Anti-PEG Antibodies and Their Biological Impact on PEGylated Drugs: Challenges and Strategies for Optimization
Abstract
1. Introduction
2. Mechanisms Underlying Anti-PEG Antibody Generation and Key Immunogenicity Factors
2.1. Mechanisms of Anti-PEG Antibody Generation
2.1.1. Thymus-Dependent Antigen Response
2.1.2. Thymus-Independent Antigen Response
2.2. Polymer- and Carrier-Related Factors Affecting PEG Immunogenicity
3. Biological Consequences of Anti-PEG Antibodies on Drug Efficacy and Safety
3.1. Impact on Pharmacokinetics: Accelerated Blood Clearance (ABC) Phenomenon
3.2. Pharmacodynamic Consequences and Therapeutic Limitations
3.3. Immunological and Hypersensitivity Risks
3.4. Species Differences in Anti-PEG Antibodies and Their Implications for Clinical Translation
4. Analytical Techniques for Anti-PEG Antibody Detection: Sensitivity and Limitations
Detection Techniques | Detection Principle | Sensitivity Range | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|
Passive hemagglutination assay (PHA) | The surface of red blood cells is modified with methoxy-PEG (or other PEG derivatives) and their incubation with serial dilutions of the test serum. In the presence of anti-PEG antibodies, agglutination of red blood cells occurs, which can be observed visually or measured using a spectrophotometer. | 1–10 µg/mL | Relatively rapid, cost-effective detection method, and suitable for high-throughput screening | Low sensitivity, in ability to differentiate antibody isotypes | [19,20] |
Western blot (WB) | Following incubation of dye-labeled PEGylated antigens (e.g., PEGylated liposomes) with the serum sample, antibody–antigen complexes are enriched through gel filtration. The dye-containing fractions are subjected to SDS-PAGE and transferred to a nitrocellulose membrane. After recognition by conjugated anti-IgG/IgM antibodies, anti-PEG antibodies are identified and visualized via enzyme-linked immunosorbent assay. | 0.5–5 µg/mL | Physiological interaction between PEG and anti-PEG antibodies, differentiation of antibody subtypes | Technically complex, consisting of multiple steps, providing only qualitative or semi-quantitative analysis | [51] |
Acoustic Membrane Microparticle technology (AMMP) | The sample is diluted and incubated with methoxy-PEG-coated microparticles to capture anti-PEG antibodies. The resulting complexes are immobilized on an acoustic membrane coated with protein A. A signal is generated by the mass change on the membrane surface that is proportional to the mass of the anti-PEG antibodies. | 1–10 ng/mL (IgG), less for IgM | Lack of non-specific binding, absolute quantification | Unreliable for IgM quantification | [52] |
Enzyme Immunosorbent assay (ELISA) | In these assays, the PEG-containing antigen is immobilized in some form within a 96-well plate, capturing anti-PEG antibodies from the test sample. The bound antibodies are detected either by a conjugated antigen (bridging format) or by a detection antibody (or other recognition molecule) and visualized through an enzymatic reaction. | 0.01–10 µg/mL | High sensitivity and specificity, reliable and quantitative detection of anti-PEG antibodies, most used quantitative technique for APAs, distinguishing antibody isotypes, not requiring expensive specialized equipment | Relative values rather than absolute concentrations, complex procedures | [51,53,54] |
