—Process and Requirements. 2025. Available online: https://www.pmda.go.jp/english/review-services/regulatory-info/0016.html (accessed on 24 July 2025).
- Ministry of Food and Drug Safety. How to Launch an Investigational New Drug (IND) Trial in South Korea. 2025. Available online: https://www.precisionformedicine.com/blog/how-to-launch-a-clinical-trial-in-south-korea-investigational-new-drug-application-process (accessed on 24 July 2025).
- TFDA—Taiwan Food and Drug Administration. Overview of Investigational New Drug (IND) Application Process. 2025. Available online: https://www.cde.org.tw/drugen/25797/26014/26039/26041/26043/normalPost (accessed on 24 July 2025).
- Central Drugs Standard Control Organisation. The New Drugs and Clinical Trials Rules, 2019. G.S.R. 227(E). 2019. Available online: https://cdsco.gov.in/opencms/opencms/en/Acts-and-rules/New-Drugs/ (accessed on 24 July 2025).
- Therapeutic Goods Administration. Clinical Trial Notification (CTN) Scheme; Therapeutic Goods Administration: Canberra, Australia, 2025. [Google Scholar]
- National Medical Products Administration. Clinical Technical Requirements for Drugs Marketed Overseas but Not Marketed in China; National Medical Products Administration: Beijing, China, 2020. [Google Scholar]
- Swissmedic. Clinical Trials on Medicinal Products; Swissmedic: Bern, Switzerland, 2025. [Google Scholar]
- Medicines and Healthcare products Regulatory Agency. Advanced Therapy Medicinal Products: Regulation and Licensing in the UK; Medicines and Healthcare products Regulatory Agency: London, UK, 2025. [Google Scholar]
- Milne, C.P.; Mittra, J.; Kojima, N.; Sugiyama, D.; Awatin, J.; Simmons, G. Prospects for Harmonizing Regulatory Science Programs in Europe, Japan, and the United States to Advance Regenerative Medicine. Ther. Innov. Regul. Sci. 2016, 50, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Ndomondo-Sigonda, M.; Miot, J.; Naidoo, S.; Masota, N.; Ng’andu, B.; Ngum, N.; Kaale, E. Harmonization of Medical Products Regulation: A Key Factor for Improving Regulatory Capacity in the East African Community. BMC Public Heal. 2021, 21, 187. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom-Gommers, L.; Mullin, T. International Conference on Harmonization: Recent Reforms as a Driver of Global Regulatory Harmonization and Innovation in Medical Products. Clin. Pharmacol. Ther. 2019, 105, 926–931. [Google Scholar] [CrossRef]
- Rosemann, A.; Chaisinthop, N. The pluralization of the international: Resistance and alter-standardization in regenerative stem cell medicine. Soc. Stud. Sci. 2016, 46, 112–139. [Google Scholar] [CrossRef]
- Kleiderman, E.; Boily, A.; Hasilo, C.; Knoppers, B.M. Overcoming barriers to facilitate the regulation of multi-centre regenerative medicine clinical trials. Stem Cell Res. Ther. 2018, 9, 307. [Google Scholar] [CrossRef]
- Ghaffari, K.; Moradi-Hasanabad, A.; Sobhani-Nasab, A.; Javaheri, J.; Ghasemi, A. Application of cell-derived exosomes in the hematological malignancies therapy. Front. Pharmacol. 2023, 14, 1263834. [Google Scholar] [CrossRef]
- Li, J.; Wang, A.; Guo, H.; Zheng, W.; Chen, R.; Miao, C.; Zheng, D.; Peng, J.; Wang, J.; Chen, Z. Exosomes: Innovative biomarkers leading the charge in non-invasive cancer diagnostics. Theranostics 2025, 15, 5277–5311. [Google Scholar] [CrossRef]
- Youssef, E.; Palmer, D.; Fletcher, B.; Vaughn, R. Exosomes in Precision Oncology and Beyond: From Bench to Bedside in Diagnostics and Therapeutics. Cancers 2025, 17, 940. [Google Scholar] [CrossRef]
- Das, C.K.; Jena, B.C.; Banerjee, I.; Das, S.; Parekh, A.; Bhutia, S.K.; Mandal, M. Exosome as a Novel Shuttle for Delivery of Therapeutics across Biological Barriers. Mol. Pharm. 2019, 16, 24–40. [Google Scholar] [CrossRef]
- Sitbon, A.; Delmotte, P.R.; Pistorio, V.; Halter, S.; Gallet, J.; Gautheron, J.; Monsel, A. Mesenchymal stromal cell-derived extracellular vesicles therapy openings new translational challenges in immunomodulating acute liver inflammation. J. Transl. Med. 2024, 22, 480. [Google Scholar] [CrossRef]
- Jaalouk, D.; Prasai, A.; Goldberg, D.J.; Yoo, J.Y. Regulatory Aspects of Regenerative Medicine in the United States and Abroad. Dermatol. Rev. 2024, 5. [Google Scholar] [CrossRef]
