Wax-Based Sustained-Release Felodipine Oral Dosage Forms Manufactured Using Hot-Melt Extrusion and Their Resistance to Alcohol-Induced Dose Dumping
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.2.1. Preparation of Felodipine Granules by Hot-Melt Extrusion
2.2.2. Preparation of Compressed Tablets
2.2.3. Tensile Strength and Mechanical Strength of Tablets
2.2.4. Contact Angle Measurement
2.2.5. In Vitro Dissolution Testing
2.2.6. Effect of Ethanol on Felodipine Solubility
2.2.7. Effect of Ethanol on Felodipine Release Behaviour
2.2.8. Disintegration Testing
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. HME Manufacturing of Wax-Based Granules
3.2. Mechanical Properties of Tablets
3.3. In Vitro Dissolution Studies
3.3.1. Drug Release Profiles of Formulations with MCC
3.3.2. Drug Release Profiles of Formulations with Lactose Monohydrate
3.3.3. Release Kinetics: Korsmeyer–Peppas Model Analysis
3.4. Effect of Ethanol on Felodipine Release Behaviours
3.4.1. Felodipine Solubility in Ethanol-Containing Media
3.4.2. Ethanol Impact on Wax–Lactose Monohydrate Granules
3.4.3. Ethanol Impact on Wax–MCC Tablets
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Liu, D.; Jones, D.S.; Andrews, G.P. Hot-Melt Extrusion: An Emerging Manufacturing Technology for Drug Products. In Emerging Drug Delivery and Biomedical Engineering Technologies; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-322446-4. [Google Scholar]
- Mora-Castaño, G.; Millán-Jiménez, M.; Niederquell, A.; Schönenberger, M.; Shojaie, F.; Kuentz, M.; Caraballo, I. Amorphous Solid Dispersion of a Binary Formulation with Felodipine and HPMC for 3D Printed Floating Tablets. Int. J. Pharm. 2024, 658, 124215. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J.; Yi, S.; Xiong, S. Enhanced Felodipine Dissolution from High Drug Loading Amorphous Solid Dispersions with PVP/VA and Sodium Dodecyl Sulfate. J. Drug Deliv. Sci. Technol. 2019, 53, 101151. [Google Scholar] [CrossRef]
- Mansuroglu, Y.; Dressman, J. Factors That Influence Sustained Release from Hot-Melt Extrudates. Pharmaceutics 2023, 15, 1996. [Google Scholar] [CrossRef] [PubMed]
- Mahmah, O.; Tabbakh, R.; Kelly, A.; Paradkar, A. A Comparative Study of the Effect of Spray Drying and Hot-Melt Extrusion on the Properties of Amorphous Solid Dispersions Containing Felodipine. J. Pharm. Pharmacol. 2014, 66, 275–284. [Google Scholar] [CrossRef]
- Palazi, E.; Karavas, E.; Barmpalexis, P.; Kostoglou, M.; Nanaki, S.; Christodoulou, E.; Bikiaris, D.N. Melt Extrusion Process for Adjusting Drug Release of Poorly Water Soluble Drug Felodipine Using Different Polymer Matrices. Eur. J. Pharm. Sci. 2018, 114, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Patil, H.; Tiwari, R.V.; Repka, M.A. Hot-Melt Extrusion: From Theory to Application in Pharmaceutical Formulation. AAPS PharmSciTech 2016, 17, 20–42. [Google Scholar] [CrossRef]
- Becker, K.; Salar-Behzadi, S.; Zimmer, A. Solvent-Free Melting Techniques for the Preparation of Lipid-Based Solid Oral Formulations. Pharm. Res. 2015, 32, 1519–1545. [Google Scholar] [CrossRef]
- Soleimanian, Y.; Goli, S.A.H.; Shirvani, A.; Elmizadeh, A.; Marangoni, A.G. Wax-Based Delivery Systems: Preparation, Characterization, and Food Applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2994–3030. [Google Scholar] [CrossRef]
- Suryawanshi, S.; Pawar, R.; Gonnade, R.; Patil, S. Hot Melt Extrusion Assisted Felodipine Loaded Liquid Crystal Precursor with Enhanced Solubility and Sustained Drug Release Characteristics. Anal. Chem. Lett. 2022, 12, 745–760. [Google Scholar] [CrossRef]
- Croda. Chemicals Europe Syncrowax, DC020, Croda Oleochemicals Personal Care Datasheet. 2021. Available online: https://www.stobec.com/DATA/PRODUIT/1329~v~data_8039.pdf (accessed on 10 January 2025).
