Palmitoylation Transduces the Regulation of Epidermal Growth Factor to Organic Anion Transporter 3
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Culture and Transfection
2.3. Transport Activity Measurement (Uptake Assay)
2.4. Biotinylation Assay
2.5. Click Chemistry-Based Labeling Assay
2.6. Resin-Assisted Capture (RAC) Assay
2.7. SDS-PAGE and Immunoblotting
2.8. Data Analysis
3. Results
3.1. Effect of EGF on OAT3 Transport Activity
3.2. The Role of Protein Kinase A (PKA) in the Effect of EGF on OAT3 Transport Activity
3.3. Effect of EGF on OAT3 Expression
3.4. Effect of EGF on OAT3 Palmitoylation
3.5. Effect of 2-BP on OAT3 Palmitoylations
3.6. Effect of 2-BP on OAT3 Expression
3.7. The Role of Palmitoylation in EGF/PKA Stimulation of OAT3 Transport Activity
3.8. Effect of EGF and Osimertinib on OAT3 Transport Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Granados, J.C.; Nigam, S.K. Organic Anion Transporters in Remote Sensing and Organ Crosstalk. Pharmacol. Ther. 2024, 263, 108723. [Google Scholar] [CrossRef]
- Yu, Z.; You, G. Recent Advances on the Regulations of Organic Anion Transporters. Pharmaceutics 2024, 16, 1355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, H.; Fan, Y.; Yu, Z.; You, G. Regulation of Organic Anion Transporters: Role in Physiology, Pathophysiology, and Drug Elimination. Pharmacol. Ther. 2021, 217, 107647. [Google Scholar] [CrossRef]
- Huo, X.; Liu, K. Renal Organic Anion Transporters in Drug–Drug Interactions and Diseases. Eur. J. Pharm. Sci. 2018, 112, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Caetano-Pinto, P.; Stahl, S.H. Renal Organic Anion Transporters 1 and 3 In Vitro: Gone but Not Forgotten. Int. J. Mol. Sci. 2023, 24, 15419. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Prasad, B.; Neuhoff, S.; Yoshida, K.; Leeder, J.S.; Mukherjee, D.; Taskar, K.; Varma, M.V.S.; Zhang, X.; Yang, X.; et al. Clinical Implications of Altered Drug Transporter Abundance/Function and PBPK Modeling in Specific Populations: An ITC Perspective. Clin. Pharmacol. Ther. 2022, 112, 501–526. [Google Scholar] [CrossRef]
- Brouwer, K.L.R.; Evers, R.; Hayden, E.; Hu, S.; Li, C.Y.; Meyer zu Schwabedissen, H.E.; Neuhoff, S.; Oswald, S.; Piquette-Miller, M.; Saran, C.; et al. Regulation of Drug Transport Proteins—From Mechanisms to Clinical Impact: A White Paper on Behalf of the International Transporter Consortium. Clin. Pharmacol. Ther. 2022, 112, 461–484. [Google Scholar] [CrossRef]
- Lee, W.; Ha, J.; Sugiyama, Y. Post-Translational Regulation of the Major Drug Transporters in the Families of Organic Anion Transporters and Organic Anion–Transporting Polypeptides. J. Biol. Chem. 2020, 295, 17349–17364. [Google Scholar] [CrossRef]
- Rocks, O.; Gerauer, M.; Vartak, N.; Koch, S.; Huang, Z.-P.; Pechlivanis, M.; Kuhlmann, J.; Brunsveld, L.; Chandra, A.; Ellinger, B.; et al. The Palmitoylation Machinery Is a Spatially Organizing System for Peripheral Membrane Proteins. Cell 2010, 141, 458–471. [Google Scholar] [CrossRef]
- Czuba, L.C.; Hillgren, K.M.; Swaan, P.W. Post-Translational Modifications of Transporters. Pharmacol. Ther. 2018, 192, 88–99. [Google Scholar] [CrossRef]
