Advancing Brain Targeting: Cost-Effective Surface-Modified Nanoparticles for Faster Market Entry
Abstract
:1. Introduction
2. Nanoparticles as Drug Delivery Systems
Cost-Effectiveness of Nanoformulations
3. Mechanisms of the Nanoparticles in Brain Targeting
4. Ligands and Surface Modification for Nanoparticles
4.1. Surface Modification with Proteins
4.1.1. Transferrin
4.1.2. Lactoferrin
4.1.3. Protamine
4.1.4. Insulin
4.1.5. Apolipoprotein E3
4.1.6. Emerging Protein Ligands
4.2. Surface Modification with Peptides
4.3. Surface Modification with Antibodies
4.4. Surface Modification with Other Ligands
4.5. Surface Modification with Chitosan
5. Market Implications
6. Challenges, Opportunities, and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Aβ | amyloid-beta |
AD | Alzheimer’s disease |
Ang-2 | Angiopep-2 |
AMT | adsorptive-mediated transcytosis |
ApoE3 | Apolipoprotein E3 |
ApoE-SLNs | ApoE-functionalized solid lipid NPs |
BBB | blood–brain barrier |
BCECs | brain capillary endothelial cells |
BDNF | brain-derived neurotrophic factor |
BTE | brain tumor-related epilepsy |
CAGR | compound annual growth rate |
CBD | cannabidiol |
CNS | central nervous system |
CPP | cell-penetrating peptide |
CRT | cyclic CRTIGPSVC |
Cur | curcumin |
DOX | doxorubicin |
DXT | docetaxel |
EMA | European Medicines Agency |
FA | folic acid |
FUS | focused ultrasound |
Gb3 | globotriaosylceramide |
GMP | Good Manufacturing Practice |
HA | hyaluronic acid |
HSA | human serum albumin |
LDL | low-density lipoprotein |
Lf | lactoferrin |
LfR | lactoferirn receptors |
LPS | lipopolysaccharide |
LRP-1 | lipoprotein receptor-related protein 1 |
nAChR | nicotinic acetylcholine receptor |
NGF | nerve growth factor |
NLCs | nanostructured lipid carriers |
NPs | nanoparticles |
mAb | monoclonal antibody |
MYR | myricetin |
PBCECs | porcine brain capillary endothelial cells P |
pBDNF | BDNF plasmid |
PCB | polycarboxybetaine |
PEG | polyethylene glycol |
PLGA | polylactic-co-glycolic acid |
PTX | paclitaxel |
ROS | reactive oxygen species |
RVG | rabies virus glycoprotein |
SHK | shikonin |
scFv | single-chain variable fragment |
siRNA | interfering RNA |
SLNs | solid lipid nanoparticles |
STxB | shiga toxin B |
TAT | transactivator of transcription peptide |
Tf | transferrin |
TfRs | transferrin receptors |
TMC | N-trimethyl chitosan |
TTF | tumor-treating fields |
References
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood-brain barrier: Structure, regulation, and drug delivery. Sig. Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Ahishali, B. Basic physiology of the blood-brain barrier in health and disease: A brief overview. Tissue Barriers 2021, 9, 1840913. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Khan, A.I.; Cai, X.; Song, Y.; Lyu, Z.; Du, D.; Dutta, P.; Lin, Y. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today 2020, 37, 112–125. [Google Scholar] [CrossRef]
- Anthony, D.P.; Hegde, M.; Shetty, S.S.; Rafic, T.; Mutalik, S.; Rao, B.S.S. Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases. Life Sci. 2021, 274, 119326. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Zhao, Z.; Montagne, A.; Nelson, A.R.; Zlokovic, B. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol. Rev. 2019, 99, 21–78. [Google Scholar] [CrossRef]
- Correia, A.C.; Monteiro, A.R.; Silva, R.; Moreira, J.N.; Sousa Lobo, J.M.; Silva, A.C. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood-brain barrier (BBB) to manage neurological disorders. Adv. Drug Deliv. Rev. 2022, 189, 114485. [Google Scholar] [CrossRef]
- Teleanu, R.I.; Preda, M.D.; Niculescu, A.-G.; Vladâcenco, O.; Radu, C.I.; Grumezescu, A.M.; Teleanu, D.M. Current Strategies to Enhance Delivery of Drugs across the Blood–Brain Barrier. Pharmaceutics 2022, 14, 987. [Google Scholar] [CrossRef]
- Tripathi, S.; Siddiqui, M.H.; Kumar, A.; Vimal, A. Nanoparticles: A promising vehicle for the delivery of therapeutic enzymes. Int. Nano Lett. 2023, 13, 209–221. [Google Scholar] [CrossRef]
- Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef]
- Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front. Mol. Biosci. 2020, 7, 587012. [Google Scholar] [CrossRef]
- Zorkina, Y.; Abramova, O.; Ushakova, V.; Morozova, A.; Zubkov, E.; Valikhov, M.; Melnikov, P.; Majouga, A.; Chekhonin, V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules 2020, 25, 5294. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, D.; Sherkar, R.; Shirsathe, C.; Sonwane, R.; Varpe, N.; Shelke, S.; More, M.P.; Pardeshi, S.R.; Dhaneshwar, G.; Junnuthula, V.; et al. Biofabrication of nanoparticles: Sources, synthesis, and biomedical applications. Front. Bioeng. Biotechnol. 2023, 11, 1159193. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J. Nanopart. Res. 2023, 25, 43. [Google Scholar] [CrossRef]
- Alshamrani, M. Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials. Polymers 2022, 14, 1221. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.R.; Akash, S.; Harun-Or-Rashid, M.; Ray, T.K.; Rahaman, M.S.; Islam, M.; Anika, F.; Hosain, M.K.; Aovi, F.I.; et al. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomed. Pharmacother. 2022, 153, 113305. [Google Scholar] [CrossRef]
- Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J. Control. Release 2016, 235, 34–47. [Google Scholar] [CrossRef]
- Poornima, G.; Karthick, H.; Pragya, P.; Pemula, G.; Koyeli, G.; Girigoswami, A. RNA—A choice of potential drug delivery system. Int. J. Polym. Mater. Polym. Biomater. 2023, 72, 778–792. [Google Scholar] [CrossRef]
- Teixeira, M.I.; Lopes, C.M.; Amaral, M.H.; Costa, P.C. Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): A current overview of active targeting in brain diseases. Colloids Surf. B Biointerfaces 2023, 221, 112999. [Google Scholar] [CrossRef]
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef]
- Alvi, M.; Yaqoob, A.; Rehman, K.; Shoaib, S.M.; Akash, M.S.H. PLGA-based nanoparticles for the treatment of cancer: Current strategies and perspectives. AAPS Open 2022, 8, 12. [Google Scholar] [CrossRef]
- Abulateefeh, S.R. Long-acting injectable PLGA/PLA depots for leuprolide acetate: Successful translation from bench to clinic. Drug Deliv. Transl. Res. 2023, 13, 520–530. [Google Scholar] [CrossRef]
- Burlec, A.F.; Corciova, A.; Boev, M.; Batir-Marin, D.; Mircea, C.; Cioanca, O.; Danila, G.; Danila, M.; Bucur, A.F.; Hancianu, M. Current Overview of Metal Nanoparticles’ Synthesis, Characterization, and Biomedical Applications, with a Focus on Silver and Gold Nanoparticles. Pharmaceuticals 2023, 16, 1410. [Google Scholar] [CrossRef]
- Chandrakala, V.; Aruna, V.; Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater. 2022, 5, 1593–1615. [Google Scholar] [CrossRef]
- Rodríguez, F.; Caruana, P.; De la Fuente, N.; Español, P.; Gámez, M.; Balart, J.; Llurba, E.; Rovira, R.; Ruiz, R.; Martín-Lorente, C.; et al. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules 2022, 12, 784. [Google Scholar] [CrossRef]
- Ghaffarlou, M.; Rashidzadeh, H.; Mohammadi, A.; Mousazadeh, N.; Barsbay, M.; Sharafi, A.; Gharbavi, M.; Danafar, H.; Javani, S. Photothermal and radiotherapy with alginate-coated gold nanoparticles for breast cancer treatment. Sci. Rep. 2024, 14, 13299. [Google Scholar] [CrossRef]
- Tapeinos, C.; Battaglini, M.; Ciofani, G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J. Control. Release 2017, 264, 306–332. [Google Scholar] [CrossRef]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci. 2018, 13, 288–303. [Google Scholar]
- RESOMER® RG 502 H, poly(d,L-lactide-co-glycolide). Available online: https://www.sigmaaldrich.cn/CN/en/product/aldrich/719897 (accessed on 5 April 2025).
- AU. Available online: https://www.sigmaaldrich.cn/CN/en/product/aldrich/265772 (accessed on 5 April 2025).
- Augusto, P.A.; Castelo-Grande, T.; Vargas, D.; Pascual, A.; Hernández, L.; Estevez, A.M.; Barbosa, D. Upscale Design, Process Development, and Economic Analysis of Industrial Plants for Nanomagnetic Particle Production for Environmental and Biomedical Use. Materials 2020, 13, 2477. [Google Scholar] [CrossRef]
- Cheng, T.-M.; Chu, H.-Y.; Huang, H.-M.; Li, Z.-L.; Chen, C.-Y.; Shih, Y.-J.; Whang-Peng, J.; Cheng, R.H.; Mo, J.-K.; Lin, H.-Y.; et al. Toxicologic Concerns with Current Medical Nanoparticles. Int. J. Mol. Sci. 2022, 23, 7597. [Google Scholar] [CrossRef]
- Öztürk, K.; Kaplan, M.; Çalış, S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int. J. Pharm. 2024, 666, 124799. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.K.; Pedersen, J.N.; Marie, R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat. Commun. 2020, 11, 2337. [Google Scholar] [CrossRef]
- Kyriakides, T.R.; Raj, A.; Tseng, T.H.; Xiao, H.; Nguyen, R.; Mohammed, F.S.; Halder, S.; Xu, M.; Wu, M.J.; Bao, S.; et al. Biocompatibility of nanomaterials and their immunological properties. Biomed. Mater. 2021, 16, 042005. [Google Scholar] [CrossRef]
- Duan, M.; Cao, R.; Yang, Y.; Chen, X.; Liu, L.; Ren, B.; Wang, L.; Goh, B.-C. Blood–Brain Barrier Conquest in Glioblastoma Nanomedicine: Strategies, Clinical Advances, and Emerging Challenges. Cancers 2024, 16, 3300. [Google Scholar] [CrossRef]
- He, J.; Yang, L.; Li, D.; Xie, J.; Zhou, G.; Zhou, R.; Li, Y.; Wei, G.; Gong, Z.; Li, L.; et al. Transferrin-modified carboxymethyl chitosan-chitosan nanoparticles as an efficient delivery carrier for targeted therapy of depression. Int. J. Biol. Macromol. 2025, 286, 138352. [Google Scholar] [CrossRef]
- Wadhwa, K.; Chauhan, P.; Kumar, S.; Pahwa, R.; Verma, R.; Goyal, M.R.; Singh, G.; Sharma, A.; Rao, N.; Kaushik, D. Targeting brain tumors with innovative nanocarriers: Bridging the gap through the blood-brain barrier. Oncol. Res. 2024, 32, 877–897. [Google Scholar] [CrossRef]
- Bolanle, I.O.; de Liedekerke Beaufort, G.C.; Weinberg, P.D. Transcytosis of LDL Across Arterial Endothelium: Mechanisms and Therapeutic Targets. Arterioscler. Thromb. Vasc. Biol. 2025, 45, 468–480. [Google Scholar] [CrossRef]
- Tong, H.; Ma, Z.; Yu, J.; Li, D.; Zhu, Q.; Shi, H.; Wu, Y.; Yang, H.; Zheng, Y.; Sun, D.; et al. Optimizing Peptide-Conjugated Lipid Nanoparticles for Efficient siRNA Delivery across the Blood-Brain Barrier and Treatment of Glioblastoma Multiforme. ACS Chem. Biol. 2025, 20, 942–952. [Google Scholar] [CrossRef]