- Pham, L.; Christensen, J.M. Preparation of Acetaminophen Capsules Containing Beads Prepared by Hot-Melt Direct Blend Coating. Pharm. Dev. Technol. 2014, 19, 91–102. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, F.; McGinity, J.W. Properties of Lipophilic Matrix Tablets Containing Phenylpropanolamine Hydrochloride Prepared by Hot-Melt Extrusion. Eur. J. Pharm. Biopharm. 2001, 52, 181–190. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, H.; Fang, Y.; Shen, L.; Zhao, L. Lactose in Tablets: Functionality, Critical Material Attributes, Applications, Modifications and Co-Processed Excipients. Drug Discov. Today 2023, 28, 103696. [Google Scholar] [CrossRef] [PubMed]
- Alshetaili, A.; Almutairy, B.K.; Alshehri, S.M.; Repka, M.A. Development and Characterization of Sustained-Released Donepezil Hydrochloride Solid Dispersions Using Hot Melt Extrusion Technology. Pharmaceutics 2021, 13, 213. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.H.M.; Berardi, A.; Kok, J.H.; Thornton, A.W.; Dickhoff, B.H.J. The Impact of Lactose Type on Disintegration: An Integral Study on Porosity and Polymorphism. Eur. J. Pharm. Biopharm. 2022, 180, 251–259. [Google Scholar] [CrossRef]
- Weatherley, S.; Mu, B.O.; Thompson, M.R.; Sheskey, P.J.; O’Donnell, K.P. Hot-Melt Granulation in a Twin Screw Extruder: Effects of Processing on Formulations with Caffeine and Ibuprofen. J. Pharm. Sci. 2013, 102, 4330–4336. [Google Scholar] [CrossRef] [PubMed]
- Maclean, N.; Walsh, E.; Soundaranathan, M.; Khadra, I.; Mann, J.; Williams, H.; Markl, D. Exploring the Performance-Controlling Tablet Disintegration Mechanisms for Direct Compression Formulations. Int. J. Pharm. 2021, 599, 120221. [Google Scholar] [CrossRef]
- Rajan, J.; Rajan, V.; Kaur, B. Alcohol Induced Dose Dumping in Modified Release Formulations in Vivo and in Vitro Studies: Comprehensive Review. Int. J. Health Sci. 2022, 6, 8526–8543. [Google Scholar] [CrossRef]
- Kumar, S.; Maheshwari, D. Regulatory Expectations and Challenges in Alcohol-Induced Dose Dumping Studies: A Review. Dissolut. Technol. 2025, 32, 76–80. [Google Scholar] [CrossRef]
- Chen, K.; Chang, H.H.R.; Lugtu-Pe, J.; Gao, Y.; Liu, F.-C.; Kane, A.; Wu, X.Y. Exploration of a Novel Terpolymer Nanoparticle System for the Prevention of Alcohol-Induced Dose Dumping. Mol. Pharm. 2024, 21, 6257–6269. [Google Scholar] [CrossRef]
- Meyer, R.J.; Hussain, A.S. Awareness Topic: Mitigating the Risks of Ethanol Induced Dose Dumping from Oral Sustained/Controlled Release Dosage Forms. In Proceedings of the FDA’s ACPS Meeting, Silver Spring, MD, USA, 20–21 October 2005; Available online: https://cdn.cocodoc.com/cocodoc-form-pdf/pdf/14865706--awareness-topic-mitigating-the-risks-of-ethanol-induced-dose-dumping-from-oral-sustained-controll-.pdf (accessed on 13 November 2019).