Flow Cytometry | PEG-modified polymers (e.g., TentaGel-OH polystyrene beads) are immobilized as antigens within the sample. Following washing with a suitable buffer, the beads are stained with fluorescent dyes conjugated to anti-IgG or anti-IgM antibodies to detect bound IgG or IgM. The mean fluorescence intensity of the beads is measured using flow cytometry. | 0.1–1 µg/mL | High sensitivity, capability of distinguishing between different types of anti-PEG antibodies | Inaccurate reflection of in vivo interactions due to differences in binding conditions, lacking fluorescent standards | [25] |
Surface Plasmon Resonance (SPR) | PEGylated polymers are immobilized on an SPR (Surface Plasmon Resonance) sensor chip to capture APAs from samples passing through the sensor unit. The quantity of bound anti-PEG antibodies is determined by measuring the wavelength shift, which corresponds to the mass of the antibodies that adhere to the sensor chip. | 1–10 ng/mL | High sensitivity, absolute quantification of anti-PEG antibody concentrations, ability to isotype differentiation | High equipment cost, requirement for preprocessing to remove potential interfering substances | [55] |
Meso Scale Discovery (MSD) | The MSD platform utilizes PEG molecules immobilized on electrode surfaces as antigens for detecting anti-PEG antibodies. Upon antigen–antibody binding, an electrochemiluminescent reaction is triggered. The ruthenium-labeled complex emits light at a wavelength of 620 nm, with an intensity of proportional to the concentration of anti-PEG antibodies in the sample. | 0.1–10 ng/mL | Minimal sample volume, high detection sensitivity, simultaneously detection of anti-PEG IgM and IgG in samples, faster results, suitable for large-scale screening | High equipment cost, requiring specialized MSD instruments, complex operation | [56] |
Dual Cytometric Bead Assay (DCBA) | A multiplex analytical method for detecting anti-PEG antibodies involves covalently binding PEG molecules to fluorescently labeled microspheres. These microspheres are then incubated with the test sample, allowing any anti-PEG antibodies present to attach to the PEG-coated surfaces. The resulting binding is detected through fluorescence using flow cytometry. | <1 ng/mL (as low as 0.1 ng/mL) | High sensitivity and specificity, capability of detecting both anti-PEG IgM and IgG in one sample | High equipment cost, complex technique | [43] |
5. Current Strategies to Overcome Anti-PEG Antibody Responses in Therapeutic Design
5.1. Structural Modifications of PEG and Conjugation Chemistry
5.1.1. Alteration of PEG–Lipid Linkages
5.1.2. Shedding of PEG Chains
5.1.3. Modification of PEG Terminal Groups
5.2. Combination with Immunomodulators
5.3. Adjustment of Dosing Regimen
5.4. Development of Alternative Polymers
5.5. Mild Grafting Reactions for PEG and Alternative Polymers
5.6. Antibody Neutralization Strategies
6. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PEG | Polyethylene glycol |
APAs | Anti-PEG antibodies |
MPS | Mononuclear phagocyte system |
RES | Reticuloendothelial system |
ELISA | Enzyme-linked immunosorbent assay |
BCRs | B cell receptors |
TFH | Follicular helper T |
MHC | Major histocompatibility complex |
TI-2 | Thymus-independent type 2 |
TNF | Tumor necrosis factor |