- Alqudah, A.; Aljabali, A.A.; Gammoh, O.; Tambuwala, M.M. Advancements in neurotherapeutics: Nanoparticles overcoming the blood–brain barrier for precise CNS targeting. J. Nanopart. Res. 2024, 26, 123. [Google Scholar] [CrossRef]
- Milla, P.; Dosio, F.; Cattel, L. PEGylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab. 2012, 13, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Zhu, X.; Tao, W.; Cui, Y.; Liu, M.; Wu, L.; Li, L.; Zheng, Y.; Huang, Y. Enhanced Oral Delivery of Protein Drugs Using Zwitterion-Functionalized Nanoparticles to Overcome both the Diffusion and Absorption Barriers. ACS Appl. Mater. Interfaces 2016, 8, 25444–25453. [Google Scholar] [CrossRef] [PubMed]
- de la Rica, R.; Aili, D.; Stevens, M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 2012, 64, 967–978. [Google Scholar] [CrossRef]
- Stengel, D.; Demirel, B.H.; Knoll, P.; Truszkowska, M.; Laffleur, F.; Bernkop-Schnürch, A. PEG vs. zwitterions: How these surface decorations determine cellular uptake of lipid-based nanocarriers. J. Colloid. Interface Sci. 2023, 647, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Jiang, S. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today 2012, 7, 404–413. [Google Scholar] [CrossRef]
- Du, J.; Lane, L.A.; Nie, S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J. Control. Release 2015, 219, 205–214. [Google Scholar] [CrossRef]
- Li, M.; Zhao, G.; Su, W.K.; Shuai, Q. Enzyme-Responsive Nanoparticles for Anti-tumor Drug Delivery. Front. Chem. 2020, 8, 647. [Google Scholar] [CrossRef]
- Ye, D.; Zhang, X.; Yue, Y.; Raliya, R.; Biswas, P.; Taylor, S.; Tai, Y.-C.; Rubin, J.B.; Liu, Y.; Chen, H. Focused ultrasound combined with microbubble-mediated intranasal delivery of gold nanoclusters to the brain. J. Control. Release 2018, 286, 145–153. [Google Scholar] [CrossRef]
- Lipsman, N.; Meng, Y.; Bethune, A.J.; Huang, Y.; Lam, B.; Masellis, M.; Herrmann, N.; Heyn, C.; Aubert, I.; Boutet, A.; et al. Blood-brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat. Commun. 2018, 9, 2336. [Google Scholar] [CrossRef]
- Wu, S.-K.; Tsai, C.-L.; Huang, Y.; Hynynen, K. Focused Ultrasound and Microbubbles-Mediated Drug Delivery to Brain Tumor. Pharmaceutics 2021, 13, 15. [Google Scholar] [CrossRef]
- Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 2015, 16, 8070–8101. [Google Scholar] [CrossRef]
- Illes, B.; Hirschle, P.; Barnert, S.; Cauda, V.; Wuttke, S.; Engelke, H. Exosome-Coated Metal–Organic Framework Nanoparticles: An Efficient Drug Delivery Platform. Chem. Mater. 2017, 29, 8042–8046. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Mohammadnejad, J.; Salamat, S.; Beiram Zadeh, Z.; Tanhaei, M.; Ramakrishna, S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: A review. Mater. Today Chem. 2023, 29, 101400. [Google Scholar] [CrossRef]
- Dias, A.M.M.; Courteau, A.; Bellaye, P.-S.; Kohli, E.; Oudot, A.; Doulain, P.-E.; Petitot, C.; Walker, P.-M.; Decréau, R.; Collin, B. Superparamagnetic Iron Oxide Nanoparticles for Immunotherapy of Cancers through Macrophages and Magnetic Hyperthermia. Pharmaceutics 2022, 14, 2388. [Google Scholar] [CrossRef]
- Chen, J.; Gong, M.; Fan, Y.; Feng, J.; Han, L.; Xin, H.L.; Cao, M.; Zhang, Q.; Zhang, D.; Lei, D.; et al. Collective Plasmon Coupling in Gold Nanoparticle Clusters for Highly Efficient Photothermal Therapy. ACS Nano 2022, 16, 910–920. [Google Scholar] [CrossRef]
- Huang, P.; Wang, C.; Deng, H.; Zhou, Y.; Chen, X. Surface Engineering of Nanoparticles toward Cancer Theranostics. Acc. Chem. Res. 2023, 56, 1766–1779. [Google Scholar] [CrossRef]
- Li, C.; Zhou, L.; Yin, X. Pathophysiological aspects of transferrin-A potential nano-based drug delivery signaling molecule in therapeutic target for varied diseases. Front. Pharmacol. 2024, 15, 1342181. [Google Scholar] [CrossRef]
- Kaur, T.; Upadhyay, J.; Pukale, S.; Mathur, A.; Ansari, M.N. Investigation of Trends in the Research on Transferrin Receptor-Mediated Drug Delivery via a Bibliometric and Thematic Analysis. Pharmaceutics 2022, 14, 2574. [Google Scholar] [CrossRef]
- Kumar, L.A.; Pattnaik, G.; Satapathy, B.S.; Mohanty, D.L.; Zafar, A.; Warsi, M.H.; Khalid, M.; Mujtaba, M.A. Transferrin-modified Gemcitabine Encapsulated Polymeric Nanoparticles Persuaded Apoptosis in U87MG Cells and Improved Drug Availability in Rat Brain: An Active Targeting Strategy for Treatment of Glioma. J. Oleo Sci. 2025, 74, 261–274. [Google Scholar] [CrossRef]
- Ramalho, M.J.; Torres, I.D.; Loureiro, J.A.; Lima, J.; Pereira, M.C. Transferrin-Conjugated PLGA Nanoparticles for Co-Delivery of Temozolomide and Bortezomib to Glioblastoma Cells. ACS Appl. Nano Mater. 2023, 6, 14191–14203. [Google Scholar] [CrossRef]
- Neves, A.R.; van der Putten, L.; Queiroz, J.F.; Pinheiro, M.; Reis, S. Transferrin-functionalized lipid nanoparticles for curcumin brain delivery. J. Biotechnol. 2021, 331, 108–117. [Google Scholar] [CrossRef]
