A Novel LC-MS/MS Method for the Measurement of Elexacaftor, Tezacaftor and Ivacaftor in Plasma, Dried Plasma Spot (DPS) and Whole Blood in Volumetric Absorptive Microsampling (VAMS) Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Calibration Curve, Quality Control, Stock and Working Solutions Preparation
2.3. Human Samples
2.4. Sample Pre-Treatment
2.4.1. Extraction from Plasma
2.4.2. Extraction from DPS
2.4.3. Preparation and Extraction from VAMS
2.5. LC-MS/MS Conditions
2.5.1. Chromatographic Separation
2.5.2. Mass Spectrometric Acquisition
2.6. Method Validation
2.6.1. Selectivity and Specificity
2.6.2. Carry-Over
2.6.3. Matrix Effect and Extraction Recovery
2.6.4. Linearity
2.6.5. Precision, Accuracy and LLOQ
2.6.6. Stability
2.7. Statistical Analyses
3. Results
3.1. Method Development
3.2. Method Validation
3.3. Analyses of Clinical Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castellani, C.; Assael, B.M. Cystic fibrosis: A clinical view. Cell. Mol. Life Sci. 2017, 74, 129–140. [Google Scholar] [CrossRef]
- Choong, E.; Sauty, A.; Koutsokera, A.; Blanchon, S.; André, P.; Decosterd, L. Therapeutic Drug Monitoring of Ivacaftor, Lumacaftor, Tezacaftor, and Elexacaftor in Cystic Fibrosis: Where Are We Now? Pharmaceutics 2022, 14, 1674. [Google Scholar] [CrossRef] [PubMed]
- Elborn, J.S. Cystic fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef]
- Castagnola, E.; Cangemi, G.; Mesini, A.; Castellani, C.; Martelli, A.; Cattaneo, D.; Mattioli, F. Pharmacokinetics and pharmacodynamics of antibiotics in cystic fibrosis: A narrative review. Int. J. Antimicrob. Agents 2021, 58, 106381. [Google Scholar] [CrossRef] [PubMed]
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef]
- Kaftrio|European Medicines Agency, n.d. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/kaftrio (accessed on 1 September 2024).
- Sondo, E.; Cresta, F.; Pastorino, C.; Tomati, V.; Capurro, V.; Pesce, E.; Lena, M.; Iacomino, M.; Baffico, A.M.; Coviello, D.; et al. The L467F-F508del Complex Allele Hampers Pharmacological Rescue of Mutant CFTR by Elexacaftor/Tezacaftor/Ivacaftor in Cystic Fibrosis Patients: The Value of the Ex Vivo Nasal Epithelial Model to Address Non-Responders to CFTR-Modulating Drugs. Int. J. Mol. Sci. 2022, 23, 3175. [Google Scholar] [CrossRef] [PubMed]
- Bentley, S.; Cheong, J.; Gudka, N.; Makhecha, S.; Hadjisymeou-Andreou, S.; Standing, J.F. Therapeutic drug monitoring-guided dosing for pediatric cystic fibrosis patients: Recent advances and future outlooks. Expert. Rev. Clin. Pharmacol. 2023, 16, 715–726. [Google Scholar] [CrossRef]
- Pigliasco, F.; Barco, S.; Pedemonte, N.; Cresta, F.; Casciaro, R.; Castellani, C.; Cafaro, A. Monitoraggio terapeutico di Ivacaftor, Tezacaftor e Elexacaftor in pazienti con fibrosi cistica. Rev. Rassegne Biochim. Clin. 2023, 47, 127. [Google Scholar] [CrossRef]
- Pigliasco, F.; Cafaro, A.; Stella, M.; Baiardi, G.; Barco, S.; Pedemonte, N.; D’orsi, C.; Cresta, F.; Casciaro, R.; Castellani, C.; et al. Simultaneous Quantification of Ivacaftor, Tezacaftor, and Elexacaftor in Cystic Fibrosis Patients’ Plasma by a Novel LC-MS/MS Method. Biomedicines 2023, 11, 628. [Google Scholar] [CrossRef] [PubMed]