ABC | Accelerated blood clearance |
HSRs | Hypersensitivity reactions |
CARPA | Complement activation-related pseudoallergy |
PHA | Passive hemagglutination assay |
WB | Western blot |
AMMP | Acoustic membrane microparticle technology |
SPR | Surface plasmon resonance |
MSD | Meso scale discovery |
DCBA | Dual cytometric bead assay |
PG | Polyglycerol |
PVP | Poly(N-vinyl-2-pyrrolidone) |
References
- Veronese, F.M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discov. Today 2005, 10, 1451–1458. [Google Scholar] [CrossRef]
- Turecek, P.L.; Bossard, M.J.; Schoetens, F.; Ivens, I.A. PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs. J. Pharm. Sci. 2016, 105, 460–475. [Google Scholar] [CrossRef]
- Park, H.; Otte, A.; Park, K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J. Control. Release 2022, 342, 53–65. [Google Scholar] [CrossRef]
- Park, E.J.; Choi, J.; Lee, K.C.; Na, D.H. Emerging PEGylated non-biologic drugs. Expert Opin. Emerg. Drugs 2019, 24, 107–119. [Google Scholar] [CrossRef]
- Ibrahim, M.; Ramadan, E.; Elsadek, N.E.; Emam, S.E.; Shimizu, T.; Ando, H.; Ishima, Y.; Elgarhy, O.H.; Sarhan, H.A.; Hussein, A.K.; et al. Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J. Control. Release 2022, 351, 215–230. [Google Scholar] [CrossRef]
- Gaballa, S.A.; Shimizu, T.; Ando, H.; Takata, H.; Emam, S.E.; Ramadan, E.; Naguib, Y.W.; Mady, F.M.; Khaled, K.A.; Ishida, T. Treatment-induced and Pre-existing Anti-peg Antibodies: Prevalence, Clinical Implications, and Future Perspectives. J. Pharm. Sci. 2024, 113, 555–578. [Google Scholar] [CrossRef]
- Greenwald, R.B.; Choe, Y.H.; McGuire, J.; Conover, C.D. Effective drug delivery by PEGylated drug conjugates. Adv. Drug Deliv. Rev. 2003, 55, 217–250. [Google Scholar] [CrossRef]
- Zalipsky, S. Chemistry of Polyethylene-Glycol Conjugates with Biologically-Active Molecules. Adv. Drug Deliv. Rev. 1995, 16, 157–182. [Google Scholar] [CrossRef]
- Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.W.; Wang, H.; Ma, Z.G.; Wu, B.J. Effects of pharmaceutical PEGylation on drug metabolism and its clinical concerns. Expert. Opin. Drug Met. 2014, 10, 1691–1702. [Google Scholar] [CrossRef] [PubMed]
- Zeuzem, S.; Pawlotsky, J.M.; Lukasiewicz, E.; von Wagner, M.; Goulis, I.; Lurie, Y.; Gianfranco, E.; Vrolijk, J.M.; Esteban, J.I.; Hezode, C.; et al. International, multicenter, randomized, controlled study comparing dynamically individualized versus standard treatment in patients with chronic hepatitis C. J. Hepatol. 2005, 43, 250–257. [Google Scholar] [CrossRef]
- Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal doxorubicin-Review of animal and human studies. Clin. Pharmacokinet. 2003, 42, 419–436. [Google Scholar] [CrossRef]
- Caliceti, P.; Veronese, F.M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 2003, 55, 1261–1277. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.W.; Dreaden, E.C. PEG: Will It Come Back to You? Polyethelyne Glycol Immunogenicity, COVID Vaccines, and the Case for New PEG Derivatives and Alternatives. Front. Bioeng. Biotechnol. 2022, 10, 879988. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.M.; Cheng, T.L.; Roffler, S.R. Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS Nano 2021, 15, 14022–14048. [Google Scholar] [CrossRef]