- Lopalco, A.; Cutrignelli, A.; Denora, N.; Lopedota, A.; Franco, M.; Laquintana, V. Transferrin Functionalized Liposomes Loading Dopamine HCl: Development and Permeability Studies across an In Vitro Model of Human Blood–Brain Barrier. Nanomaterials 2018, 8, 178. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.-Q.; Lv, Q.; Li, L.-M.; Tang, X.-J.; Li, F.-Z.; Hu, Y.-L.; Han, M. Glioma targeting and blood–brain barrier penetration by dual-targeting doxorubincin liposomes. Biomaterials 2013, 34, 5628–5639. [Google Scholar] [CrossRef] [PubMed]
- Akdaşçi, E.; Eker, F.; Duman, H.; Singh, P.; Bechelany, M.; Karav, S. Lactoferrin as a Versatile Agent in Nanoparticle Applications: From Therapeutics to Agriculture. Nanomaterials 2024, 14, 2018. [Google Scholar] [CrossRef]
- Singh, I.; Swami, R.; Pooja, D.; Jeengar, M.K.; Khan, W.; Sistla, R. Lactoferrin bioconjugated solid lipid nanoparticles: A new drug delivery system for potential brain targeting. J. Drug Target. 2016, 24, 212–223. [Google Scholar] [CrossRef]
- Xu, Y.; Asghar, S.; Yang, L.; Li, H.; Wang, Z.; Ping, Q.; Xiao, Y. Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma. Carbohydr. Polym. 2017, 157, 419–428. [Google Scholar] [CrossRef]
- Li, H.; Tong, Y.; Bai, L.; Ye, L.; Zhong, L.; Duan, X.; Zhu, Y. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int. J. Biol. Macromol. 2018, 107, 204–211. [Google Scholar] [CrossRef]
- Bhaskar, S.; Tian, F.; Stoeger, T.; Kreyling, W.; de la Fuente, J.M.; Grazú, V.; Borm, P.; Estrada, G.; Ntziachristos, V.; Razansky, D. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: Perspectives on tracking and neuroimaging. Part. Fibre Toxicol. 2010, 7, 3. [Google Scholar] [CrossRef]
- Kou, L.; Bhutia, Y.D.; Yao, Q.; He, Z.; Sun, J.; Ganapathy, V. Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types. Front. Pharmacol. 2018, 9, 27. [Google Scholar] [CrossRef]
- Malhotra, M.; Tomaro-Duchesneau, C.; Saha, S.; Prakash, S. Intranasal delivery of chitosan-siRNA nanoparticle formulation to the brain. Methods Mol. Biol. 2014, 1141, 233–247. [Google Scholar]
- Dhami, N.K.; Pandey, R.S.; Jain, U.K.; Chandra, R.; Madan, J. Non-aggregated protamine-coated poly(lactide-co-glycolide) nanoparticles of cisplatin crossed blood-brain barrier, enhanced drug delivery and improved therapeutic index in glioblastoma cells: In vitro studies. J. Microencapsul. 2014, 31, 685–693. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Q.Y.; Haqqani, A.S.; Leclerc, S.; Liu, Z.; Fauteux, F.; Baumann, E.; Delaney, C.E.; Ly, D.; Star, A.T.; et al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS 2020, 17, 47. [Google Scholar] [CrossRef] [PubMed]
- Ulbrich, K.; Knobloch, T.; Kreuter, J. Targeting the insulin receptor: Nanoparticles for drug delivery across the blood-brain barrier (BBB). J. Drug Target. 2011, 19, 125–132. [Google Scholar] [CrossRef]
- Hartl, N.; Gabold, B.; Uhl, P.; Kromer, A.; Xiao, X.; Fricker, G.; Mier, W.; Liu, R.; Merkel, O.M. ApoE—Functionalization of nanoparticles for targeted brain delivery—A feasible method for polyplexes? Drug Deliv. Transl. Res. 2024, 14, 1660–1677. [Google Scholar] [CrossRef]
- Ding, Y.; Palecek, S.P.; Shusta, E.V. iPSC-derived blood-brain barrier modeling reveals APOE isoform-dependent interactions with amyloid beta. Fluids Barriers CNS 2024, 21, 79. [Google Scholar] [CrossRef]
- Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci. 2022, 23, 1851. [Google Scholar] [CrossRef]
- Athalye, M.; Teli, D.; Chorawala, M.; Sharma, A.; Patel, R.; Dua, K.; Singh, S.K.; Gupta, G.; Patel, M. Apolipoprotein E3 functionalized lipid-drug conjugated nanoparticles of Levetiracetam for enhanced delivery to the brain: In-vitro cell line studies and in-vivo study. Int. J. Biol. Macromol. 2024, 254, 127799. [Google Scholar] [CrossRef]
- Hartl, N.; Adams, F.; Merkel, O.M. From adsorption to covalent bonding: Apolipoprotein E functionalization of polymeric nanoparticles for drug delivery across the blood-brain barrier. Adv. Ther. 2021, 4, 2000092. [Google Scholar] [CrossRef]
- Topal, G.R.; Mészáros, M.; Porkoláb, G.; Szecskó, A.; Polgár, T.F.; Siklós, L.; Deli, M.A.; Veszelka, S.; Bozkir, A. ApoE-Targeting Increases the Transfer of Solid Lipid Nanoparticles with Donepezil Cargo across a Culture Model of the Blood–Brain Barrier. Pharmaceutics 2021, 13, 38. [Google Scholar] [CrossRef]
- Ehrenfeld, M.; Schrade, A.; Flisikowska, T.; Perl, M.; Hirsch, N.D.; Sichler, A.; Geyer, L.; Flisikowski, K.; Wilhelm, D.; Schober, S.J.; et al. Tumor Targeting with Bacterial Shiga Toxin B Subunit in Genetic Porcine Models for Colorectal Cancer and Osteosarcoma. Mol. Cancer Ther. 2022, 21, 686–699. [Google Scholar] [CrossRef]
- Navarro-Palomares, E.; García-Hevia, L.; Galán-Vidal, J.; Gandarillas, A.; Liz-Marzán, L.M.; Valiente, R.; Fanarraga, M.L. Shiga toxin-targeted gold nanorods for head-neck cancer photothermal therapy in clinical samples. Int. J. Nanomedicine 2022, 17, 5747–5760. [Google Scholar] [CrossRef]
- Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. 2018, 9, 790–810. [Google Scholar] [CrossRef] [PubMed]
- Farran, B.; Montenegro, R.C.; Kasa, P.; Pavitra, E.; Huh, Y.S.; Han, Y.-K.; Kamal, M.A.; Nagaraju, G.P.; Rama Raju, G.S. Folate-conjugated nanovehicles: Strategies for cancer therapy. Mater. Sci. Eng. 2020, 107, 110341. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimnejad, P.; Sodagar Taleghani, A.; Asare-Addo, K.; Nokhodchi, A. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discov. Today 2022, 27, 471–489. [Google Scholar] [CrossRef]