- U.S. Food and Drug Administration. Information for Healthcare Professionals: Hydromorphone Hydrochloride Extended-Release Capsules (Marketed as Palladone); FDA: Silver Spring, MD, USA, 2018. [Google Scholar]
- Fukuda, M.; Peppas, N.A.; McGinity, J.W. Floating Hot-Melt Extruded Tablets for Gastroretentive Controlled Drug Release System. J. Control. Release 2006, 115, 121–129. [Google Scholar] [CrossRef]
- Pitt, K.G.; Heasley, M.G. Determination of the Tensile Strength of Elongated Tablets. Powder Technol. 2013, 238, 169–175. [Google Scholar] [CrossRef]
- Val-lender, M. Appendix XVII G. Friability. In British Pharmacopoeia; British Pharmacopoeia Commission: London, UK, 2010; p. 441. [Google Scholar]
- Wahlgren, M.; Axenstrand, M.; Håkansson, Å.; Marefati, A.; Pedersen, B.L. In Vitro Methods to Study Colon Release: State of the Art and an Outlook on New Strategies for Better in-Vitro Biorelevant Release Media. Pharmaceutics 2019, 11, 95. [Google Scholar] [CrossRef]
- Bruschi, M.L. (Ed.) 5—Mathematical Models of Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing: Cambridge, UK, 2015; pp. 63–86. ISBN 978-0-08-100092-2. [Google Scholar]
- Cantor, S.L.; Hoag, S.W.; Augsburger, L.L. Formulation and Characterization of a Compacted Multiparticulate System for Modified Release of Water-Soluble Drugs—Part 1 Acetaminophen. Drug Dev. Ind. Pharm. 2009, 35, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Shah, V.; Patnaik, R.; Adams, W.; Hussain, A.; Conner, D.; Mehta, M.; Malinowski, H.; Lazor, J.; Huang, S.; et al. Bioavailability and Bioequivalence: An FDA Regulatory Overview. Pharm. Res. 2001, 18, 1645–1650. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. The European Pharmacopoeia 8th (Ph.Eur.); Council of Europe: Strasbourg, France, 2014; ISBN 978-3-7692-5325-2. [Google Scholar]
- Mohylyuk, V.; Hutton, T.; Dadou, S.; Li, S.; Jones, D.S.; Andrews, G.P. Development of Sustained Release Lipid-Based Matrix Microparticles for Vaginal Delivery Using Twin-Screw Hot Melt Extrusion. 2020. Available online: https://pureadmin.qub.ac.uk/ws/portalfiles/portal/239131119/2020.09.30._AAPS_Poster_SR_LB_Matrix_uParticles_VM_.pdf (accessed on 31 May 2025).
- Tian, Y.; Jones, D.S.; Donnelly, C.; Brannigan, T.; Li, S.; Andrews, G.P. A New Method of Constructing a Drug–Polymer Temperature–Composition Phase Diagram Using Hot-Melt Extrusion. Mol. Pharm. 2018, 15, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, X.; Long, Z.; Wang, S.; Zhang, J.; Wang, L. Preparation and Performance of Thermoplastic Starch and Microcrystalline Cellulose for Packaging Composites: Extrusion and Hot Pressing. Int. J. Biol. Macromol. 2020, 165, 2295–2302. [Google Scholar] [CrossRef]
- Batra, A.; Desai, D.; Serajuddin, A.T.M. Conversion of α-Lactose Monohydrate to Anhydrous Form with Superior Tabletability by Twin-Screw Extrusion at Elevated Temperature. Int. J. Pharm. 2020, 588, 119790. [Google Scholar] [CrossRef]
- Thakral, N.K.; Zanon, R.L.; Kelly, R.C.; Thakral, S. Applications of Powder X-Ray Diffraction in Small Molecule Pharmaceuticals: Achievements and Aspirations. J. Pharm. Sci. 2018, 107, 2969–2982. [Google Scholar] [CrossRef]
- International Flavors; Fragrances Inc. Avicel® Microcrystalline Cellulose (MCC) and Related Co-Processed Products—Product Selection Guide. 2023. Available online: https://www.cphi-online.com/46/resourcefile/12/26/76/Avicel%20Selection%20Guide%20-%20spread.pdf (accessed on 31 May 2025).
