An Update on Novel Drug Delivery Systems for the Management of Glaucoma
Abstract
1. Glaucoma and Challenges Associated with Its Management
1.1. Management of Glaucoma
1.2. Challenges Associated with Ocular Drug Delivery
1.3. Challenges and Advances in Local Drug Delivery for Glaucoma
1.4. Adherence to Treatment
2. Novel Drug Delivery Systems for Glaucoma Management
2.1. Inorganic Nanoparticles for Glaucoma Management
2.1.1. Gold Nanoparticles
2.1.2. Silver Nanoparticles
2.1.3. Iron Oxide Nanoparticles
2.1.4. Carbon-Based Nanomaterials
2.1.5. Mesoporous Silica-Based Nanoparticles (MSNs)
2.2. Polymeric Nanocarriers for Glaucoma Management
2.2.1. Gelatin Nanoparticles
2.2.2. Chitosan Nanoparticles
2.2.3. Hyaluronic Nanoparticles
2.2.4. PLGA- and PCL-Based Nanoparticles
2.2.5. Dendrimers
2.3. Vesicular Systems for Glaucoma Therapy
2.3.1. Liposomes
2.3.2. Micelles
2.3.3. Niosomes
2.4. Miscellaneous Delivery Systems for Glaucoma Therapy
2.4.1. Implants
2.4.2. Contact Lens
2.4.3. Hydrogels
3. Future Prospective and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Report on Vision; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Wang, W.; He, M.; Zhou, M.; Zhang, X. Selective Laser Trabeculoplasty versus Argon Laser Trabeculoplasty in Patients with Open-Angle Glaucoma: A Systematic Review and Meta-Analysis. PLoS ONE 2013, 8, e84270. [Google Scholar] [CrossRef]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The Pathophysiology and Treatment of Glaucoma. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef]
- Clineschmidt, C.M.; Williams, R.D.; Snyder, E.; Adamsons, I.A. A randomized trial in patients inadequately controlled with timolol alone comparing the dorzolamide-timolol combination to monotherapy with timolol or dorzolamide. Ophthalmology 1998, 105, 1952–1959. [Google Scholar] [CrossRef]
- Sears, M.L. Symposium on Glaucoma: Joint meeting with National Society for Prevention of Blindness: The Mechanism of Action of Adrenergic Drugs in Glaucoma. Investig. Ophthalmol. Vis. Sci. 1966, 5, 115–119. [Google Scholar]
- List of 47 Glaucoma, Open Angle Medications Compared. Available online: https://www.drugs.com/condition/glaucoma-open-angle.html?page_all=1 (accessed on 25 June 2025).
- Zhou, L.; Zhan, W.; Wei, X. Clinical pharmacology and pharmacogenetics of prostaglandin analogues in glaucoma. Front. Pharmacol. 2022, 13, 1015338. [Google Scholar] [CrossRef]
- Li, X.; Balas, M.; Mathew, D.J. A Review of Ocular and Systemic Side Effects in Glaucoma Pharmacotherapy. J. Clin. Transl. Ophthalmol. 2025, 3, 2. [Google Scholar] [CrossRef]
- Aslam, S.; Gupta, V. Carbonic Anhydrase Inhibitors. In Glaucoma, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 1, pp. 559–565. [Google Scholar] [CrossRef]
- Blondeau, P.; Rousseau, J.A. Allergic reactions to brimonidine in patients treated for glaucoma. Can. J. Ophthalmol. 2002, 37, 21–26. [Google Scholar] [CrossRef]
- Lin, J.B.; Harris, J.M.; Baldwin, G.; Goss, D.; Margeta, M.A. Ocular effects of Rho kinase (ROCK) inhibition: A systematic review. Eye 2024, 38, 3418–3428. [Google Scholar] [CrossRef]
- Webers, C.A.B.; Beckers, H.J.M.; Zeegers, M.P.; Nuijts, R.M.M.A.; Hendrikse, F.; Schouten, J.S.A.G. The Intraocular Pressure-Lowering Effect of Prostaglandin Analogs Combined with Topical β-Blocker Therapy. Ophthalmology 2010, 117, 2067–2074.e2066. [Google Scholar] [CrossRef]
- Supuran, C.T.; Scozzafava, A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin. Ther. Pat. 2000, 10, 575–600. [Google Scholar] [CrossRef]
- Akingbehin, T.Y.; Raj, P.S. Ophthalmic Topical Beta Blockers: Review of Ocular and Systemic Adverse Effects. J. Toxicol. Cutan. Ocul. Toxicol. 1990, 9, 131–147. [Google Scholar] [CrossRef]
- Chatzimichail, E.; Christodoulaki, E.; Konstas, P.; Tsiropoulos, G.; Amaxilati, E.; Gugleta, K.; Gatzioufas, Z.; Panos, G. Rho Kinase Inhibitors in Glaucoma Management: Current Perspectives and Future Directions. Drug Des. Dev. Ther. 2025, 19, 2519–2531. [Google Scholar] [CrossRef] [PubMed]
- Hamacher, T. Short term efficacy and safety in glaucoma patients changed to the latanoprost 0.005%/timolol maleate 0.5% fixed combination from monotherapies and adjunctive therapies. Br. J. Ophthalmol. 2004, 88, 1295–1298. [Google Scholar] [CrossRef] [PubMed]
- Bodea, F.; Bungau, S.G.; Negru, A.P.; Radu, A.; Tarce, A.G.; Tit, D.M.; Bungau, A.F.; Bustea, C.; Behl, T.; Radu, A.-F. Exploring New Therapeutic Avenues for Ophthalmic Disorders: Glaucoma-Related Molecular Docking Evaluation and Bibliometric Analysis for Improved Management of Ocular Diseases. Bioengineering 2023, 10, 983. [Google Scholar] [CrossRef] [PubMed]
- Dogra, A.; Kaur, K.; Ali, J.; Baboota, S.; Narang, R.S.; Narang, J.K. Nanoformulations for Ocular Delivery of Drugs—A Patent Perspective. Recent Pat. Drug Deliv. Formul. 2020, 13, 255–272. [Google Scholar] [CrossRef]
- Patel, A.; Cholkar, K.; Agrahari, V.; Mitra Ranch, A.K. Ocular Drug Delivery Systems. In Novel Drug Delivery Systems (Part 2); Bentham Science Publishers: Sharjah, United Arab Emirates, 2024. [Google Scholar]
- Ghersi-Egea, J.F.; Mönkkönen, K.S.; Schmitt, C.; Honnorat, J.; Fèvre-Montange, M.; Strazielle, N. Blood–brain interfaces and cerebral drug bioavailability. Rev. Neurol. 2009, 165, 1029–1038. [Google Scholar] [CrossRef]
- Wagner, I.V.; Stewart, M.W.; Dorairaj, S.K. Updates on the Diagnosis and Management of Glaucoma. Mayo Clin. Proc. Innov. Qual. Outcomes 2022, 6, 618–635. [Google Scholar] [CrossRef]
- Goyal, G.; Garg, T.; Rath, G.; Goyal, A.K. Current Nanotechnological Strategies for Treating Glaucoma. Crit. Rev. Ther. Drug Carr. Syst. 2014, 31, 365–405. [Google Scholar] [CrossRef]