- Oller-Salvia, B.; Sánchez-Navarro, M.; Giralt, E.; Teixidó, M. Blood-brain barrier shuttle peptides: An emerging paradigm for brain delivery. Chem. Soc. Rev. 2016, 45, 4690–4707. [Google Scholar] [CrossRef]
- Sharma, G.; Lakkadwala, S.; Modgil, A.; Singh, J. The Role of Cell-Penetrating Peptide and Transferrin on Enhanced Delivery of Drug to Brain. Int. J. Mol. Sci. 2016, 17, 806. [Google Scholar] [CrossRef]
- Sepasi, T.; Bani, F.; Rahbarghazi, R.; Ebrahimi-Kalan, A.; Sadeghi, M.R.; Alamolhoda, S.Z.; Zarebkohan, A.; Ghadiri, T.; Gao, H. Targeted gene delivery to the brain using CDX-modified chitosan nanoparticles. Bioimpacts 2023, 13, 133–144. [Google Scholar] [CrossRef]
- Hoyos-Ceballos, G.P.; Ruozi, B.; Ottonelli, I.; Da Ros, F.; Vandelli, M.A.; Forni, F.; Daini, E.; Vilella, A.; Zoli, M.; Tosi, G.; et al. PLGA-PEG-ANG-2 Nanoparticles for Blood–Brain Barrier Crossing: Proof-of-Concept Study. Pharmaceutics 2020, 12, 72. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Chen, C.L.; Rajesh, R. Optimized liposomes with transactivator of transcription peptide and anti-apoptotic drugs to target hippocampal neurons and prevent tau-hyperphosphorylated neurodegeneration. Acta Biomater. 2019, 87, 207–222. [Google Scholar] [CrossRef]
- Fan, S.; Zheng, Y.; Liu, X.; Fang, W.; Chen, X.; Liao, W.; Jing, X.; Lei, M.; Tao, E.; Ma, Q.; et al. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Delivery 2018, 25, 1091–1102. [Google Scholar] [CrossRef]
- Huang, N.; Lu, S.; Liu, X.G.; Zhu, J.; Wang, Y.J.; Liu, R.T. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget 2017, 8, 81001–81013. [Google Scholar] [CrossRef]
- Barbara, R.; Belletti, D.; Pederzoli, F.; Masoni, M.; Keller, J.; Ballestrazzi, A.; Vandelli, M.A.; Tosi, G.; Grabrucker, A. Novel Curcumin loaded nanoparticles engineered for Blood-Brain Barrier crossing and able to disrupt Abeta aggregates. Int. J. Pharm. 2017, 526, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shi, K.; Tang, X.; Wei, J.; Cun, X.; Chen, X.; Yu, Q.; Zhang, Z.; He, Q. pH-sensitive folic acid and dNP2 peptide dual-modified liposome for enhanced targeted chemotherapy of glioma. Eur. J. Pharm. Sci. 2018, 124, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Choi, W.I.; Kim, Y.H.; Tae, G. Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials 2013, 34, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Gessner, I.; Neundorf, I. Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy. Int. J. Mol. Sci. 2020, 21, 2536. [Google Scholar] [CrossRef]
- Silva, S.; Almeida, A.J.; Vale, N. Combination of Cell-Penetrating Peptides with Nanoparticles for Therapeutic Application: A Review. Biomolecules 2019, 9, 22. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Lou, Y.-I.; Rajesh, R.; Chen, C.-L. Multiple-component dual-phase solid lipid nanoparticles with conjugated transferrin for formulating antioxidants and nerve growth factor against neuronal apoptosis. J. Taiwan Inst. Chem. Eng. 2020, 110, 140–152. [Google Scholar] [CrossRef]
- Ahlschwede, K.M.; Curran, G.L.; Rosenberg, J.T.; Grant, S.C.; Sarkar, G.; Jenkins, R.B.; Ramakrishnan, S.; Poduslo, J.F.; Kandimalla, K.K. Cationic carrier peptide enhances cerebrovascular targeting of nanoparticles in Alzheimer’s disease brain. Nanomedicine 2019, 16, 258–266. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Hua, H.; Wang, A.; Liu, W.; Li, Y.; Fu, F.; Shi, Y.; Sun, K. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue. Int. J. Nanomedicine 2017, 12, 5717–5732. [Google Scholar] [CrossRef]
- Bouchoucha, M.; Béliveau, E.; Kleitz, F.; Calon, F.; Fortin, M.-A. Antibody-Conjugated Mesoporous Silica Nanoparticles for Brain Microvessel Endothelial Cells Targeting. J. Mater. Chem. B 2017, 5, 7721–7735. [Google Scholar] [CrossRef]
- Pulgar, V.M. Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges. Front. Neurosci. 2019, 12, 1019. [Google Scholar] [CrossRef]
- Gandhi, M.; Bhatt, P.; Chauhan, G.; Gupta, S.; Misra, A.; Mashru, R. IGF-II-Conjugated Nanocarrier for Brain-Targeted Delivery of p11 Gene for Depression. AAPS PharmSciTech 2019, 20, 50. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-S.; Rait, A.; Garrido-Sanabria, E.R.; Pirollo, K.F.; Harford, J.B.; Chang, E.H. Nanotherapeutics for Gene Modulation that Prevents Apoptosis in the Brain and Fatal Neuroinflammation. Mol. Ther. 2018, 26, 84–94. [Google Scholar] [CrossRef]
- Loureiro, J.A.; Andrade, S.; Duarte, A.; Neves, A.R.; Queiroz, J.F.; Nunes, C.; Sevin, E.; Fenart, L.; Gosselet, F.; Coelho, M.A.N.; et al. Resveratrol and Grape Extract-loaded Solid Lipid Nanoparticles for the Treatment of Alzheimer’s Disease. Molecules 2017, 22, 277. [Google Scholar] [CrossRef]
- Loureiro, J.A.; Gomes, B.; Fricker, G.; Coelho, M.A.N.; Rocha, S.; Pereira, M.C. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf. B Biointerfaces 2016, 145, 8–13. [Google Scholar] [CrossRef]
- Guo, Q.; Zhu, Q.; Miao, T.; Tao, J.; Ju, X.; Sun, Z.; Li, H.; Xu, G.; Chen, H.; Han, L. LRP1-upregulated nanoparticles for efficiently conquering the blood-brain barrier and targetedly suppressing multifocal and infiltrative brain metastases. J. Controlled Release 2019, 303, 117–129. [Google Scholar] [CrossRef]