- IFA. Machines Lactose Powder Safety Data Sheet Technical Specifications Intolerance Data (Version 1.4); IFA: Düsseldorf, Germany, 2021. [Google Scholar]
- Gottschalk, T.; Özbay, C.; Feuerbach, T.; Thommes, M. Predicting Throughput and Melt Temperature in Pharmaceutical Hot Melt Extrusion. Pharmaceutics 2022, 14, 1757. [Google Scholar] [CrossRef]
- Repka, M.A.; Koleng, J.J.; Zhang, F.; McGinity, J.W. Hot-Melt Extrusion Technology. In Encyclopedia of Pharmaceutical Science and Technology, Six Volume Set (Print); CRC Press: Boca Raton, FL, USA, 2013; p. 22. [Google Scholar]
- Blocka, C.; Nabipoor Hassankiadeh, M.; Zhang, L.; Baik, O.-D. Effects of Moisture Content and Porosity on the Thermal Conductivity and Volumetric Specific Heat Capacity of Pharmaceutical Powders. Int. J. Pharm. 2023, 642, 123130. [Google Scholar] [CrossRef]
- Krok, A.; Vitorino, N.; Zhang, J.; Frade, J.R.; Wu, C.-Y. Thermal Properties of Compacted Pharmaceutical Excipients. Int. J. Pharm. 2017, 534, 119–127. [Google Scholar] [CrossRef]
- Ćirin-Varađan, S.; Đuriš, J.; Mirković, M.; Ivanović, M.; Parojčić, J.; Aleksić, I. Comparative Evaluation of Mechanical Properties of Lactose-Based Excipients Co-Processed with Lipophilic Glycerides as Meltable Binders. J. Drug Deliv. Sci. Technol. 2022, 67, 102981. [Google Scholar] [CrossRef]
- Serrano-Mora, L.E.; Zambrano-Zaragoza, M.L.; Mendoza-Muñoz, N.; Leyva-Gómez, G.; Urbán-Morlán, Z.; Quintanar-Guerrero, D. Preparation of Co-Processed Excipients for Controlled-Release of Drugs Assembled with Solid Lipid Nanoparticles and Direct Compression Materials. Molecules 2021, 26, 2093. [Google Scholar] [CrossRef]
- Krstic, M.; Djuris, J.; Petrovic, O.; Lazarevic, N.; Cvijic, S.; Ibric, S. Application of the Melt Granulation Technique in Development of Lipid Matrix Tablets with Immediate Release of Carbamazepine. J. Drug Deliv. Sci. Technol. 2017, 39, 467–474. [Google Scholar] [CrossRef]
- Podczeck, F. Methods for the Practical Determination of the Mechanical Strength of Tablets—From Empiricism to Science. Int. J. Pharm. 2012, 436, 214–232. [Google Scholar] [CrossRef]
- Zhang, Y.E.; Schwartz, J.B. Effect of Diluents on Tablet Integrity and Controlled Drug Release. Drug Dev. Ind. Pharm. 2000, 26, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Alhusban, F.; Murgatroyd, E.F. Impact Testing as a New Approach to Determine Mechanical Strength of Pharmaceutical Tablets. Int. J. Pharm. 2024, 653, 123891. [Google Scholar] [CrossRef] [PubMed]
- Khan, A. Prediction of Quality Attributes (Mechanical Strength, Disintegration Behavior and Drug Release) of Tablets on the Basis of Characteristics of Granules Prepared by High Shear Wet Granulation. PLoS ONE 2021, 16, e0261051. [Google Scholar] [CrossRef] [PubMed]
- USP (United States Pharmacopeia). <1216>Tablet Friability; United States Pharmacopeia: Frederick, MD, USA, 2016. [Google Scholar]
- Lu, Y.; Tang, N.; Lian, R.; Qi, J.; Wu, W. Understanding the Relationship between Wettability and Dissolution of Solid Dispersion. Int. J. Pharm. 2014, 465, 25–31. [Google Scholar] [CrossRef]
- Koennings, S.; Berié, A.; Tessmar, J.; Blunk, T.; Goepferich, A. Influence of Wettability and Surface Activity on Release Behavior of Hydrophilic Substances from Lipid Matrices. J. Control. Release 2007, 119, 173–181. [Google Scholar] [CrossRef]
- NIH National Library of Medicine. Felodipine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/3333 (accessed on 1 June 2025).