- Koppa Raghu, P.; Bansal, K.K.; Thakor, P.; Bhavana, V.; Madan, J.; Rosenholm, J.M.; Mehra, N.K. Evolution of Nanotechnology in Delivering Drugs to Eyes, Skin and Wounds via Topical Route. Pharmaceuticals 2020, 13, 167. [Google Scholar] [CrossRef]
- Gurumukhi, V.C.; Chalikwar, S.S.; Tapadiya, G.G. Nanotechnology as a Novel Approach to Drug Delivery Systems; Bentham Science Publishers: Sharjah, United Arab Emirates, 2024; pp. 129–158. [Google Scholar] [CrossRef]
- Ranch, K.; Chawnani, D.; Jani, H.; Acharya, D.; Patel, C.A.; Jacob, S.; Babu, R.J.; Tiwari, A.K.; Al-Tabakha, M.M.; Boddu, S.H.S. An update on the latest strategies in retinal drug delivery. Expert Opin. Drug Deliv. 2024, 21, 695–712. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, J.; Sun, X. Intraocular nano-microscale drug delivery systems for glaucoma treatment: Design strategies and recent progress. J. Nanobiotechnology 2023, 21, 84. [Google Scholar] [CrossRef]
- Tsai, J.C. A Comprehensive Perspective on Patient Adherence to Topical Glaucoma Therapy. Ophthalmology 2009, 116, S30–S36. [Google Scholar] [CrossRef]
- Inoue, K. Managing adverse effects of glaucoma medications. Clin. Ophthalmol. 2014, 2014, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Garway-Heath, D.F.; Crabb, D.P.; Bunce, C.; Lascaratos, G.; Amalfitano, F.; Anand, N.; Azuara-Blanco, A.; Bourne, R.R.; Broadway, D.C.; Cunliffe, I.A.; et al. Latanoprost for open-angle glaucoma (UKGTS): A randomised, multicentre, placebo-controlled trial. Lancet 2015, 385, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Stewart, W.C.; Konstas, A.G.P.; Nelson, L.A.; Kruft, B. Meta-analysis of 24-Hour Intraocular Pressure Studies Evaluating the Efficacy of Glaucoma Medicines. Ophthalmology 2008, 115, 1117–1122.e1111. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Hughes, P.; Ross, A.D.; Robinson, M.R. Biodegradable Implants for Sustained Drug Release in the Eye. Pharm. Res. 2010, 27, 2043–2053. [Google Scholar] [CrossRef]
- Chong, R.S.; Su, D.H.W.; Tsai, A.; Jiang, Y.; Htoon, H.M.; Lamoureux, E.L.; Aung, T.; Wong, T.T. Patient Acceptance and Attitude Toward an Alternative Method of Subconjunctival Injection for the Medical Treatment of Glaucoma. J. Glaucoma 2013, 22, 190–194. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Wang, P.-Y.; Lin, I.C.; Huang, H.; Liu, G.-S.; Tseng, C.-L. Ocular Drug Delivery: Role of Degradable Polymeric Nanocarriers for Ophthalmic Application. Int. J. Mol. Sci. 2018, 19, 2830. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Wang, M.-C.; Miyagawa, T.; Chen, Z.-Y.; Lin, F.-H.; Chen, K.-H.; Liu, G.-S.; Tseng, C.-L. Preparation of arginine-glycine-aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization. Int. J. Nanomed. 2016, 12, 279–294. [Google Scholar] [CrossRef]
- Ofei-Palm, C.N.K.; Tagoe, N.N.; Jatoe, D.; Agyare, A.; Ankrah, D. Cost Analysis and Rational Use of Anti-Glaucoma Therapy in a Tertiary Hospital in Ghana. Clin. Outcomes Res. 2021, 13, 619–627. [Google Scholar] [CrossRef]
- Sarenac Vulovic, T.; Janicijevic, K.M. Primary Open-Angle Glaucoma and Farmacoeconomics—Review. Sanamed 2016, 11, 243. [Google Scholar] [CrossRef]
- Cornel, Ş.; Mihaela, T.C.; Adriana, I.D.; Mehdi, B.; Algerino, D.S. Novelties In Medical Treatment Of Glaucoma. PubMed 2016, 59, 78–87. [Google Scholar]
- Quaranta, L.; Novella, A.; Tettamanti, M.; Pasina, L.; Weinreb, R.N.; Nobili, A. Adherence and Persistence to Medical Therapy in Glaucoma: An Overview. Ophthalmol. Ther. 2023, 12, 2227–2240. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Damji; Buys, Y. Medical management of primary open-angle glaucoma: Best practices associated with enhanced patient compliance and persistency. Patient Prefer. Adherence 2008, 2008, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Robin, A.L.; Muir, K.W. Medication adherence in patients with ocular hypertension or glaucoma. Expert Rev. Ophthalmol. 2019, 14, 199–210. [Google Scholar] [CrossRef]
- Vélez-Gómez, M.C.; Vásquez-Trespalacios, E.M. Adherence to topical treatment of glaucoma, risk and protective factors: A review. Arch. Soc. Española Oftalmol. 2018, 93, 87–92. (In English) [Google Scholar] [CrossRef]
- Zaharia, A.-C.; Dumitrescu, O.-M.; Radu, M.; Rogoz, R.-E. Adherence to Therapy in Glaucoma Treatment—A Review. J. Pers. Med. 2022, 12, 514. [Google Scholar] [CrossRef]
- Frech, S.; Guthoff, R.F.; Gamael, A.; Helbig, C.; Diener, A.; Ritzke, M.; Wollny, A.; Altiner, A. Patterns and Facilitators for the Promotion of Glaucoma Medication Adherence—A Qualitative Study. Healthcare 2021, 9, 426. [Google Scholar] [CrossRef]
- Rosu, A.M.; Coelho, A.; Camacho, P. Assessment of medication therapy adherence in glaucoma: Scoping review. Expert Rev. Ophthalmol. 2021, 16, 113–124. [Google Scholar] [CrossRef]
- Plakas, S.; Mastrogiannis, D.; Mantzorou, M.; Adamakidou, T.; Fouka, G.; Bouziou, A.; Tsiou, C.; Morisky, D.E. Validation of the 8-Item Morisky Medication Adherence Scale in Chronically Ill Ambulatory Patients in Rural Greece. Open J. Nurs. 2016, 6, 158–169. [Google Scholar] [CrossRef]
- Bairagi, R.D.; Reon, R.R.; Hasan, M.M.; Sarker, S.; Debnath, D.; Rahman, M.T.; Rahman, S.; Islam, M.A.; Siddique, M.A.T.; Bokshi, B.; et al. Ocular drug delivery systems based on nanotechnology: A comprehensive review for the treatment of eye diseases. Discov. Nano 2025, 20, 75. [Google Scholar] [CrossRef] [PubMed]
- Fea, A.M.; Vallino, V.; Cossu, M.; Marica, V.; Novarese, C.; Reibaldi, M.; Petrillo, F. Drug Delivery Systems for Glaucoma: A Narrative Review. Pharmaceuticals 2024, 17, 1163. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.W.; Czarny, B.; Metselaar, J.M.; Ho, C.; Ng, S.R.; Barathi, A.V.; Storm, G.; Wong, T.T. Evaluation of subconjunctival liposomal steroids for the treatment of experimental uveitis. Sci. Rep. 2018, 8, 6604. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, G.; Joy, A.; Megha, M.; Kolanthai, E.; Senthilkumar, M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: A critical review. Discov. Nano 2023, 18, 157. [Google Scholar] [CrossRef]