- Antosova, A.; Gancar, M.; Bednarikova, Z.; Antal, I.; Verducci, P.; Parmar, O.; Kubovcikova, M.; Koneracka, M.; Zavisova, V.; Graziosi, P.; et al. Anti-amyloid activity of amino acid functionalized magnetic nanoparticles on αLactalbumin aggregation. Nano-Struct. Nano-Objects. 2024, 40, 101413. [Google Scholar] [CrossRef]
- Wang, X.; Li, B.; Li, R.; Yang, Y.; Zhang, H.; Tian, B.; Cui, L.; Weng, H.; Wei, F. Anti-CD133 monoclonal antibody conjugated immunomagnetic nanosensor for molecular imaging of targeted cancer stem cells. Sens. Actuators B Chem. 2018, 255, 3447–3457. [Google Scholar] [CrossRef]
- Aly, R.; Sulthana, S.; Beaudoin, R.; Hamouda, A.K.; Aryal, S. Formulation and characterization of CMPI nanoparticles for enhanced targeting of brain nicotinic receptors by positive allosteric modulator. Sci. Rep. 2025, 15, 4487. [Google Scholar] [CrossRef]
- Hsu, F.-T.; Chen, Y.-T.; Chin, Y.-C.; Chang, L.-C.; Chiang, S.-C.; Yang, L.-X.; Liu, H.-S.; Yueh, P.-F.; Tu, H.-L.; He, R.-Y.; et al. Harnessing the Power of Sugar-Based Nanoparticles: A Drug-Free Approach to Enhance Immune Checkpoint Inhibition against Glioblastoma and Pancreatic Cancer. ACS Nano 2024, 18, 28764–28781. [Google Scholar] [CrossRef]
- Manjappa, A.S.; Goel, P.N.; Gude, R.P.; Ramachandra Murthy, R.S. Anti-neuropilin 1 antibody Fab′ fragment conjugated liposomal docetaxel for active targeting of tumours. J. Drug Targeting. 2014, 22, 698–711. [Google Scholar] [CrossRef]
- Xiao, B.; Laroui, H.; Viennois, E.; Ayyadurai, S.; Charania, M.A.; Zhang, Y.; Zhang, Z.; Baker, M.T.; Zhang, B.; Gewirtz, A.T.; et al. Nanoparticles with Surface Antibody Against CD98 and Carrying CD98 Small Interfering RNA Reduce Colitis in Mice. Gastroenterology 2014, 146, 1289–1300.e3019. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Z.; Liu, C.; Yu, D.; Lu, Z.; Zhang, N. Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials 2011, 32, 5167–5176. [Google Scholar] [CrossRef]
- Spada, A.; Gerber-Lemaire, S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. Nanomaterials 2025, 15, 158. [Google Scholar] [CrossRef]
- Mahanta, A.K.; Chaulagain, B.; Trivedi, R.; Singh, J. Mannose-Functionalized Chitosan-Coated PLGA Nanoparticles for Brain-Targeted Codelivery of CBD and BDNF for the Treatment of Alzheimer’s Disease. ACS Chem. Neurosci. 2024, 15, 4021–4032. [Google Scholar] [CrossRef]
- El-Mezayen, N.S.; Abd el Moneim, R.A.; El-Rewini, S.H. Vitamin B12 as a cholinergic system modulator and blood brain barrier integrity restorer in Alzheimer’s disease. Eur. J. Pharm. Sci. 2022, 174, 106201. [Google Scholar] [CrossRef]
- Serra, L.; Doménech, J.; Peppas, N.A. Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents. Eur. J. Pharm. Sci. 2009, 71, 519–528. [Google Scholar] [CrossRef]
- Cortés, H.; Alcalá-Alcalá, S.; Caballero-Florán, I.H.; Bernal-Chávez, S.A.; Ávalos-Fuentes, A.; González-Torres, M.; González-Del Carmen, M.; Figueroa-González, G.; Reyes-Hernández, O.D.; Floran, B.; et al. A Reevaluation of Chitosan-Decorated Nanoparticles to Cross the Blood-Brain Barrier. Membranes 2020, 10, 212. [Google Scholar] [CrossRef]
- Aibani, N.; Rai, R.; Patel, P.; Cuddihy, G.; Wasan, E.K. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics 2021, 13, 1686. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.-J.; Tang, X.-J.; Du, L.; Li, F. In vitro and in vivo evaluation of functionalized chitosan–Pluronic micelles loaded with myricetin on glioblastoma cancer. Nanomedicine 2016, 12, 1263–1278. [Google Scholar] [CrossRef]
- Ramalingam, P.; Ko, Y.T. Enhanced Oral Delivery of Curcumin from N-trimethyl Chitosan Surface-Modified Solid Lipid Nanoparticles: Pharmacokinetic and Brain Distribution Evaluations. Pharm. Res. 2015, 32, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.J.; Ross, J.S.; Vokinger, K.N.; Kesselheim, A.S. Association between FDA and EMA expedited approval programs and therapeutic value of new medicines: Retrospective cohort study. BMJ 2020, 371, m3434. [Google Scholar] [CrossRef] [PubMed]
- Michaeli, D.T.; Michaeli, T.; Albers, S.; Boch, T.; Michaeli, J.C. Special FDA designations for drug development: Orphan, fast track, accelerated approval, priority review, and breakthrough therapy. Eur. J. Health Econ. 2024, 25, 979–997. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Al Zaki, A.; Hui, J.Z.; Muzykantov, V.R.; Tsourkas, A. Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science 2012, 338, 903–910. [Google Scholar] [CrossRef]
- Yoo, J.; Park, C.; Yi, G.; Lee, D.; Koo, H. Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems. Cancers 2019, 11, 640. [Google Scholar] [CrossRef]
- Sigma-Aldrich, T. Transferrin Human. Available online: https://www.sigmaaldrich.com/PT/en/product/sigma/t8158?icid=sharepdp-clipboard-copy-productdetailpage. (accessed on 5 April 2025).
- Sigma-Aldrich, L. Lactoferrin Human. Available online: https://www.sigmaaldrich.com/PT/en/product/sigma/l1294?icid=sharepdp-clipboard-copy-productdetailpage. (accessed on 5 April 2025).