- Cheboyina, S.; Wyandt, C.M. Wax-Based Sustained Release Matrix Pellets Prepared by a Novel Freeze Pelletization Technique: II. In Vitro Drug Release Studies and Release Mechanisms. Int. J. Pharm. 2008, 359, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Liew, C.V.; Soh, J.L.P.; Heng, P.W.S.; Wong, T.W. Microcrystalline Cellulose: An Overview. In Functional Polymeric Composites; Apple Academic Press: Palm Bay, FL, USA, 2017; ISBN 978-1-315-20745-2. [Google Scholar]
- Mircioiu, C.; Voicu, V.; Anuta, V.; Tudose, A.; Celia, C.; Paolino, D.; Fresta, M.; Sandulovici, R.; Mircioiu, I. Mathematical Modeling of Release Kinetics from Supramolecular Drug Delivery Systems. Pharmaceutics 2019, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Mahaparale, P.; Kuchekar, B. Development and Evaluation of Modified Release Wax Matrix Tablet Dosage Form for Tramadol Hydrochloride. Asian J. Pharm. 2015, 9, 102. [Google Scholar] [CrossRef]
- Saeidipour, F.; Mansourpour, Z.; Mortazavian, E.; Rafiee-Tehrani, N.; Rafiee-Tehrani, M. New Comprehensive Mathematical Model for HPMC-MCC Based Matrices to Design Oral Controlled Release Systems. Eur. J. Pharm. Biopharm. 2017, 121, 61–72. [Google Scholar] [CrossRef]
- Santos, H.; Veiga, F.; Pina, M.E.; Sousa, J.J. Compaction, Compression and Drug Release Characteristics of Xanthan Gum Pellets of Different Compositions. Eur. J. Pharm. Sci. 2004, 21, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Jedinger, N.; Khinast, J.; Roblegg, E. The Design of Controlled-Release Formulations Resistant to Alcohol-Induced Dose Dumping—A Review. Eur. J. Pharm. Biopharm. 2014, 87, 217–226. [Google Scholar] [CrossRef]
- Isbister, G.K.; Jenkins, S.; Harris, K.; Downes, M.A.; Isoardi, K.Z. Calcium Channel Blocker Overdose: Not All the Same Toxicity. Br. J. Clin. Pharmacol. 2025, 91, 740–747. [Google Scholar] [CrossRef]
- Chiappini, S.; Mosca, A.; Papanti Pelletier, D.G.; Corkery, J.M.; Guirguis, A.; Arillotta, D.; Martinotti, G.; Schifano, F. Adverse Drug Reactions Associated with Concomitant Use of Calcium Channel Blockers and Cocaine: An Analysis of FDA Adverse Events Reporting System Data. J. Clin. Med. 2025, 14, 3461. [Google Scholar] [CrossRef]
- Müllertz, A.; Ogbonna, A.; Ren, S.; Rades, T. New Perspectives on Lipid and Surfactant Based Drug Delivery Systems for Oral Delivery of Poorly Soluble Drugs. J. Pharm. Pharmacol. 2010, 62, 1622–1636. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.; Hou, Y.; Wang, J.; Fan, Y.; Zhang, N.; Guo, Q. Formation and In Vitro Simulated Digestion Study of Gelatinized Korean Pine Seed Oil Encapsulated with Calcified Wax. Molecules 2023, 28, 7334. [Google Scholar] [CrossRef]