- Manickavasagam, D.; Oyewumi, M.O. Critical Assessment of Implantable Drug Delivery Devices in Glaucoma Management. J. Drug Deliv. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
- Fedorchak, M.V.; Conner, I.P.; Schuman, J.S.; Cugini, A.; Little, S.R. Long Term Glaucoma Drug Delivery Using a Topically Retained Gel/Microsphere Eye Drop. Sci. Rep. 2017, 7, 8639. [Google Scholar] [CrossRef]
- Chandrakala, V.; Aruna, V.; Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater. 2022, 5, 1593–1615. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, Y.; Lv, K.; Wu, W.; Chen, C. Nanomedicine-Based Ophthalmic Drug Delivery Systems for the Treatment of Ocular Diseases. Int. J. Nanomed. 2025, 20, 9221–9249. [Google Scholar] [CrossRef]
- Sahoo, R.N.; Rout, S.; Parmanik, A.; Satapathy, B.S.; Pattnaik, S.; Maharana, L.; Nayak, A.K. Inorganic biomaterials for ocular drug delivery: A comprehensive review. J. Drug Deliv. Sci. Technol. 2025, 106, 106667. [Google Scholar] [CrossRef]
- Masse, F.; Ouellette, M.; Lamoureux, G.; Boisselier, E. Gold nanoparticles in ophthalmology. Med. Res. Rev. 2019, 39, 302–327. [Google Scholar] [CrossRef]
- Gholipourmalekabadi, M.; Mobaraki, M.; Ghaffari, M.; Zarebkohan, A.; Omrani, V.F.; Urbanska, A.M.; Seifalian, A. Targeted Drug Delivery Based on Gold Nanoparticle Derivatives. Curr. Pharm. Des. 2017, 23, 2918–2929. [Google Scholar] [CrossRef]
- Sonntag, T.; Froemel, F.; Stamer, W.D.; Ohlmann, A.; Fuchshofer, R.; Breunig, M. Distribution of Gold Nanoparticles in the Anterior Chamber of the Eye after Intracameral Injection for Glaucoma Therapy. Pharmaceutics 2021, 13, 901. [Google Scholar] [CrossRef] [PubMed]
- Maulvi, F.A.; Patil, R.J.; Desai, A.R.; Shukla, M.R.; Vaidya, R.J.; Ranch, K.M. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: In vitro and in vivo evaluation. Acta Biomater. 2019, 86, 350–362. [Google Scholar] [CrossRef]
- Li, Q.; Ma, C.; Ma, Y.; Ma, Y.; Mao, Y.; Meng, Z. Sustained bimatoprost release using gold nanoparticles laden contact lenses. J. Biomater. Sci. Polym. Ed. 2021, 32, 1618–1634. [Google Scholar] [CrossRef] [PubMed]
- Schnichels, S.; Hurst, J.; de Vries, J.W.; Ullah, S.; Gruszka, A.; Kwak, M.; Löscher, M.; Dammeier, S.; Bartz-Schmidt, K.-U.; Spitzer, M.S.; et al. Self-assembled DNA nanoparticles loaded with travoprost for glaucoma-treatment. Nanomed. Nanotechnol. Biol. Med. 2020, 29, 102260. [Google Scholar] [CrossRef] [PubMed]
- Laradji, A.; Karakocak, B.B.; Kolesnikov, A.V.; Kefalov, V.J.; Ravi, N. Hyaluronic Acid-Based Gold Nanoparticles for the Topical Delivery of Therapeutics to the Retina and the Retinal Pigment Epithelium. Polymers 2021, 13, 3324. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.H.; Kim, K.-W.; Kim, M.H.; Yu, Y.S. Intravenously administered gold nanoparticles pass through the blood–retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology 2009, 20, 505101. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, M.H.; Jo, D.H.; Yu, Y.S.; Lee, T.G.; Kim, J.H. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials 2011, 32, 1865–1871. [Google Scholar] [CrossRef]
- Pissuwan, D.; Niidome, T.; Cortie, M.B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release 2011, 149, 65–71. [Google Scholar] [CrossRef]
- Cho, W.-K.; Kang, S.; Choi, H.; Rho, C.R. Topically Administered Gold Nanoparticles Inhibit Experimental Corneal Neovascularization in Mice. Cornea 2015, 34, 456–459. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
- McQuillan, J.S.; Groenaga Infante, H.; Stokes, E.; Shaw, A.M. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 2012, 6, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef]
- Murphy, M.; Ting, K.; Zhang, X.; Soo, C.; Zheng, Z. Current Development of Silver Nanoparticle Preparation, Investigation, and Application in the Field of Medicine. J. Nanomater. 2015, 2015, 696918. [Google Scholar] [CrossRef]
- Moore, D.L.; MacDonald, N.E.; Canadian Paediatric Society, Infectious Diseases and Immunization Committee. Preventing Ophthalmia Neonatorum. Can. J. Infect. Dis. Med. Microbiol. 2015, 26, 122–125. [Google Scholar] [CrossRef]
- Luo, L.-J.; Lin, T.-Y.; Yao, C.-H.; Kuo, P.-Y.; Matsusaki, M.; Harroun, S.G.; Huang, C.-C.; Lai, J.-Y. Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. J. Colloid Interface Sci. 2019, 536, 112–126. [Google Scholar] [CrossRef]
- Jiang, W.; Ulker, Z.; Thong, K.X.; Qin, M.; Yu-Wai-Man, C. Applying nanotechnology to glaucoma therapy: Past, present, and future. Nanomedicine 2025, 20, 1653–1655. [Google Scholar] [CrossRef]
- Occhiutto, M.L.; Maranhão, R.C.; Costa, V.P.; Konstas, A.G. Nanotechnology for Medical and Surgical Glaucoma Therapy—A Review. Adv. Ther. 2020, 37, 155–199. [Google Scholar] [CrossRef]
- Yang, C.; Yang, J.; Lu, A.; Gong, J.; Yang, Y.; Lin, X.; Li, M.; Xu, H. Nanoparticles in ocular applications and their potential toxicity. Front. Mol. Biosci. 2022, 9, 931759. [Google Scholar] [CrossRef]
- Wang, X.; Cao, Q.; Wu, S.; Bahrani Fard, M.R.; Wang, N.; Cao, J.; Zhu, W. Magnetic Nano-Platform Enhanced iPSC-Derived Trabecular Meshwork Delivery and Tracking Efficiency. Int. J. Nanomed. 2022, 17, 1285–1307. [Google Scholar] [CrossRef]
- Wang, J.; Su, Y.; Wang, F. Advances in the study of single-walled carbon nanotubes in ophthalmology. Hum. Cell 2025, 38, 76. [Google Scholar] [CrossRef]