- Ibrahim, M.; Shimizu, T.; Ando, H.; Ishima, Y.; Elgarhy, O.H.; Sarhan, H.A.; Hussein, A.K.; Ishida, T. Investigation of anti-PEG antibody response to PEG-containing cosmetic products in mice. J. Control. Release 2023, 354, 260–267. [Google Scholar] [CrossRef]
- Rau, R.E.; Dreyer, Z.; Choi, M.R.; Liang, W.; Skowronski, R.; Allamneni, K.P.; Devidas, M.; Raetz, E.A.; Adamson, P.C.; Blaney, S.M.; et al. Outcome of pediatric patients with acute lymphoblastic leukemia/lymphoblastic lymphoma with hypersensitivity to pegaspargase treated with PEGylated asparaginase, pegcrisantaspase: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2018, 65, e26873. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.K.; Hempel, G.; Koling, S.; Chan, L.S.; Fisher, T.; Meiselman, H.J.; Garratty, G. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer-Am. Cancer Soc. 2007, 110, 103–111. [Google Scholar] [CrossRef]
- Garay, R.P.; El-Gewely, R.; Armstrong, J.K.; Garratty, G.; Richette, P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin. Drug Deliv. 2012, 9, 1319–1323. [Google Scholar] [CrossRef]
- Povsic, T.J.; Lawrence, M.G.; Lincoff, A.M.; Mehran, R.; Rusconi, C.P.; Zelenkofske, S.L.; Huang, Z.; Sailstad, J.; Armstrong, P.W.; Steg, P.G.; et al. Pre-existing anti-PEG antibodies are associated with severe immediate allergic reactions to pegnivacogin, a PEGylated aptamer. J. Allergy Clin. Immunol. 2016, 138, 1712–1715. [Google Scholar] [CrossRef]
- Richter, A.W.; Akerblom, E. Polyethylene-Glycol Reactive Antibodies in Man-Titer Distribution in Allergic Patients Treated with Monomethoxy Polyethylene-Glycol Modified Allergens or Placebo, and in Healthy Blood-Donors. Int. Arch. Allergy Appl. Immunol. 1984, 74, 36–39. [Google Scholar] [CrossRef]
- Yang, Q.; Jacobs, T.M.; McCallen, J.D.; Moore, D.T.; Huckaby, J.T.; Edelstein, J.N.; Lai, S.K. Analysis of Pre-existing IgG and IgM Antibodies against Polyethylene Glycol (PEG) in the General Population. Anal. Chem. 2016, 88, 11804–11812. [Google Scholar] [CrossRef] [PubMed]
- Heesters, B.A.; Chatterjee, P.; Kim, Y.A.; Gonzalez, S.F.; Kuligowski, M.P.; Kirchhausen, T.; Carroll, M.C. Endocytosis and Recycling of Immune Complexes by Follicular Dendritic Cells Enhances B Cell Antigen Binding and Activation. Immunity 2013, 38, 1164–1175. [Google Scholar] [CrossRef]
- Vinuesa, C.G.; Chang, P.P. Innate B cell helpers reveal novel types of antibody responses. Nat. Immunol. 2013, 14, 119–126. [Google Scholar] [CrossRef]
- Kozma, G.T.; Shimizu, T.; Ishida, T.; Szebeni, J. Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 2020, 154, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Pasut, G.; Veronese, F.M. State of the art in PEGylation: The great versatility achieved after forty years of research. Adv. Drug Deliv. Rev. 2012, 64, 72–79. [Google Scholar] [CrossRef]
- Suzuki, T.; Ichihara, M.; Hyodo, K.; Yamamoto, E.; Ishida, T.; Kiwada, H.; Ishihara, H.; Kikuchi, H. Accelerated blood clearance of PEGylated liposomes containing doxorubicin upon repeated administration to dogs. Int. J. Pharm. 2012, 436, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Bavli, Y.; Chen, B.M.; Gross, G.; Hershko, A.; Turjeman, K.; Roffler, S.; Barenholz, Y. Anti-PEG antibodies before and after a first dose of Comirnaty® (mRNA-LNP-based SARS-CoV-2 vaccine). J. Control. Release 2023, 354, 316–322. [Google Scholar] [CrossRef]