- Zupančič, O.; Kushwah, V.; Paudel, A. Pancreatic Lipase Digestion: The Forgotten Barrier in Oral Administration of Lipid-Based Delivery Systems? J. Control. Release 2023, 362, 381–395. [Google Scholar] [CrossRef]
- Keemink, J.; Sjögren, E.; Holm, R.; Bergström, C.A.S. Does the Intake of Ethanol Affect Oral Absorption of Poorly Soluble Drugs? J. Pharm. Sci. 2019, 108, 1765–1771. [Google Scholar] [CrossRef]
- Fagerberg, J.H.; Sjögren, E.; Bergström, C.A.S. Concomitant Intake of Alcohol May Increase the Absorption of Poorly Soluble Drugs. Eur. J. Pharm. Sci. 2015, 67, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Abdel Rahim, S.; Al-Zoubi, N.; Khader, H.; Alwaraydat, R.; Al-Akayleh, F. Ethanol-Induced Dose Dumping from Sodium Alginate Matrix Tablets: Investigation of the Effects of Medium Viscosity and pH. Int. J. Pharm. 2023, 632, 122568. [Google Scholar] [CrossRef] [PubMed]
- FUJIFILM Wako. SAFETY DATASHEET: Lactose Monohydrate; FUJIFILM Wako: Richmond, VA, USA, 2017. [Google Scholar]
- FisherScientific. Thermo Scientific Chemicals-D-Lactose Monohydrate Specification. Available online: https://www.fishersci.dk/shop/products/d-lactose-monohydrate-acs/11313268 (accessed on 8 July 2025).
- Mascia, S.; Seiler, C.; Fitzpatrick, S.; Wilson, D.I. Extrusion–Spheronisation of Microcrystalline Cellulose Pastes Using a Non-Aqueous Liquid Binder. Int. J. Pharm. 2010, 389, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Buckley, N.A.; Isoardi, K.Z.; Chiew, A.L.; Isbister, G.K.; Cairns, R.; Brown, J.A.; Chan, B.S. Angiotensin Axis Antagonists Increase the Incidence of Haemodynamic Instability in Dihydropyridine Calcium Channel Blocker Poisoning. Clin. Toxicol. 2021, 59, 464–471. [Google Scholar] [CrossRef]
- Lüscher, T.F. Hypertension: An Undertreated Known Risk Factor Revisited. Eur. Heart J. 2019, 40, 1991–1994. [Google Scholar] [CrossRef]
Wax Level (w/w) | Felodipine (w/w) | Filler (Ratio w/w) | Process Temperature (°C) | Screw Speed (rpm) |
---|---|---|---|---|
40% | 5% | MCC (55%) | 70 | 100 |
50% | 5% | MCC (45%) | 67 | 100 |
60% | 5% | MCC (35%) | 65 | 100 |
30% | 5% | Lactose monohydrate (65%) | 66 | 120 |
40% | 5% | Lactose monohydrate (55%) | 65 | 100 |
50% | 5% | Lactose monohydrate (45%) | 64 | 80 |
Filler Type | Wax Level (w/w) | Thickness (mm) | Density (g/cm3) | Breaking Force (N) | Tensile Strength (MPa) | Friability (%) |