- Sharma, S.; Bhatia, V. Nanoscale Drug Delivery Systems for Glaucoma: Experimental and In Silico Advances. Curr. Top. Med. Chem. 2021, 21, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Cheng, Y.; Hong, J. Nanomedicines for the treatment of glaucoma: Current status and future perspectives. Acta Biomater. 2021, 125, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Pande, V.; Kothawade, S.; Kuskar, S.; Bole, S.; Chakole, D. Fabrication of Mesoporous Silica Nanoparticles and Its Applications in Drug Delivery. In Nanofabrication Techniques—Principles, Processes and Applications; IntechOpen: London, UK, 2023. [Google Scholar]
- Zhang, W.; Liu, H.; Qiu, X.; Zuo, F.; Wang, B. Mesoporous silica nanoparticles as a drug delivery mechanism. Open Life Sci. 2024, 19, 20220867. [Google Scholar] [CrossRef]
- Kazemzadeh, P.; Sayadi, K.; Toolabi, A.; Sayadi, J.; Zeraati, M.; Chauhan, N.P.S.; Sargazi, G. Structure-Property Relationship for Different Mesoporous Silica Nanoparticles and its Drug Delivery Applications: A Review. Front. Chem. 2022, 10, 823785. [Google Scholar] [CrossRef] [PubMed]
- Alfhaid, L.H.K. Recent advance in functionalized mesoporous silica nanoparticles with stimuli-responsive polymer brush for controlled drug delivery. Soft Mater. 2022, 20, 364–378. [Google Scholar] [CrossRef]
- Lai, C.-F.; Shiau, F.-J. Enhanced and Extended Ophthalmic Drug Delivery by pH-Triggered Drug-Eluting Contact Lenses with Large-Pore Mesoporous Silica Nanoparticles. ACS Appl. Mater. Interfaces 2023, 15, 18630–18638. [Google Scholar] [CrossRef]
- Nagai, N.; Nakazawa, Y.; Ito, Y.; Kanai, K.; Okamoto, N.; Shimomura, Y. A Nanoparticle-Based Ophthalmic Formulation of Dexamethasone Enhances Corneal Permeability of the Drug and Prolongs Its Corneal Residence Time. Biol. Pharm. Bull. 2017, 40, 1055–1062. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H. In vitro and in vivo evaluation of brimonidine loaded silica nanoparticles-laden silicone contact lenses to manage glaucoma. J. Biomater. Appl. 2022, 37, 333–343. [Google Scholar] [CrossRef]
- Shokry, M.; Hathout, R.M.; Mansour, S. Exploring gelatin nanoparticles as novel nanocarriers for Timolol Maleate: Augmented in-vivo efficacy and safe histological profile. Int. J. Pharm. 2018, 545, 229–239. [Google Scholar] [CrossRef]
- Esteban-Pérez, S.; Andrés-Guerrero, V.; López-Cano, J.J.; Molina-Martínez, I.; Herrero-Vanrell, R.; Bravo-Osuna, I. Gelatin Nanoparticles-HPMC Hybrid System for Effective Ocular Topical Administration of Antihypertensive Agents. Pharmaceutics 2020, 12, 306. [Google Scholar] [CrossRef]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef]
- Fong, D.; Hoemann, C.D. Chitosan Immunomodulatory Properties: Perspectives on the Impact of Structural Properties and Dosage. Future Sci. OA 2018, 4, FSO225. [Google Scholar] [CrossRef] [PubMed]
- Hamedi, H.; Moradi, S.; Hudson, S.M.; Tonelli, A.E.; King, M.W. Chitosan based bioadhesives for biomedical applications: A review. Carbohydr. Polym. 2022, 282, 119100. [Google Scholar] [CrossRef]
- Sun, X.; Sheng, Y.; Li, K.; Sai, S.; Feng, J.; Li, Y.; Zhang, J.; Han, J.; Tian, B. Mucoadhesive phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer for topical ocular delivery of voriconazole: Synthesis, in vitro/vivo evaluation, and mechanism. Acta Biomater. 2022, 138, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Biswas, R.; Mondal, S.; Ansari, M.A.; Sarkar, T.; Condiuc, I.P.; Trifas, G.; Atanase, L.I. Chitosan and Its Derivatives as Nanocarriers for Drug Delivery. Molecules 2025, 30, 1297. [Google Scholar] [CrossRef] [PubMed]
- Yanat, M.; Schroën, K. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. React. Funct. Polym. 2021, 161, 104849. [Google Scholar] [CrossRef]
- Stefanache, A.; Lungu, I.I.; Anton, N.; Damir, D.; Gutu, C.; Olaru, I.; Plesea Condratovici, A.; Duceac, M.; Constantin, M.; Calin, G.; et al. Chitosan Nanoparticle-Based Drug Delivery Systems: Advances, Challenges, and Future Perspectives. Polymers 2025, 17, 1453. [Google Scholar] [CrossRef]
- Rakesh Kumar Marwaha, A.K.C. Box-Behnken Designed Fluconazole Loaded Chitosan Nanoparticles for Ocular Delivery. J. Pharm. Drug Deliv. Res. 2014, 3, 2. [Google Scholar] [CrossRef]
- Kao, H.-J.; Lo, Y.-L.; Lin, H.-R.; Yu, S.-P. Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles. J. Pharm. Pharmacol. 2006, 58, 179–186. [Google Scholar] [CrossRef]
- Katiyar, S.; Pandit, J.; Mondal, R.S.; Mishra, A.K.; Chuttani, K.; Aqil, M.; Ali, A.; Sultana, Y. In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydr. Polym. 2014, 102, 117–124. [Google Scholar] [CrossRef]
- Papadimitriou, S.; Bikiaris, D.; Avgoustakis, K.; Karavas, E.; Georgarakis, M. Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr. Polym. 2008, 73, 44–54. [Google Scholar] [CrossRef]
- Cho, I.S.; Park, C.G.; Huh, B.K.; Cho, M.O.; Khatun, Z.; Li, Z.; Kang, S.-W.; Choy, Y.B.; Huh, K.M. Thermosensitive hexanoyl glycol chitosan-based ocular delivery system for glaucoma therapy. Acta Biomater. 2016, 39, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-R.; Yu, S.-P.; Kuo, C.-J.; Kao, H.-J.; Lo, Y.-L.; Lin, Y.-J. Pilocarpine-loaded chitosan-PAA nanosuspension for ophthalmic delivery. J. Biomater. Sci. Polym. Ed. 2007, 18, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Maulvi, F.A.; Patel, A.R.; Shetty, K.H.; Desai, D.T.; Shah, D.O.; Willcox, M.D.P. Chitosan nanoparticles laden contact lenses for enzyme-triggered controlled delivery of timolol maleate: A promising strategy for managing glaucoma. Drug Deliv. Transl. Res. 2024, 14, 3212–3224. [Google Scholar] [CrossRef]
- Rawat, P.S.; Ravi, P.R.; Mahajan, R.R. Design, pharmacokinetic, and pharmacodynamic evaluation of a lecithin-chitosan hybrid nanoparticle-loaded dual-responsive in situ gel of nebivolol for effective treatment of glaucoma. Discov. Nano 2024, 19, 156. [Google Scholar] [CrossRef]