- De, I.; Sadhukhan, S. Emerging Roles of DHHC-Mediated Protein S-Palmitoylation in Physiological and Pathophysiological Context. Eur. J. Cell Biol. 2018, 97, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Ko, P.; Dixon, S.J. Protein Palmitoylation and Cancer. EMBO Rep. 2018, 19, e46666. [Google Scholar] [CrossRef]
- Chamberlain, L.H.; Shipston, M.J. The Physiology of Protein S-Acylation. Physiol. Rev. 2015, 95, 341–376. [Google Scholar] [CrossRef] [PubMed]
- Dunphy, J.T.; Linder, M.E. Signalling Functions of Protein Palmitoylation. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 1998, 1436, 245–261. [Google Scholar] [CrossRef]
- Villanueva, C.E.; Hagenbuch, B. Palmitoylation of Solute Carriers. Biochem. Pharmacol. 2023, 215, 115695. [Google Scholar] [CrossRef] [PubMed]
- Melenhorst, W.B.W.H.; Mulder, G.M.; Xi, Q.; Hoenderop, J.G.J.; Kimura, K.; Eguchi, S.; van Goor, H. Epidermal Growth Factor Receptor Signaling in the Kidney: Key Roles in Physiology and Disease. Hypertension 2008, 52, 987–993. [Google Scholar] [CrossRef]
- Marquèze-Pouey, B.; Mailfert, S.; Rouger, V.; Goaillard, J.-M.; Marguet, D. Physiological Epidermal Growth Factor Concentrations Activate High Affinity Receptors to Elicit Calcium Oscillations. PLoS ONE 2014, 9, e106803. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, F.; Forrester, S.J.; Eguchi, S.; Zhang, M.-Z.; Harris, R.C. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol. Rev. 2016, 96, 1025–1069. [Google Scholar] [CrossRef]
- Rayego-Mateos, S.; Rodrigues-Diez, R.; Morgado-Pascual, J.L.; Valentijn, F.; Valdivielso, J.M.; Goldschmeding, R.; Ruiz-Ortega, M. Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediat. Inflamm. 2018, 2018, 8739473. [Google Scholar] [CrossRef]
- Zeid, A.M.; Lamontagne, J.O.; Zhang, H.; Marneros, A.G. Epidermal Growth Factor Deficiency Predisposes to Progressive Renal Disease. FASEB J. 2022, 36, e22286. [Google Scholar] [CrossRef]
- Tong, Q.; Stockand, J.D. Receptor Tyrosine Kinases Mediate Epithelial Na+ Channel Inhibition by Epidermal Growth Factor. Am. J. Physiol.-Ren. Physiol. 2005, 288, F150–F161. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.-J.; Ritchie, G.; Kerstan, D.; Kang, H.S.; Cole, D.E.C.; Quamme, G.A. Magnesium Transport in the Renal Distal Convoluted Tubule. Physiol. Rev. 2001, 81, 51–84. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.-L.; Limbutara, K.; Kao, A.R.; Clark, J.Z.; Nein, E.H.; Raghuram, V.; Knepper, M.A. Collecting Duct Water Permeability Inhibition by EGF Is Associated with Decreased cAMP, PKA Activity, and AQP2 Phosphorylation at Ser269. Am. J. Physiol.-Ren. Physiol. 2024, 326, F545–F559. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Z.; You, G. Insulin-like Growth Factor 1 Modulates the Phosphorylation, Expression, and Activity of Organic Anion Transporter 3 through Protein Kinase A Signaling Pathway. Acta Pharm. Sin. B 2020, 10, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Liu, C.; Zhang, J.; Liang, Z.; You, G. Protein Kinase C Regulates Organic Anion Transporter 1 through Phosphorylating Ubiquitin Ligase Nedd4–2. BMC Mol. Cell Biol. 2021, 22, 53. [Google Scholar] [CrossRef]
- Martin, B.R. Non-Radioactive Analysis of Dynamic Protein Palmitoylation. Curr. Protoc. Protein Sci. 2013, 73, 14.15.1–14.15.9. [Google Scholar] [CrossRef]