- Sherman, M.R.; Williams, L.D.; Sobczyk, M.A.; Michaels, S.J.; Saifer, M.G.P. Role of the Methoxy Group in Immune Responses to mPEG-Protein Conjugates. Bioconjug. Chem. 2012, 23, 485–499. [Google Scholar] [CrossRef]
- Elsadek, N.E.; Hondo, E.; Shimizu, T.; Takata, H.; Abu Lila, A.S.; Emam, S.E.; Ando, H.; Ishima, Y.; Ishida, T. Impact of Pre-Existing or Induced Anti-PEG IgM on the Pharmacokinetics of Peginterferon Alfa-2a (Pegasys) in Mice. Mol. Pharm. 2020, 17, 2964–2970. [Google Scholar] [CrossRef]
- Elsadek, N.E.; Abu Lila, A.S.; Emam, S.E.; Shimizu, T.; Takata, H.; Ando, H.; Ishima, Y.; Ishida, T. Pegfilgrastim (PEG-G-CSF) induces anti-PEG IgM in a dose dependent manner and causes the accelerated blood clearance (ABC) phenomenon upon repeated administration in mice. Eur. J. Pharm. Biopharm. 2020, 152, 56–62. [Google Scholar] [CrossRef]
- Poppenborg, S.M.; Wittmann, J.; Walther, W.; Brandenburg, G.; Krähmer, R.; Baumgart, J.; Leenders, F. Impact of anti-PEG IgM antibodies on the pharmacokinetics of pegylated asparaginase preparations in mice. Eur. J. Pharm. Sci. 2016, 91, 122–130. [Google Scholar] [CrossRef]
- Male, C.; Königs, C.; Dey, S.; Matsushita, T.; Millner, A.H.; Zak, M.; Young, G.; Kenet, G. The safety and efficacy of N8-GP (turoctocog alfa pegol) in previously untreated pediatric patients with hemophilia A. Blood Adv. 2023, 7, 620–629. [Google Scholar] [CrossRef]
- Dams, E.T.M.; Laverman, P.; Oyen, W.J.G.; Storm, G.; Scherphof, G.L.; Van der Meer, J.W.M.; Corstens, F.H.M.; Boerman, O.C. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharmacol. Exp. Ther. 2000, 292, 1071–1079. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Wang, H.E.; Lin, W.W.; Roffler, S.R.; Cheng, T.C.; Su, Y.C.; Li, J.J.; Chen, C.C.; Huang, C.H.; Chen, B.M.; et al. Pre-existing anti-polyethylene glycol antibody reduces the therapeutic efficacy and pharmacokinetics of PEGylated liposomes. Theranostics 2018, 8, 3164–3175. [Google Scholar] [CrossRef]
- Laverman, P.; Carstens, M.G.; Boerman, O.C.; Dams, E.T.M.; Oyen, W.J.G.; Van Rooijen, N.; Corstens, F.H.M.; Storm, G. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J. Pharmacol. Exp. Ther. 2001, 298, 607–612. [Google Scholar] [CrossRef]
- Lai, C.Y.; Li, C.; Liu, M.Y.; Qiu, Q.J.; Luo, X.; Liu, X.R.; Hu, L.; Deng, Y.H.; Song, Y.Z. Effect of Kupffer cells depletion on ABC phenomenon induced by Kupffer cells-targeted liposomes. Asian J. Pharm. Sci. 2019, 14, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.X.; Wang, C.L.; Wang, L.; Yang, Q.; Tang, W.Y.; She, Z.N.; Deng, Y.H. A frustrating problem: Accelerated blood clearance of PEGylated solid lipid nanoparticles following subcutaneous injection in rats. Eur. J. Pharm. Biopharm. 2012, 81, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Kiwada, H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm. 2008, 354, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Abu Lila, A.S.; Kiwada, H.; Ishida, T. The accelerated blood clearance (ABC) phenomenon: Clinical challenge and approaches to manage. J. Control. Release 2013, 172, 38–47. [Google Scholar] [CrossRef]