- Wang, F.; Song, Y.; Huang, J.; Wu, B.; Wang, Y.; Pang, Y.; Zhang, W.; Zhenling, Z.; Ma, F.; Wang, X.; et al. Lollipop-Inspired Multilayered Drug Delivery Hydrogel for Dual Effective, Long-Term, and NIR-Defined Glaucoma Treatment. Macromol. Biosci. 2021, 21, 2100202. [Google Scholar] [CrossRef]
- Rubenicia, A.M.L.; Cubillan, L.D.P.; Sicam, V.A.D.P.; Macabeo, A.P.G.; Villaflores, O.B.; Castillo, A.L. Intraocular Pressure Reduction Effect of 0.005% Latanoprost Eye Drops in a Hyaluronic Acid-Chitosan Nanoparticle Drug Delivery System in Albino Rabbits. Transl. Vis. Sci. Technol. 2021, 10, 2. [Google Scholar] [CrossRef]
- Aragona, P. Long term treatment with sodium hyaluronate-containing artificial tears reduces ocular surface damage in patients with dry eye. Br. J. Ophthalmol. 2002, 86, 181–184. [Google Scholar] [CrossRef]
- de la Fuente, M.; Seijo, B.; Alonso, M.J. Novel Hyaluronic Acid-Chitosan Nanoparticles for Ocular Gene Therapy. Investig. Opthalmology Vis. Sci. 2008, 49, 2016–2024. [Google Scholar] [CrossRef]
- Apaolaza, P.S.; Delgado, D.; Pozo-Rodríguez, A.d.; Gascón, A.R.; Solinís, M.Á. A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. Int. J. Pharm. 2014, 465, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, E.; Greco, A.; Riva, F.; Dorati, R.; Conti, B.; Modena, T.; Genta, I. CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles. Pharmaceuticals 2022, 15, 103. [Google Scholar] [CrossRef]
- Lee, C.-H.; Li, Y.-J.; Huang, C.-C.; Lai, J.-Y. Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: Single dose for long-term glaucoma treatment. Nanoscale 2017, 9, 11754–11764. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Liu, X.; Zhuang, X.; Liu, Y.; Li, S. Co-delivery of dexamethasone and melatonin by drugs laden PLGA nanoparticles for the treatment of glaucoma. J. Drug Deliv. Sci. Technol. 2020, 60, 102086. [Google Scholar] [CrossRef]
- Bugno, J.; Hsu, H.-j.; Hong, S. Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: Potential nanocarriers for improved cancer targeting. J. Drug Target. 2015, 23, 642–650. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Luo, L.-J.; Lai, J.-Y. Effects of shell thickness of hollow poly(lactic acid) nanoparticles on sustained drug delivery for pharmacological treatment of glaucoma. Acta Biomater. 2020, 111, 302–315. [Google Scholar] [CrossRef]
- Sánchez-López, E.; Egea, M.A.; Davis, B.M.; Guo, L.; Espina, M.; Silva, A.M.; Calpena, A.C.; Souto, E.M.B.; Ravindran, N.; Ettcheto, M.; et al. Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. Small 2018, 14, 1701808. [Google Scholar] [CrossRef]
- Bello, M.; Fragoso-Vázquez, J.; Correa-Basurto, J. Theoretical Studies for Dendrimer-Based Drug Delivery. Curr. Pharm. Des. 2017, 23, 3048–3061. [Google Scholar] [CrossRef]
- Lai, J.-Y.; Hsieh, A.-C. A gelatin-g-poly(N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine. Biomaterials 2012, 33, 2372–2387. [Google Scholar] [CrossRef]
- Falconieri, M.C.; Adamo, M.; Monasterolo, C.; Bergonzi, M.C.; Coronnello, M.; Bilia, A.R. New Dendrimer-Based Nanoparticles Enhance Curcumin Solubility. Planta. Med. 2017, 83, 420–425. [Google Scholar] [CrossRef]
- Tripathi, P.K.; Gupta, S.; Rai, S.; Shrivatava, A.; Tripathi, S.; Singh, S.; Khopade, A.J.; Kesharwani, P. Curcumin loaded poly (amidoamine) dendrimer-plamitic acid core-shell nanoparticles as anti-stress therapeutics. Drug Dev. Ind. Pharm. 2020, 46, 412–426. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Leffler, C.T. Hybrid Dendrimer Hydrogel/Poly(Lactic-Co-Glycolic Acid) Nanoparticle Platform: An Advanced Vehicle for Topical Delivery of Antiglaucoma Drugs and a Likely Solution to Improving Compliance and Adherence in Glaucoma Management. J. Ocul. Pharmacol. Ther. 2013, 29, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Venkatraman, S.; Natarajan; Ang, M.; Darwitan; Wong, T.; Venkatraman, S. Nanomedicine for glaucoma: Liposomes provide sustained release of latanoprost in the eye. Int. J. Nanomed. 2012, 2012, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Bigdeli, A.; Makhmalzadeh, B.S.; Feghhi, M.; SoleimaniBiatiani, E. Cationic liposomes as promising vehicles for timolol/brimonidine combination ocular delivery in glaucoma: Formulation development and in vitro/in vivo evaluation. Drug Deliv. Transl. Res. 2023, 13, 1035–1047. [Google Scholar] [CrossRef]
- Kouchak, M.; Bahmandar, R.; Bavarsad, N.; Farrahi, F. Ocular Dorzolamide Nanoliposomes for Prolonged IOP Reduction: In-vitroand in-vivo Evaluation in Rabbits. Iran. J. Pharm. Res. IJPR 2016, 15, 205–212. [Google Scholar]
- Afify, E.A.M.R.; Elsayed, I.; Gad, M.K.; Mohamed, M.I.; Afify, A.E.-M.M.R. Enhancement of pharmacokinetic and pharmacological behavior of ocular dorzolamide after factorial optimization of self-assembled nanostructures. PLoS ONE 2018, 13, e0191415. [Google Scholar] [CrossRef]
- Brugnera, M.; Vicario-de-la-Torre, M.; González-Cela Casamayor, M.A.; López-Cano, J.J.; Bravo-Osuna, I.; Huete-Toral, F.; González Rubio, M.L.; Carracedo, G.; Molina-Martínez, I.T.; Andrés-Guerrero, V.; et al. Enhancing the hypotensive effect of latanoprost by combining synthetic phosphatidylcholine liposomes with hyaluronic acid and osmoprotective agents. Drug Deliv. Transl. Res. 2024, 14, 2804–2822. [Google Scholar] [CrossRef]
- Verma, P.; Singh, R.K.; Wadhwa, A.; Prabhakar, B.; Yadav, K.S. Bimatoprost-loaded lipidic nanoformulation development using quality by design: Liposomes versus solid lipid nanoparticles in intraocular pressure reduction. Nanomedicine 2023, 18, 1815–1837. [Google Scholar] [CrossRef]
- Chen, L.G.; Strassburg, S.H.; Bermudez, H. Micelle co-assembly in surfactant/ionic liquid mixtures. J. Colloid Interface Sci. 2016, 477, 40–45. [Google Scholar] [CrossRef]