- Forrester, M.T.; Hess, D.T.; Thompson, J.W.; Hultman, R.; Moseley, M.A.; Stamler, J.S.; Casey, P.J. Site-Specific Analysis of Protein S-Acylation by Resin-Assisted Capture. J. Lipid Res. 2011, 52, 393–398. [Google Scholar] [CrossRef]
- Guo, J.; Gaffrey, M.J.; Su, D.; Liu, T.; Camp, D.G.; Smith, R.D.; Qian, W.-J. Resin-Assisted Enrichment of Thiols as a General Strategy for Proteomic Profiling of Cysteine-Based Reversible Modifications. Nat. Protoc. 2014, 9, 64–75. [Google Scholar] [CrossRef]
- Sabnis, A.J.; Bivona, T.G. Principles of Resistance to Targeted Cancer Therapy: Lessons from Basic and Translational Cancer Biology. Trends Mol. Med. 2019, 25, 185–197. [Google Scholar] [CrossRef]
- Marasco, M.; Misale, S. Resistance Is Futile with Fourth-Generation EGFR Inhibitors. Nat. Cancer 2022, 3, 381–383. [Google Scholar] [CrossRef]
- Wang, L.; Sweet, D.H. Interaction of Natural Dietary and Herbal Anionic Compounds and Flavonoids with Human Organic Anion Transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Evid. Based Complement. Alternat. Med. 2013, 2013, 612527. [Google Scholar] [CrossRef]
- Bode, G.; Lima, B.S.; Bass, R. Drug Safety Assessment: Support by International Guidelines. In Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays; Hock, F.J., Pugsley, M.K., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 2157–2238. ISBN 978-3-031-35528-8. [Google Scholar]
- Joh, T.; Itoh, M.; Katsumi, K.; Yokoyama, Y.; Takeuchi, T.; Kato, T.; Wada, Y.; Tanaka, R. Physiological Concentrations of Human Epidermal Growth Factor in Biological Fluids: Use of a Sensitive Enzyme Immunoassay. Clin. Chim. Acta 1986, 158, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.C.; Peng, W.L.; Chen, S.-H. Effects of Epidermal Growth Factor and Its Signal Transduction Inhibitors on Apoptosis in Human Colorectal Cancer Cells. World J. Gastroenterol. 2004, 10, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.D.; Suzuki, M.; Svendsen, C.N. A High Concentration of Epidermal Growth Factor Increases the Growth and Survival of Neurogenic Radial Glial Cells Within Human Neurosphere Cultures. Stem Cells 2008, 26, 348–355. [Google Scholar] [CrossRef]
- Adams, M.N.; Harrington, B.S.; He, Y.; Davies, C.M.; Wallace, S.J.; Chetty, N.P.; Crandon, A.J.; Oliveira, N.B.; Shannon, C.M.; Coward, J.I.; et al. EGF Inhibits Constitutive Internalization and Palmitoylation-Dependent Degradation of Membrane-Spanning Procancer CDCP1 Promoting Its Availability on the Cell Surface. Oncogene 2015, 34, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Kadry, Y.A.; Lee, J.-Y.; Witze, E.S. Regulation of EGFR Signalling by Palmitoylation and Its Role in Tumorigenesis. Open Biol. 2021, 11, 210033. [Google Scholar] [CrossRef]
- Conibear, E.; Davis, N.G. Palmitoylation and Depalmitoylation Dynamics at a Glance. J. Cell Sci. 2010, 123, 4007–4010. [Google Scholar] [CrossRef]
- Xie, F.; Su, P.; Pan, T.; Zhou, X.; Li, H.; Huang, H.; Wang, A.; Wang, F.; Huang, J.; Yan, H.; et al. Engineering Extracellular Vesicles Enriched with Palmitoylated ACE2 as COVID-19 Therapy. Adv. Mater. 2021, 33, 2103471. [Google Scholar] [CrossRef]
- Roy, K.; Marin, E.P. Polycystin-1, the Product of the Polycystic Kidney Disease Gene PKD1, Is Post-Translationally Modified by Palmitoylation. Mol. Biol. Rep. 2018, 45, 1515–1521. [Google Scholar] [CrossRef]