- Sigma-Aldrich, P. Protamine. Available online: https://www.sigmaaldrich.com/PT/en/product/sigma/p4005?icid=sharepdp-clipboard-copy-productdetailpage. (accessed on 5 April 2025).
- USP, Insulin Human. Available online: https://www.sigmaaldrich.com/PT/en/product/usp/1342106?icid=sharepdp-clipboard-copy-productdetailpage. (accessed on 5 April 2025).
- Sigma-Aldrich, Chitosan. Available online: https://www.sigmaaldrich.cn/PT/en/substance/chitosan123459012764. (accessed on 5 April 2025).
- Sigma-Aldrich. Apolipoprotein E from Human Plasma. Available online: https://www.sigmaaldrich.com/PT/en/product/sigma/srp6303?icid=sharepdp-clipboard-copy-productdetailpage. (accessed on 5 April 2025).
- Sigma-Aldrich. ANG-2 Protein, Human Recombinant. Available online: https://www.sigmaaldrich.com/PT/en/product/mm/gf165?icid=sharepdp-clipboard-copy-productdetailpage. (accessed on 5 April 2025).
- BLD Pharmatech Co. Ltd. BL3H9A8E1C06, TAT Peptide TFA. Available online: https://www.sigmaaldrich.com/PT/en/product/bldpharmatechcoltd/bl3h9a8e1c06?context=bbe&icid=sharepdp-clipboard-copy-productdetailpage. (accessed on 5 April 2025).
- NovoPro Bioscience Inc., B.p. Available online: https://www.novoprolabs.com/p/b6–319148.html. (accessed on 5 April 2025).
- Abcam. Anti-Transferrin Receptor Antibody [OX26]. Available online: https://www.abcam.com/en-us/products/primary-antibodies/transferrin-receptor-antibody-ox26-ab6331?srsltid=AfmBOor5C6A3XY0fJOjEFrFfDS92Y5vZYyddWQeJHyKx-XdpOwbdBCYj. (accessed on 5 April 2025).
- Abcam. Anti-Alpha-synuclein Antibody [LB 509]. Available online: https://www.abcam.com/en-us/products/primary-antibodies/alpha-synuclein-antibody-lb-509-ab27766?srsltid=AfmBOopa5AQFAY_ne8hK9YmXDnVwLvk6QItZz-GUH8h6L5idpSOju0Ue. (accessed on 5 April 2025).
- Abcam. Anti-beta Amyloid Antibody [DE2B4]. Available online: https://www.abcam.com/en-us/products/primary-antibodies/beta-amyloid-antibody-de2b4-ab11132. (accessed on 5 April 2025).
- Sigma-Aldrich. Fas Ligand Human. Available online: https://www.sigmaaldrich.com/PT/en/product/sigma/f0427?icid=sharepdp-clipboard-copy-productdetailpage. (accessed on 5 April 2025).
- Sigma-Aldrich. Folate Binding Protein from Bovine Milk. Available online: https://www.sigmaaldrich.com/PT/en/product/sigma/f0504. (accessed on 5 April 2025).
- Nanjing Peptide Biotechnology Co. Ltd. Available online: https://www.tgpeptides.com/ (accessed on 5 April 2025).
- Shegokar, R.; Nakach, M. Large-Scale Manufacturing of Nanoparticles—An Industrial Outlook. In Drug Delivery Aspects; Shegokar, R., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Chapter 4; pp. 57–77. [Google Scholar]
- Abánades Lázaro, I.; Chen, X.; Ding, M.; Eskandari, A.; Fairen-Jimenez, D.; Giménez-Marqués, M.; Gref, R.; Lin, W.; Luo, T.; Forgan, R.S. Metal–organic frameworks for biological applications. Nat. Rev. Methods Primers 2024, 4, 42. [Google Scholar] [CrossRef]
- Comanescu, C. Recent Advances in Surface Functionalization of Magnetic Nanoparticles. Coatings 2023, 13, 1772. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Fortune Business Insights. Nanomedicine Market Size, s.C.-i.a., by Application, by Indication, by Drug Type, by Molecule Type, and Regional Forecast, 2024–2032. 2024. Available online: https://www.fortunebusinessinsights.com/nanomedicine-market-110983. (accessed on 5 April 2025).
- Precedence Research. Pharmaceutical Drug Delivery Market (by Route of Administration, a., End-User): Global Industry Analysis and Forecast 2024–2032. 2024. Available online: https://www.precedenceresearch.com/pharmaceutical-drug-delivery-market. (accessed on 5 April 2025).
- Grand View Research. Nanomedicine Market Size, s.t.a.r.b.p., by Application, by Region, and Segment Forecasts, 2024–2032. 2024. Available online: https://www.grandviewresearch.com/industry-analysis/nanomedicine-market. (accessed on 5 April 2025).