- Kellermann, M.; Bauer, W.; Hirsch, A.; Schade, B.; Ludwig, K.; Böttcher, C. The first account of a structurally persistent micelle. Angew. Chem. Int. Ed. Engl. 2004, 43, 2959–2962. [Google Scholar] [CrossRef]
- Batrakova, E.V.; Bronich, T.K.; Vetro, J.A.; Kabanov, A.V. Polymer Micelles as Drug Carriers. In Nanoparticulates as Drug Carriers; Imperial College Press: London, UK, 2006; pp. 57–93. [Google Scholar]
- Gohar, S.; Iqbal, Z.; Nasir, F.; Khattak, M.A.; Maryam, G.; Pervez, S.; Alasmari, F.; Neau, S.H.; Zainab, S.R.; Ali, A.T.; et al. Self-assembled latanoprost loaded soluplus nanomicelles as an ophthalmic drug delivery system for the management of glaucoma. Sci. Rep. 2024, 14, 27051. [Google Scholar] [CrossRef]
- Momekova, D.B.; Gugleva, V.E.; Petrov, P.D. Nanoarchitectonics of Multifunctional Niosomes for Advanced Drug Delivery. ACS Omega 2021, 6, 33265–33273. [Google Scholar] [CrossRef] [PubMed]
- Shehata, T.M.; Ibrahim, M.M.; Elsewedy, H.S. Curcumin Niosomes Prepared from Proniosomal Gels: In Vitro Skin Permeability, Kinetic and In Vivo Studies. Polymers 2021, 13, 791. [Google Scholar] [CrossRef] [PubMed]
- Akbari, J.; Saeedi, M.; Enayatifard, R.; Morteza-Semnani, K.; Hassan Hashemi, S.M.; Babaei, A.; Rahimnia, S.M.; Rostamkalaei, S.S.; Nokhodchi, A. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. J. Drug Deliv. Sci. Technol. 2020, 60, 102035. [Google Scholar] [CrossRef]
- Zhang, Z.; He, Z.; Liang, R.; Ma, Y.; Huang, W.; Jiang, R.; Shi, S.; Chen, H.; Li, X. Fabrication of a Micellar Supramolecular Hydrogel for Ocular Drug Delivery. Biomacromolecules 2016, 17, 798–807. [Google Scholar] [CrossRef]
- Kaur, D.; Kumar, S. Niosomes: Present Scenario And Future Aspects. J. Drug Deliv. Ther. 2018, 8, 35–43. [Google Scholar] [CrossRef]
- Rajera, R.; Nagpal, K.; Singh, S.K.; Mishra, D.N. Niosomes: A controlled and novel drug delivery system. Biol. Pharm. Bull. 2011, 34, 945–953. [Google Scholar] [CrossRef]
- Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Celia, C.; Paolino, D.; Alhaique, F.; Esposito, S.; Carafa, M. Niosomes from 80s to present: The state of the art. Adv. Colloid Interface Sci. 2014, 205, 187–206. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020, 56, 101581. [Google Scholar] [CrossRef]
- Jervis, L. A Summary of Recent Advances in Ocular Inserts and Implants. J. Bioequivalence Bioavailab. 2016, 9, 320–323. [Google Scholar] [CrossRef]
- Maulvi, F.A.; Lakdawala, D.H.; Shaikh, A.A.; Desai, A.R.; Choksi, H.H.; Vaidya, R.J. In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J. Control Release 2016, 226, 47–56. [Google Scholar] [CrossRef]
- Adrianto, M.F.; Annuryanti, F.; Wilson, C.G.; Sheshala, R.; Thakur, R.R.S. In vitro dissolution testing models of ocular implants for posterior segment drug delivery. Drug Deliv. Transl. Res. 2022, 12, 1355–1375. [Google Scholar] [CrossRef]
- Lee, S.S.; Burke, J.; Shen, J.; Almazan, A.; Orilla, W.; Hughes, P.; Zhang, J.; Li, H.; Struble, C.; Miller, P.E.; et al. Bimatoprost sustained-release intracameral implant reduces episcleral venous pressure in dogs. Vet. Ophthalmol. 2018, 21, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Episcleral Venous Pressure and Flow, Glaucoma Physician. Available online: https://www.glaucomaphysician.net/issues/2023/march/episcleral-venous-pressure-and-flow/ (accessed on 25 June 2025).
- Seal, J.R.; Robinson, M.R.; Burke, J.; Bejanian, M.; Coote, M.; Attar, M. Intracameral Sustained-Release Bimatoprost Implant Delivers Bimatoprost to Target Tissues with Reduced Drug Exposure to Off-Target Tissues. J. Ocul. Pharmacol. Ther. 2019, 35, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Berdahl, J.P.; Sarkisian, S.R.; Ang, R.E.; Doan, L.V.; Kothe, A.C.; Usner, D.W.; Katz, L.J.; Navratil, T.; Ang, R.E.T.; Bacharach, J.; et al. Efficacy and Safety of the Travoprost Intraocular Implant in Reducing Topical IOP-Lowering Medication Burden in Patients with Open-Angle Glaucoma or Ocular Hypertension. Drugs 2024, 84, 83–97. [Google Scholar] [CrossRef]
- Al-Qaysi, Z.K.; Beadham, I.G.; Schwikkard, S.L.; Bear, J.C.; Al-Kinani, A.A.; Alany, R.G. Sustained release ocular drug delivery systems for glaucoma therapy. Expert Opin. Drug Deliv. 2023, 20, 905–919. [Google Scholar] [CrossRef]
- Sarkisian, S.R.; Ang, R.E.; Lee, A.M.; Berdahl, J.P.; Heersink, S.B.; Burden, J.H.; Doan, L.V.; Stephens, K.G.; Applegate, D.; Kothe, A.C.; et al. Travoprost Intracameral Implant for Open-Angle Glaucoma or Ocular Hypertension: 12-Month Results of a Randomized, Double-Masked Trial. Ophthalmol. Ther. 2024, 13, 995–1014. [Google Scholar] [CrossRef]
- Envisia Therapeutics’ Lead Product Candidate, ENV515 (travoprost XR), Achieves Primary Efficacy Endpoint In Phase 2a Glaucoma Clinical Trial. Available online: https://www.prnewswire.com/news-releases/envisia-therapeutics-lead-product-candidate-env515-travoprost-xr-achieves-primary-efficacy-endpoint-in-phase-2a-glaucoma-clinical-trial-300154705.html (accessed on 25 June 2025).
- Adams, C.M.; Papillon, J.P.N. Recent Developments for the Treatment of Glaucoma. Top. Med. Chem. 2020, 35, 189–256. [Google Scholar] [CrossRef]
- Komaromy, A.M.; Koehl, K.; Harman, C.D.; Stewart, G.; Wolinski, N.; Norris, T.N.; Valade, D.; Chekhtman, I.; Lambert, J.N.; Donohue, A.C.; et al. Long-term intraocular Pressure (IOP) control by means of a novel biodegradable intracameral (IC) latanoprost free acid (LFA) implant. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4591. [Google Scholar]
- Study Details, Safety and Tolerability of a Prostaglandin Ocular Implant for Treatment of Open Angle Glaucoma, ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT03604328 (accessed on 25 June 2025).