- Verhoef, J.J.F.; Anchordoquy, T.J. Questioning the use of PEGylation for drug delivery. Drug Deliv. Transl. Res. 2013, 3, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, K.; Yokoyama, M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: A review. Sci. Technol. Adv. Mat. 2019, 20, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.H.; Cortese, M.M.; Fang, J.L.; Wood, R.; Hummell, D.S.; Risma, K.A.; Norton, A.E.; KuKuruga, M.; Kirshner, S.; Rabin, R.L.; et al. Evaluation of association of anti-PEG antibodies with anaphylaxis after mRNA COVID-19 vaccination. Vaccine 2023, 41, 4183–4189. [Google Scholar] [CrossRef] [PubMed]
- Dézsi, L.; Mészáros, T.; Kozma, G.; H-Velkei, M.; Oláh, C.Z.; Szabó, M.; Patkó, Z.; Fülöp, T.; Hennies, M.; Szebeni, M.; et al. A naturally hypersensitive porcine model may help understand the mechanism of COVID-19 mRNA vaccine-induced rare (pseudo) allergic reactions: Complement activation as a possible contributing factor. Geroscience 2022, 44, 597–618. [Google Scholar] [CrossRef]
- Richter, A.W.; Akerblom, E. Antibodies against Polyethylene-Glycol Produced in Animals by Immunization with Monomethoxy Polyethylene-Glycol Modified Proteins. Int. Arch. Allergy Appl. Immunol. 1983, 70, 124–131. [Google Scholar] [CrossRef]
- Sharma, L.R.; Subedi, A.; Shah, B.K. Anaphylaxis to Pegylated Liposomal Doxorubicin: A Case Report. West Indian. Med. J. 2014, 63, 376–377. [Google Scholar] [CrossRef]
- Miao, G.F.; He, Y.J.; Lai, K.R.; Zhao, Y.; He, P.Y.; Tan, G.Z.; Wang, X.R. Accelerated blood clearance of PEGylated nanoparticles induced by PEG-based pharmaceutical excipients. J. Control. Release 2023, 363, 12–26. [Google Scholar] [CrossRef]
- Shen, L.M.; Li, Z.B.; Ma, A.L.C.; Cruz-Teran, C.; Talkington, A.; Shipley, S.T.; Lai, S.K. Free PEG Suppresses Anaphylaxis to PEGylated Nanomedicine in Swine. ACS Nano 2024, 18, 8733–8744. [Google Scholar] [CrossRef]
- Jiang, K.; Tian, K.S.; Yu, Y.F.; Wu, E.R.; Yang, M.; Pan, F.; Qian, J.; Zhan, C.Y. Kupffer cells determine intrahepatic traffic of PEGylated liposomal doxorubicin. Nat. Commun. 2024, 15, 6136. [Google Scholar] [CrossRef]
- Suzuki, T.; Suzuki, Y.; Hihara, T.; Kubara, K.; Kondo, K.; Hyodo, K.; Yamazaki, K.; Ishida, T.; Ishihara, H. PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: Faster PEG shedding attenuates anti-PEG IgM production. Int. J. Pharm. 2020, 588, 119792. [Google Scholar] [CrossRef]
- Shankar, G.; Devanarayan, V.; Amaravadi, L.; Barrett, Y.C.; Bowsher, R.; Finco-Kent, D.; Fiscella, M.; Gorovits, B.; Kirschner, S.; Moxness, M.; et al. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. J. Pharm. Biomed. 2008, 48, 1267–1281. [Google Scholar] [CrossRef]
- Dong, H.J.; Mora, J.R.; Brockus, C.; Chilewski, S.D.; Dodge, R.; Merrifield, C.; Dickerson, W.M.; DeSilva, B. Development of a Generic Anti-PEG Antibody Assay Using BioScale’s Acoustic Membrane MicroParticle Technology. AAPS J. 2015, 17, 1511–1516. [Google Scholar] [CrossRef]
- Geng, D.; Shankar, G.; Schantz, A.; Rajadhyaksha, M.; Davis, H.; Wagner, C. Validation of immunoassays used to assess immunogenicity to therapeutic monoclonal antibodies. J. Pharm. Biomed. 2005, 39, 364–375. [Google Scholar] [CrossRef]
- Findlay, J.W.A.; Smith, W.C.; Lee, J.W.; Nordblom, G.D.; Das, I.; DeSilva, B.S.; Khan, M.N.; Bowsher, R.R. Validation of immunoassays for bioanalysis: A pharmaceutical industry perspective. J. Pharm. Biomed. 2000, 21, 1249–1273. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Sun, F.; Hung, H.C.; Jain, P.; Leger, K.J.; Jiang, S.Y. Sensitive and Quantitative Detection of Anti-Poly(ethylene glycol) (PEG) Antibodies by Methoxy-PEG-Coated Surface Plasmon Resonance Sensors. Anal. Chem. 2017, 89, 8217–8222. [Google Scholar] [CrossRef] [PubMed]