- Herdiana, Y.; Wathoni, N.; Shamsuddin, S.; Muchtaridi, M. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OpenNano 2022, 7, 100048. [Google Scholar] [CrossRef]
- Tambe, V.; Maheshwari, R.; Chourasiya, Y.; Choudhury, H.; Gorain, B.; Tekade, R.K. Clinical Aspects and Regulatory Requirements for Nanomedicines. In Basic Fundamentals of Drug Delivery; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; Chapter 18; pp. 733–752. [Google Scholar]
- Kim, J.; Ahn, S.I.; Kim, Y. Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system. J. Ind. Eng. Chem. 2019, 73, 8–18. [Google Scholar] [CrossRef]
- Singh, R.; Srinivas, S.P.; Kumawat, M.; Daima, H.K. Ligand-based surface engineering of nanomaterials: Trends, challenges, and biomedical perspectives. OpenNano 2024, 15, 100194. [Google Scholar] [CrossRef]
- Hassanzadeh-khanmiri, M.; Moshari, A.; Kheradmand, R.; Haghgouei, T.; Homaei, M.; Charsouei, S.; Mobed, A. Nanomedicine: A cost-effective and powerful platform for managing neurodegenerative diseases. Metab. Brain Dis. 2025, 40, 142. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed. Technol. 2024, 5, 109–122. [Google Scholar] [CrossRef]
Ligand | Type of NP | Size (nm) | Zeta Potential | Function /Target | Application | Ref. |
---|---|---|---|---|---|---|
Tf | PLGA NPs | 143 | Negative | targets TfR for receptor-mediated endocytosis | glioblastoma therapy | [60] |
PLGA NPs | 156 | Negative | improves BBB permeability | glioblastoma therapy | [61] | |
SLNs and NLCs | <200 | Negative | improves BBB permeability | inflammatory and neuroprotective effects | [62] | |
liposomes | 180 | Positive | improves BBB permeability | Parkinson’s disease treatment | [63] | |
liposomes | 180 | NA | improves BBB penetration and tumor-specific targeting | brain tumor treatment | [64] | |
Lf | SLNs | 121 | Negative | improves BBB penetration and tumor-specific targeting | brain tumor treatment | [66] |
Polysaccharide NPs | 162 | Negative | enhances BBB permeability and glioma targeting | brain tumor therapy | [67] | |
PEG-PLGA NPs | 174 | Negative | enhances BBB permeability and glioma targeting | brain tumor therapy | [68] | |
Protamine | PLGA NPs | 173.2 | Positive | facilitates AMT for enhanced BBB permeability | brain tumor therapy | [72] |
Insulin | HSA NPs | 157–190 | Negative | improves BBB penetration | neurological disorder treatment, CNS drug delivery enhancement | [74] |
ApoE3 | Lipid-Drug Conjugate NPs | 132 | Negative | facilitates transport across the BBB | brain tumor-related epilepsy | [78] |
SLNs | 134 | Negative | enhances BBB penetration | Alzheimer’s disease treatment | [79] | |
Polymeric NPs | 180–220 | Negative | enhances BBB penetration | neurological disorder treatment | [80] |
Ligand | Type of NP | Size (nm) | Zeta Potential | Function/Target | Application | Ref. |
---|---|---|---|---|---|---|
Ang-2 | PLGA NPs | 166.4–177.3 | Negative | Enhances BBB penetration and improves drug delivery to brain | Brain drug delivery; treatment of neurological disorders | [88] |
CDX | Chitosan NPs | 120 | Positive | Binds to α7 subunit of nAChR, facilitating BBB crossing | Gene delivery for glioblastoma and neurodegenerative diseases | [87] |
TAT (Transactivator of Transcription) | Liposomes | 158.5 | Negative | Enhances BBB penetration and brain tissue distribution | Anti-apoptotic drugs; AD treatment | [89] |
B6 Peptide | PLGA-PEG NPs | <150 | Not specified | Improves Cur delivery and increases brain uptake | Alzheimer’s treatment; Cur delivery | [90] |
CRT | PLGA NPs | 140 | Negative | Improves BBB penetration and enhances Alzheimer’s therapy | Alzheimer’s treatment; Aβ reduction | [91] |
g7 Glycopeptide | PLGA NPs | 200–250 | Negative | Enhances BBB penetration and reduces Aβ aggregation | Alzheimer’s treatment; oxidative stress reduction | [92] |
dNP2 Peptide | Liposomes | 104 | Negative/Positive (pH-Sensitive) | Allows for dual-functional modification for glioma therapy, enhances BBB penetration | Glioma therapy; targeted PTX delivery | [93] |
Ligand | Type of NP | Size (nm) | Zeta Potential | Function/Target | Application | Ref. |
---|---|---|---|---|---|---|
IGF-II mAb | Liposomes | 137.9–140.6 | Positive | Targets IGF-II receptor to enhance BBB transport for gene delivery | Gene delivery for neurological disorders | [96] |
scFv (TfR-targeted) | Liposomes | 100 | Positive | Targets TfR to improve nucleic acid delivery across BBB | Nucleic acid therapy; neuroinflammation treatment | [97] |
OX26 mAb | SLNs | 254 ± 17 | Negative | Enhances BBB permeability and transcytosis efficiency for Alzheimer’s treatment | AD treatment | [98] |
LB 509 mAb | SLNs | 249 ± 1 | Negative | Targets brain endothelial cells for drug delivery in AD | AD treatment | [98] |
OX26 + DE2B4 mAbs | PLGA NPs | 153–166 | Negative | Dual targeting of TfR’s and Aβaggregates | ADAD, BBB permeability enhancement | [99] |
Ligand | Estimated Price per 100 mL of Solution (EUR) | Source |
---|---|---|
Tf | <25 | [127] |
Lf | <25 | [128] |
Protamine | <1 | [129] |
Insulin | <5 | [130] |
Chitosan | <1 | [131] |
ApoE3 | >50 000 | [132] |
Ang-2 | >5000 and <10,000 | [133] |
TAT | <35 | [134] |
B6 Peptide | <5 | [135] |
OX26 mAb | >50,000 | [136] |
LB 509 mAb | >10,000 and <15,000 | [137] |
DE2B4 mAbs | >5000 and <10,000 | [138] |
FasL | >15,000 and <20,000 | [139] |
Folate | <15 | [140] |
CDX | <5 | [141] |
CRT | <5 | [141] |
g7 Glycopeptide | >10,000 and <15,000 | NA |
dNP2 Peptide | <25 | NA |
IGF-II mAb | >10,000 and <15,000 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, M.; Ramalho, M.J.; Loureiro, J.A.; Pereira, M.C. Advancing Brain Targeting: Cost-Effective Surface-Modified Nanoparticles for Faster Market Entry. Pharmaceutics 2025, 17, 661. https://doi.org/10.3390/pharmaceutics17050661
Gomes M, Ramalho MJ, Loureiro JA, Pereira MC. Advancing Brain Targeting: Cost-Effective Surface-Modified Nanoparticles for Faster Market Entry. Pharmaceutics. 2025; 17(5):661. https://doi.org/10.3390/pharmaceutics17050661
Chicago/Turabian StyleGomes, Mariana, Maria João Ramalho, Joana A. Loureiro, and Maria Carmo Pereira. 2025. "Advancing Brain Targeting: Cost-Effective Surface-Modified Nanoparticles for Faster Market Entry" Pharmaceutics 17, no. 5: 661. https://doi.org/10.3390/pharmaceutics17050661
APA StyleGomes, M., Ramalho, M. J., Loureiro, J. A., & Pereira, M. C. (2025). Advancing Brain Targeting: Cost-Effective Surface-Modified Nanoparticles for Faster Market Entry. Pharmaceutics, 17(5), 661. https://doi.org/10.3390/pharmaceutics17050661