- Saini, A.; Sharma, M.; Singh, I.; Swami, R. From Vision Correction to Drug Delivery: Unraveling the Potential of Therapeutic Contact Lens. Curr. Drug Deliv. 2025, 22, 140–159. [Google Scholar] [CrossRef]
- Phan, C.-M.; Wulff, D.; Thacker, M.; Hui, A. Drug releasing contact lenses and their application to disease presentations. Clin. Exp. Optom. 2025, 16, 1–9. [Google Scholar] [CrossRef]
- Xu, B.; Liu, T. Travoprost loaded microemulsion soaked contact lenses: Improved drug uptake, release kinetics and physical properties. J. Drug Deliv. Sci. Technol. 2020, 57, 101792. [Google Scholar] [CrossRef]
- Pereira-da-Mota, A.F.; Vivero-Lopez, M.; Topete, A.; Serro, A.P.; Concheiro, A.; Alvarez-Lorenzo, C. Atorvastatin-Eluting Contact Lenses: Effects of Molecular Imprinting and Sterilization on Drug Loading and Release. Pharmaceutics 2021, 13, 606. [Google Scholar] [CrossRef]
- Hui, A. Contact lenses for ophthalmic drug delivery. Clin. Exp. Optom. 2017, 100, 494–512. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Zhang, K.; Moore, L.; Ho, D. Diamond Nanogel-Embedded Contact Lenses Mediate Lysozyme-Dependent Therapeutic Release. ACS Nano 2014, 8, 2998–3005. [Google Scholar] [CrossRef] [PubMed]
- Ciolino, J.B.; Ross, A.E.; Tulsan, R.; Watts, A.C.; Wang, R.-F.; Zurakowski, D.; Serle, J.B.; Kohane, D.S. Latanoprost-Eluting Contact Lenses in Glaucomatous Monkeys. Ophthalmology 2016, 123, 2085–2092. [Google Scholar] [CrossRef] [PubMed]
- MediPrint® Ophthalmics Announces Promising Results from Its SIGHT-2 Phase 2b Group 1 Clinical Study—Mediprint. Available online: https://mediprintlens.com/mediprint-ophthalmics-announces-promising-results-from-its-sight-2-phase-2b-group-1-clinical-study/ (accessed on 25 June 2025).
- Jung, H.; Chauhan, A. Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials 2011, 33, 2289–2300. [Google Scholar] [CrossRef]
- Lee, D.; Cho, S.; Park, H.S.; Kwon, I. Ocular Drug Delivery through pHEMA-Hydrogel Contact Lenses Co-Loaded with Lipophilic Vitamins. Sci. Rep. 2016, 6, 34194. [Google Scholar] [CrossRef]
- Salih, A.E.; Elsherif, M.; Alam, F.; Alqattan, B.; Yetisen, A.K.; Butt, H. Syntheses of Gold and Silver Nanocomposite Contact Lenses via Chemical Volumetric Modulation of Hydrogels. ACS Biomater. Sci. Eng. 2022, 8, 2111–2120. [Google Scholar] [CrossRef]
- Salih, A.E.; Elsherif, M.; Alam, F.; Yetisen, A.K.; Butt, H. Gold Nanocomposite Contact Lenses for Color Blindness Management. ACS Nano 2021, 15, 4870–4880. [Google Scholar] [CrossRef]
- Fardoost, A.; Karimi, K.; Singh, J.; Patel, H.; Javanmard, M. Enhancing glaucoma care with smart contact lenses: An overview of recent developments. Biomed. Microdevices 2025, 27, 18. [Google Scholar] [CrossRef]
- Bustamante-Torres, M.; Romero-Fierro, D.; Arcentales-Vera, B.; Palomino, K.; Magaña, H.; Bucio, E. Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels 2021, 7, 182. [Google Scholar] [CrossRef]
- Fea, A.M.; Novarese, C.; Caselgrandi, P.; Boscia, G. Glaucoma Treatment and Hydrogel: Current Insights and State of the Art. Gels 2022, 8, 510. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Karavasili, C.; Komnenou, A.; Katsamenis, O.L.; Charalampidou, G.; Kofidou, E.; Andreadis, D.; Koutsopoulos, S.; Fatouros, D.G. Self-Assembling Peptide Nanofiber Hydrogels for Controlled Ocular Delivery of Timolol Maleate. ACS Biomater. Sci. Eng. 2017, 3, 3386–3394. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.; Prabhu, P. Formulation and evaluation of stimuli-sensitive hydrogels of timolol maleate and brimonidine tartrate for the treatment of glaucoma. Int. J. Pharm. Investig. 2014, 4, 112–118. [Google Scholar] [CrossRef]
- Dang, M.; Slaughter, K.V.; Cui, H.; Jiang, C.; Zhou, L.; Matthew, D.J.; Sivak, J.M.; Shoichet, M.S. Colloid-Forming Prodrug-Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection. Adv. Mater. 2025, 37, 2419306. [Google Scholar] [CrossRef]
- Hao, H.; He, B.; Yu, B.; Yang, J.; Xing, X.; Liu, W. Suprachoroidal injection of polyzwitterion hydrogel for treating glaucoma. Biomaterials Advances 2022, 142, 213162. [Google Scholar] [CrossRef]
- Widjaja, L.K.; Bora, M.; Chan, P.N.P.H.; Lipik, V.; Wong, T.T.L.; Venkatraman, S.S. Hyaluronic acid-based nanocomposite hydrogels for ocular drug delivery applications. J. Biomed. Mater. Res. Part A 2014, 102, 3056–3065. [Google Scholar] [CrossRef]
Class of Drug | Mechanism of Action | Examples of Drugs Belonging to Class | Dosage Form Available in Market | Side Effects | Approximate Monthly Cost of the Treatment |
---|---|---|---|---|---|
Prostaglandins analogues | Bind to the FP Receptor in the ciliary body, relaxes the uveoscleral muscle and thus increases fluid outflow | Bimatoprost, Latanoprost, Travoprost | Eyedrops | Irritation, redness of the eye, and discoloration of the iris, and surrounding skin [7] | USD 20–90 (generic) USD 120–180 (brand) |
β-blockers | Blocks β-adrenoceptors in the ciliary body; this decrease in production of aqueous humor | Timolol, Levobunol Betaxolol | Eyedrops and Tablets | Local effects: irritation (burning, stinging, itching, tearing, redness), blurred vision, and dry eyes Systemic effects: fatigue, dizziness, slowed heart rate (bradycardia), low blood pressure (hypotension), breathing problems, and sexual dysfunction [8] | USD 10–60 (generic) up to USD 100 (brand) |
Carbonic anhydrase | Inhibits carbonic anhydrase enzyme and ceases conversion of CO2 and H2O to HCO3, thus decreasing production of aqueous humor | Acetazolamide, Dorzolamide | Eyedrops and Tablets | Local effects: burning or stinging in the eyes, blurred vision, and eye irritation Systemic effects: fatigue, paresthesia, nausea [9] | USD 20–60 (drops) USD 15–30 (oral) |
⍺-adrenergic agonist | Bind with ⍺-adrenergic receptors. Lowers the production of aqueous humor and increases trabecular and uveoscleral outflow | Clonidine, Brimonidine, Apraclonidine | Eyedrops and Tablets | Local effects: Redness, stinging, or burning sensation Systemic effects: Dry mouth, dry nose, mild chances of systemic hypotension [10] | USD 15–70 (generic) USD 120+ (brand) |