- Myler, H.; Hruska, M.W.; Srinivasan, S.; Cooney, E.; Kong, G.; Dodge, R.; Krishna, M.; Zhu, J.; Felix, T.; Gleason, C.; et al. Anti-PEG antibody bioanalysis: A clinical case study with PEG-IFN-λ-1a and PEG-IFN-α2a in naive patients. Bioanalysis 2015, 7, 1093–1106. [Google Scholar] [CrossRef]
- Xu, H.; Deng, Y.H.; Chen, D.W.; Hong, W.W.; Lu, Y.; Dong, X.H. Esterase-catalyzed dePEGylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. J. Control. Release 2008, 130, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Judge, A.; McClintock, K.; Phelps, J.R.; MacLachlan, I. Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Mol. Ther. 2006, 13, 328–337. [Google Scholar] [CrossRef]
- Fu, J.R.; Wu, E.R.; Li, G.H.; Wang, B.; Zhan, C.Y. Anti-PEG antibodies: Current situation and countermeasures. Nano Today 2024, 55, 102163. [Google Scholar] [CrossRef]
- Tang, W.J.; Zhang, Z.; Li, C.; Chu, Y.X.; Qian, J.; Ying, T.L.; Lu, W.Y.; Zhan, C.Y. Facile Separation of PEGylated Liposomes Enabled by Anti-PEG scFv. Nano Lett. 2021, 21, 10107–10113. [Google Scholar] [CrossRef]
- Keenan, R.T.; Botson, J.K.; Masri, K.R.; Padnick-Silver, L.; LaMoreaux, B.; Albert, J.A.; Pillinger, M.H. The effect of immunomodulators on the efficacy and tolerability of pegloticase: A systematic review. Semin. Arthritis Rheum. 2021, 51, 347–352. [Google Scholar] [CrossRef]
- Taguchi, K.; Ogaki, S.; Watanabe, H.; Kadowaki, D.; Sakai, H.; Kobayashi, K.; Horinouchi, H.; Maruyama, T.; Otagiri, M. Fluid Resuscitation with Hemoglobin Vesicles Prevents Growth via Complement Activation in a Hemorrhagic Shock Rat Model. J. Pharmacol. Exp. Ther. 2011, 337, 201–208. [Google Scholar] [CrossRef]
- Li, C.L.; Zhao, X.; Wang, Y.J.; Yang, H.Y.; Li, H.X.; Li, H.; Tian, W.; Yang, J.; Cui, J.X. Prolongation of time interval between doses could eliminate accelerated blood clearance phenomenon induced by pegylated liposomal topotecan. Int. J. Pharm. 2013, 443, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Thi, T.T.H.; Pilkington, E.H.; Nguyen, D.H.; Lee, J.S.; Park, K.D.; Truong, N.P. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers 2020, 12, 298. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, F.; Liu, S.J.; Jiang, S.Y. Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation. J. Control. Release 2016, 244, 184–193. [Google Scholar] [CrossRef]
- Mero, A.; Fang, Z.H.; Pasut, G.; Veronese, F.M.; Viegas, T.X. Selective conjugation of poly(2-ethyl 2-oxazoline) to granulocyte colony stimulating factor. J. Control. Release 2012, 159, 353–361. [Google Scholar] [CrossRef]
- Veronese, F.M.; Visco, C.; Massarotto, S.; Benassi, C.A.; Ferruti, P. New Acrylic Polymers for Surface Modification of Enzymes of Therapeutic Interest and for Enzyme Immobilization. Ann. N. Y. Acad. Sci. 1987, 501, 444–448. [Google Scholar] [CrossRef]
- Kojima, Y.; Maeda, H. Evaluation of Poly(Vinyl Alcohol) for Protein Tailoring-Improvements in Pharmacokinetic Properties of Superoxide-Dismutase. J. Bioact. Compat. Polym. 1993, 8, 115–131. [Google Scholar] [CrossRef]