- Gu, M.; Jiang, H.; Tan, M.; Yu, L.; Xu, N.; Li, Y.; Wu, H.; Hou, Q.; Dai, C. Palmitoyltransferase DHHC9 and Acyl Protein Thioesterase APT1 Modulate Renal Fibrosis through Regulating β-Catenin Palmitoylation. Nat. Commun. 2023, 14, 6682. [Google Scholar] [CrossRef]
- Cuiffo, B.; Ren, R. Palmitoylation of Oncogenic NRAS Is Essential for Leukemogenesis. Blood 2010, 115, 3598–3605. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Fu, L. Mechanisms of Resistance to EGFR Tyrosine Kinase Inhibitors. Acta Pharm. Sin. B 2015, 5, 390–401. [Google Scholar] [CrossRef]
- Tan, C.-S.; Gilligan, D.; Pacey, S. Treatment Approaches for EGFR-Inhibitor-Resistant Patients with Non-Small-Cell Lung Cancer. Lancet Oncol. 2015, 16, e447–e459. [Google Scholar] [CrossRef] [PubMed]
- Soria, J.-C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Yang, J.C.-H.; Lee, C.K.; Kurata, T.; Kim, D.-W.; John, T.; Nogami, N.; Ohe, Y.; Mann, H.; Rukazenkov, Y.; et al. Osimertinib As First-Line Treatment of EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 841–849. [Google Scholar] [CrossRef]
- Nigam, S.K. The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 663–687. [Google Scholar] [CrossRef]
- Nigam, S.K.; Bush, K.T.; Martovetsky, G.; Ahn, S.-Y.; Liu, H.C.; Richard, E.; Bhatnagar, V.; Wu, W. The Organic Anion Transporter (OAT) Family: A Systems Biology Perspective. Physiol. Rev. 2015, 95, 83–123. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, J.; Liang, Z.; Wu, J.; Liu, K.; You, G. Pancreatic Hormone Insulin Modulates Organic Anion Transporter 1 in the Kidney: Regulation via Remote Sensing and Signaling Network. AAPS J. 2023, 25, 13. [Google Scholar] [CrossRef]
- Nigam, S.K.; Granados, J.C. OAT, OATP, and MRP Drug Transporters and the Remote Sensing and Signaling Theory. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 637–660. [Google Scholar] [CrossRef]
- Nigam, S.K.; Granados, J.C. A Biological Basis for Pharmacokinetics: The Remote Sensing and Signaling Theory. Clin. Pharmacol. Ther. 2022, 112, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, S.B.; Bush, K.T.; Nigam, S.K. A Network of SLC and ABC Transporter and DME Genes Involved in Remote Sensing and Signaling in the Gut-Liver-Kidney Axis. Sci. Rep. 2019, 9, 11879. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Zhang, J.; Feng, J.; You, G. Palmitoylation Transduces the Regulation of Epidermal Growth Factor to Organic Anion Transporter 3. Pharmaceutics 2025, 17, 825. https://doi.org/10.3390/pharmaceutics17070825
Yu Z, Zhang J, Feng J, You G. Palmitoylation Transduces the Regulation of Epidermal Growth Factor to Organic Anion Transporter 3. Pharmaceutics. 2025; 17(7):825. https://doi.org/10.3390/pharmaceutics17070825
Chicago/Turabian StyleYu, Zhou, Jinghui Zhang, Jiaxu Feng, and Guofeng You. 2025. "Palmitoylation Transduces the Regulation of Epidermal Growth Factor to Organic Anion Transporter 3" Pharmaceutics 17, no. 7: 825. https://doi.org/10.3390/pharmaceutics17070825
APA StyleYu, Z., Zhang, J., Feng, J., & You, G. (2025). Palmitoylation Transduces the Regulation of Epidermal Growth Factor to Organic Anion Transporter 3. Pharmaceutics, 17(7), 825. https://doi.org/10.3390/pharmaceutics17070825