Rho kinase inhibitors | Binds with the Rho kinase receptor present at the cornea, corneal endothelium, trabecular meshwork, and ciliary muscle. They increase trabecular meshwork outflow of aqueous humor, relaxing trabecular meshwork and Schlemm’s canal cells, potentially enhancing blood flow to the optic nerve | Netarsudil | Eyedrops | Conjunctival hyperemia, eye pruritus [11] | USD 200–250 (brand only) |
Prostaglandin + β-blocker | Increases uveoscleral outflow + reduces aqueous humor production via β-blockade | Latanoprost + Timolol (Xalacom) | Eyedrops | Eye irritation, redness, potential cardiac issues [12] | USD 150–200 |
Carbonic anhydrase Inhibitor + β-blocker | Decreases aqueous production via carbonic anhydrase inhibition + β-blockade | Dorzolamide + Timolol (Cosopt) | Eyedrops | Bitter taste, burning, local inflammation, cardiac side effects [13] | USD 150–190 |
α-agonist + β-blocker | Reduces aqueous production and increases outflow (α-agonist) + β-blockade | Brimonidine + Timolol (Combigan) | Eyedrops | Dry mouth/nose, eye irritation, systemic hypotension [14] | USD 160–190 |
Rho kinase inhibitor + prostaglandin | Increases trabecular outflow (ROCK inhibition) + uveoscleral outflow via FP receptor | Netarsudil + Latanoprost (Rocklatan) | Eyedrops | Conjunctival hyperemia, eye discomfort [15] | USD 200–300 |
carbonic anhydrase + α-agonist | Dual reduction in aqueous production with a mild increase in outflow | Brinzolamide + Brimonidine (Simbrinza) | Eyedrops | Blurred vision, bitter taste, dry mouth [16] | USD 180–220 |
Drug Delivery System | Characteristics | Advantages | Disadvantages |
---|---|---|---|
Inorganic Nanoparticles (e.g., AuNPs, AgNPs, Iron Oxide) | Stable, high surface area, modifiable | Targeted delivery, sustained release, bioimaging potential | Potential cytotoxicity, long-term safety concerns |
Polymeric Nanoparticles (e.g., PLGA, PCL, Chitosan, Gelatin) | Biodegradable, tunable release | Biocompatible, sustained delivery, tissue targeting | Manufacturing complexity, cost |
Liposomes | Lipid bilayer vesicles | Encapsulate both hydrophilic and lipophilic drugs, biocompatible | Stability issues, burst release possible |
Micelles | Amphiphilic nanostructures | Good for lipophilic drugs, sustained release | Dilution instability, short half-life |
Niosomes | Non-ionic surfactant vesicles | Stable, low-cost alternative to liposomes | Lower encapsulation efficiency |
Contact Lenses | Hydrogel-based, drug-loaded | Prolonged drug contact time, improved bioavailability | Handling issues, risk of contamination |
Implants (e.g., Durysta®, iDose TR) | Biodegradable or permanent devices | Long-term release (weeks–months), improved compliance | Invasive, risk of complications, high cost |
Brand Name of Implant | Mechanism/Delivery | Innovator Company | Price (USD, Approx.) | Unique Feature |
---|---|---|---|---|
iStent | Trabecular bypass | Glaukos (2012; iStent inject 2018) | ~USD 1000–2000 | Smallest implant; multi-placement option |
Hydrus | Canal scaffold (90°) | Ivantis/Alcon (2018) | ~USD 1000–2000 | Dilates canal, tri-modal outflow |
XEN Gel Stent | Subconjunctival bleb | Allergan (2016) | ~USD 1000–2000 | Gel-based; bleb-forming with smaller incision |
iDose TR | Intracameral drug delivery | Glaukos (2023) | USD 13,950 per implant | Anchored implant; 24/7 drug release for years |
Durysta | Biodegradable drug implant | Allergan (2020) | USD 1200–1500 | Biodegradable; prostaglandin implant |
Ahmed Valve | Valve-controlled shunt | New World Medical (2000s) | USD 1500–2500 | Valve reduces hypotony risk |
Baerveldt | Non-valved large-plate shunt | Johnson & Johnson | USD 1500–2500 | Large surface area; long-lasting drainage |
Ex-Press | Mini stainless shunt | Alcon | USD 800–1200 | Predictable flow; small, under scleral flap |
System | Metabolism | Retention Time | Immune Response Risk | Potential Long-Term Effects |
---|---|---|---|---|
Natural Polymers (Chitosan, Gelatin) | Enzymatically degraded | Short (days to weeks) | Low | Safe, minimal toxicity |
PLGA/PCL | Hydrolytic degradation to acids | Moderate (weeks/months) | Low–Moderate | Safe, but dependent on dose and formulation |
Inorganic Nanoparticles (Au, Ag, Fe) | Not metabolized | Long (weeks to permanent) | Moderate–High | Possible accumulation, oxidative stress, inflammation |
Contact Lenses/Hydrogels | Not metabolized (removed) | Hours to days | Low | Generally safe; hygiene-dependent |
Implants (Durysta®, iDose TR) | Biodegradable or inert materials | Weeks to years | Low–Moderate | Risk of fibrosis, tissue remodeling, or device migration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jani, H.S.; Ranch, K.; Pandya, R.; Patel, Y.; Boddu, S.H.S.; Tiwari, A.K.; Jacob, S.; Yasin, H.K.A. An Update on Novel Drug Delivery Systems for the Management of Glaucoma. Pharmaceutics 2025, 17, 1087. https://doi.org/10.3390/pharmaceutics17081087
Jani HS, Ranch K, Pandya R, Patel Y, Boddu SHS, Tiwari AK, Jacob S, Yasin HKA. An Update on Novel Drug Delivery Systems for the Management of Glaucoma. Pharmaceutics. 2025; 17(8):1087. https://doi.org/10.3390/pharmaceutics17081087
Chicago/Turabian StyleJani, Harshilkumar S., Ketan Ranch, Radhika Pandya, Yashkumar Patel, Sai H. S. Boddu, Amit K. Tiwari, Shery Jacob, and Haya Khader Ahmad Yasin. 2025. "An Update on Novel Drug Delivery Systems for the Management of Glaucoma" Pharmaceutics 17, no. 8: 1087. https://doi.org/10.3390/pharmaceutics17081087
APA StyleJani, H. S., Ranch, K., Pandya, R., Patel, Y., Boddu, S. H. S., Tiwari, A. K., Jacob, S., & Yasin, H. K. A. (2025). An Update on Novel Drug Delivery Systems for the Management of Glaucoma. Pharmaceutics, 17(8), 1087. https://doi.org/10.3390/pharmaceutics17081087