- Shin, K.; Suh, H.W.; Grundler, J.; Lynn, A.Y.; Pothupitiya, J.U.; Moscato, Z.M.; Reschke, M.; Bracaglia, L.G.; Piotrowski-Daspit, A.S.; Saltzman, W.M. Polyglycerol and Poly(ethylene glycol) exhibit different effects on pharmacokinetics and antibody generation when grafted to nanoparticle surfaces. Biomaterials 2022, 287, 121676. [Google Scholar] [CrossRef] [PubMed]
- Romberg, B.; Oussoren, C.; Snel, C.J.; Carstens, M.G.; Hennink, W.E.; Storm, G. Pharmacokinetics of poly(hydroxyethyl-L-asparagine)-coated liposomes is superior over that of PEG-coated liposomes at low lipid dose and upon repeated administration. Biochim. Biophys. Acta (BBA)-Biomembr. 2007, 1768, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, T.; Maeda, T.; Sakamoto, H.; Takasaki, N.; Shigyo, M.; Ishida, T.; Kiwada, H.; Mizushima, Y.; Mizushima, T. Evasion of the Accelerated Blood Clearance Phenomenon by Coating of Nanoparticles with Various Hydrophilic Polymers. Biomacromolecules 2010, 11, 2700–2706. [Google Scholar] [CrossRef] [PubMed]
- Ekaterina, K.; Jürgen, A.; Margarita, K.; Henrich, F.; Agnes, C.; Stephan, F.; Ralf, B. Passive Macromolecular Translocation Mechanism through Lipid Membranes. J. Am. Chem. Soc. 2022, 144, 12345–12356. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, M.D.; Price, L.S.L.; Wessler, T.; Ciociola, E.C.; Herity, L.B.; Piscitelli, J.A.; DeWalle, A.C.; Harris, T.N.; Chan, A.K.P.; Saw, R.S.; et al. Overcoming anti-PEG antibody mediated accelerated blood clearance of PEGylated liposomes by pre-infusion with high molecular weight free PEG. J. Control. Release 2019, 311, 138–146. [Google Scholar] [CrossRef] [PubMed]
Modification Strategy | Mechanism and Example | Effect on Immunogenicity | Ref. |
---|---|---|---|
Cleavable PEG–lipid linkages | mPEG-CHEMS, cleaved by esterases | Reduced ABC effect; increased liver uptake | [57] |
Fast-shedding PEG–lipids | Short-acyl chain PEG-lipids | Significantly reduces APA induction and ABC phenomenon | [50,58] |
Terminal group substitution | HO-PEG vs. mPEG | HO-PEG shows lower APA recognition; reduced immunogenicity | [29] |
Combination with Immunomodulators | PEGylated uricase + Methotrexate | Inhibits APA formation; improves therapeutic response | [61] |
Use of alternative polymers | Polyglycerol, polyoxazoline, PVP, etc. | Avoids APA entirely; shows comparable stealth properties | [65,66,67,68,69,70,71] |
Antibody neutralization with free PEG | Pre-infusion of 40 kDa free PEG | Temporarily blocks APAs; restores circulation time | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, S.; Zhu, X.; Huang, F.; Chen, X. Anti-PEG Antibodies and Their Biological Impact on PEGylated Drugs: Challenges and Strategies for Optimization. Pharmaceutics 2025, 17, 1074. https://doi.org/10.3390/pharmaceutics17081074
Fu S, Zhu X, Huang F, Chen X. Anti-PEG Antibodies and Their Biological Impact on PEGylated Drugs: Challenges and Strategies for Optimization. Pharmaceutics. 2025; 17(8):1074. https://doi.org/10.3390/pharmaceutics17081074
Chicago/Turabian StyleFu, Shujun, Xueran Zhu, Fanghua Huang, and Xiaoyan Chen. 2025. "Anti-PEG Antibodies and Their Biological Impact on PEGylated Drugs: Challenges and Strategies for Optimization" Pharmaceutics 17, no. 8: 1074. https://doi.org/10.3390/pharmaceutics17081074
APA StyleFu, S., Zhu, X., Huang, F., & Chen, X. (2025). Anti-PEG Antibodies and Their Biological Impact on PEGylated Drugs: Challenges and Strategies for Optimization. Pharmaceutics, 17(8), 1074. https://doi.org/10.3390/pharmaceutics17081074