- Jafari, N.; Zolfi Gol, A.; Shahabi Rabori, V.; Saberiyan, M. Exploring the role of exosomal and non-exosomal non-coding RNAs in Kawasaki disease: Implications for diagnosis and therapeutic strategies against coronary artery aneurysms. Biochem. Biophys. Rep. 2025, 42, 101970. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, Z.; He, L.; Liu, C.; Wang, N.; Rong, L.; Liu, B. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration via the PTEN/AKT/mTOR pathway following spinal cord injury. Stem Cell Res. Ther. 2021, 12, 224. [Google Scholar] [CrossRef]
- Vakil, D.; Doshi, R.; McKinnirey, F.; Sidhu, K. Stem Cell-Derived Exosomes as New Horizon for Cell-Free Therapeutic Development: Current Status and Prospects; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
Region/Country | Regulatory Authority | Regulatory Status & Classification | Classification Focus |
---|---|---|---|
United States | U.S. Food and Drug Administration (FDA) | EV are regulated as biologics/drugs and subject to premarket review; no products approved to date | Content characterization; physiological function |
European Union | European Medicines Agency (EMA) | EV fall under the advanced therapy medicinal product (ATMP) regulation; classification criteria remain unclear | Cargo composition; functional (RNA) content |
Japan | Pharmaceuticals and Medical Devices Agency (PMDA) | Dedicated subcommittees evaluate safety and quality of EV therapies | Source of manufacture; living vs. nonliving |
South Korea | Ministry of Food and Drug Safety (MFDS) | Published specific guidelines for EV–based therapies | Manufacturing source |
Taiwan | Taiwan Food and Drug Administration (TFDA) | Regenerative Medicine Development Act encompasses EV; cosmetic use explicitly permitted | Manufacturing source; regenerative applications |
India | Central Drugs Standard Control Organization (CDSCO) & ICMR | Stem-cell therapies regulated; no EV-specific therapeutic guidelines established | Nascent and evolving |
Australia | Therapeutic Goods Administration (TGA) | Stem-cell and tissue therapies regulated since 2019; no dedicated EV guidelines | Nascent and evolving |
China | National Medical Products Administration (NMPA) | EV products regulated under the same framework as biological new drug applications | Nascent and evolving |
Switzerland | Swiss Agency for Therapeutic Products (Swissmedic) | EV-derived products classified as biological medicines; may be regulated as ATMPs when cells are extensively manipulated | Nascent and evolving |
United Kingdom | Medicines and Healthcare Products Regulatory Agency (MHRA) | EV therapies classified as biological medicinal products; ATMP framework applies if derived from manipulated cells | Nascent and evolving |
International Clinical Trials Registry Platform (ICTRP) by Region | Trial Counts | Classification | Regulatory Submission Pathways |
---|---|---|---|
U.S.A-FDA | 33 | Biologics (IND-regulated) | IND (21 CFR 312) |
EU-EMA (CTIS) | 3 | ATMP (Reg EC 1394/2007) | CTA via CTIS (Reg EU 536/2014) |
Japan-PMDA | 14 | Regenerative-medical product (PMD Act) | CTN (Clinical Trial Notification) |
South Korea-MFDS | 5 | Biologics | IND authorization (CTN/CTA equivalent) |
Taiwan-TFDA | 3 | New drug/Biologics | IND application; c-IRB/CTN for MRCTs |
India-CDSCO | 8 | Biologics/New drug (NDCTR 2019) | CTA under NDCT Rules; IRB |
Australia-TGA | 5 | Biologicals | CTN or CTX scheme |
China-NMPA | 119 | Biologics/Cell-therapy dual track | IND submission (Pharma Admin Law) |
Switzerland-Swissmedic | 1 | Medicinal products (ATMP-like under TPA/HRA) | CTA under ClinO; eDok_KLV dossier structure |
United Kingdom | 5 | ATMP (MHCTR 2004/amend 2024) | CTA via IRAS combined MHRA/REC review |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, N.; Arora, S. Navigating the Global Regulatory Landscape for Exosome-Based Therapeutics: Challenges, Strategies, and Future Directions. Pharmaceutics 2025, 17, 990. https://doi.org/10.3390/pharmaceutics17080990
Verma N, Arora S. Navigating the Global Regulatory Landscape for Exosome-Based Therapeutics: Challenges, Strategies, and Future Directions. Pharmaceutics. 2025; 17(8):990. https://doi.org/10.3390/pharmaceutics17080990
Chicago/Turabian StyleVerma, Nagendra, and Swati Arora. 2025. "Navigating the Global Regulatory Landscape for Exosome-Based Therapeutics: Challenges, Strategies, and Future Directions" Pharmaceutics 17, no. 8: 990. https://doi.org/10.3390/pharmaceutics17080990
APA StyleVerma, N., & Arora, S. (2025). Navigating the Global Regulatory Landscape for Exosome-Based Therapeutics: Challenges, Strategies, and Future Directions. Pharmaceutics, 17(8), 990. https://doi.org/10.3390/pharmaceutics17080990