---|---|---|---|---|---|---|
MCC | 40% | 2.41 ± 0.01 | 1.24 ± 0.005 | 71.4 ± 1.7 | 1.45 ± 0.03 | 0.28 |
50% | 2.53 ± 0.02 | 1.18 ± 0.007 | 70.2 ± 2.6 | 1.36 ± 0.04 | 0.30 | |
60% | 2.65 ± 0.01 | 1.13 ± 0.004 | 62.5 ± 2.9 | 1.04 ± 0.05 | 0.39 | |
Lactose | 30% | 2.29 ± 0.01 | 1.31 ± 0.005 | 66.0 ± 3.7 | 1.41 ± 0.08 | 0.39 |
40% | 2.39 ± 0.01 | 1.24 ± 0.004 | 62.2 ± 3.7 | 1.27 ± 0.08 | 0.18 | |
50% | 2.52 ± 0.01 | 1.18 ± 0.004 | 51.7 ± 2.8 | 1.01 ± 0.05 | 0.15 |
Wax Level (w/w) | MCC | Lactose Monohydrate | ||
---|---|---|---|---|
R2 | n | R2 | n | |
30% | - | - | 0.999 | 0.67 |
40% | 0.992 | 0.63 | 0.998 | 0.51 |
50% | 0.970 | 0.59 | 0.990 | 0.39 |
60% | 0.993 | 0.45 | - | - |
Wax Level (w/w) | Filler Type | Particle Size Range (mm) | R2 | n |
---|---|---|---|---|
30% | Lactose monohydrate | 0.5–1 | 0.994 | 0.51 |
30% | Lactose monohydrate | 1–2 | 0.998 | 0.53 |
40% | MCC | 0.5–1 | 0.998 | 0.46 |
40% | MCC | 1–2 | 0.999 | 0.49 |
60% | MCC | 0.5–1 | 0.995 | 0.46 |
60% | MCC | 1–2 | 0.988 | 0.46 |
Ethanol Concentration (% v/v) | Felodipine Solubility (mg/mL) |
---|---|
0 | 0.84 ± 0.03 |
4 | 0.86 ± 0.02 |
20 | 0.92 ± 0.05 |
40 | 3.24 ± 0.28 |
Ethanol Concentration (% v/v) | Disintegration Time (min) |
---|---|
0 | 5 |
4 | 9.5 |
20 | 11 |
40 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sweeney, G.; Liu, D.; Hatahet, T.; Jones, D.S.; Li, S.; Andrews, G.P. Wax-Based Sustained-Release Felodipine Oral Dosage Forms Manufactured Using Hot-Melt Extrusion and Their Resistance to Alcohol-Induced Dose Dumping. Pharmaceutics 2025, 17, 955. https://doi.org/10.3390/pharmaceutics17080955
Sweeney G, Liu D, Hatahet T, Jones DS, Li S, Andrews GP. Wax-Based Sustained-Release Felodipine Oral Dosage Forms Manufactured Using Hot-Melt Extrusion and Their Resistance to Alcohol-Induced Dose Dumping. Pharmaceutics. 2025; 17(8):955. https://doi.org/10.3390/pharmaceutics17080955
Chicago/Turabian StyleSweeney, Gerard, Dijia Liu, Taher Hatahet, David S. Jones, Shu Li, and Gavin P. Andrews. 2025. "Wax-Based Sustained-Release Felodipine Oral Dosage Forms Manufactured Using Hot-Melt Extrusion and Their Resistance to Alcohol-Induced Dose Dumping" Pharmaceutics 17, no. 8: 955. https://doi.org/10.3390/pharmaceutics17080955
APA StyleSweeney, G., Liu, D., Hatahet, T., Jones, D. S., Li, S., & Andrews, G. P. (2025). Wax-Based Sustained-Release Felodipine Oral Dosage Forms Manufactured Using Hot-Melt Extrusion and Their Resistance to Alcohol-Induced Dose Dumping. Pharmaceutics, 17(8), 955. https://doi.org/10.3390/pharmaceutics17080955