- Naehrig, S.; Shad, C.; Breuling, M.; Goetschke, M.; Habler, K.; Sieber, S.; Kastenberger, J.; Kunzelmann, A.K.; Sommerburg, O.; Liebchen, U.; et al. Therapeutic Drug Monitoring of Elexacaftor, Tezacaftor, and Ivacaftor in Adult People with Cystic Fibrosis. J. Pers. Med. 2024, 14, 1065. [Google Scholar] [CrossRef] [PubMed]
- HablHabler, K.; Kalla, A.-S.; Rychlik, M.; Bruegel, M.; Teupser, D.; Nährig, S.; Vogeser, M.; Paal, M. Isotope dilution LC-MS/MS quantification of the cystic fibrosis transmembrane conductance regulator (CFTR) modulators ivacaftor, lumacaftor, tezacaftor, elexacaftor, and their major metabolites in human serum. Clin. Chem. Lab. Med. 2022, 60, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Vonk, S.E.M.; van der Meer-Vos, M.; Bos, L.D.J.; Neerincx, A.H.; Majoor, C.J.; der Zee, A.-H.M.-V.; Mathôt, R.A.A.; Kemper, E.M. Quantitative Method for the Analysis of Ivacaftor, Hydroxymethyl Ivacaftor, Ivacaftor Carboxylate, Lumacaftor, and Tezacaftor in Plasma and Sputum Using Liquid Chromatography with Tandem Mass Spectrometry and Its Clinical Applicability. Ther. Drug Monit. 2021, 43, 555–563. [Google Scholar] [CrossRef]
- Reyes-Ortega, F.; Qiu, F.; Schneider-Futschik, E.K. Multiple Reaction Monitoring Mass Spectrometry for the Drug Monitoring of Ivacaftor, Tezacaftor, and Elexacaftor Treatment Response in Cystic Fibrosis: A High-Throughput Method. ACS Pharmacol. Transl. Sci. 2020, 3, 987–996. [Google Scholar] [CrossRef]
- Schneider, E.K.; Reyes-Ortega, F.; Li, J.; Velkov, T. Optimized LC-MS/MS Method for the High-throughput Analysis of Clinical Samples of Ivacaftor, Its Major Metabolites, and Lumacaftor in Biological Fluids of Cystic Fibrosis Patients. J. Vis. Exp. 2017, 2017, 56084. [Google Scholar] [CrossRef]
- Vonk, S.E.M.; van der Meer-Vos, M.; Kos, R.; Neerincx, A.H.; Terheggen-Lagro, S.W.J.; Altenburg, J.; der Zee, A.H.M.-V.; Mathôt, R.A.A.; Kemper, E.M. Dried Blood Spot Method Development and Clinical Validation for the Analysis of Elexacaftor, Elexacaftor-M23, Tezacaftor, Tezacaftor-M1, Ivacaftor, Ivacaftor Carboxylate, and Hydroxymethyl Ivacaftor Using LC-MS/MS. Ther. Drug Monit. 2024, 46, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Rouillon, S.; Khemakhem, M.; Balakirouchenane, D.; Lui, G.; Abdalla, S.; Sanoufi, M.R.; Sauvaitre, L.; Thebault, L.; Hirt, D.; et al. A rapid LC-MS/MS method for the simultaneous quantification of ivacaftor, lumacaftor, elexacaftor, tezacaftor, hexyl-methyl ivacaftor and ivacaftor carboxylate in human plasma. J. Pharm. Biomed. Anal. 2024, 248, 116322. [Google Scholar] [CrossRef] [PubMed]
- Cafaro, A.; Conti, M.; Pigliasco, F.; Barco, S.; Bandettini, R.; Cangemi, G. Biological Fluid Microsampling for Therapeutic Drug Monitoring: A Narrative Review. Biomedicines 2023, 11, 1962. [Google Scholar] [CrossRef] [PubMed]
- Protti, M.; Mandrioli, R.; Mercolini, L. Tutorial: Volumetric absorptive microsampling (VAMS). Anal. Chim. Acta 2019, 1046, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Kok, M.G.M.; Fillet, M. Volumetric absorptive microsampling: Current advances and applications. J. Pharm. Biomed. Anal. 2018, 147, 288–296. [Google Scholar] [CrossRef]
- Giannoutsos, S.; Venkataramanan, R.; Dodeja, P.; Caritis, S. Applications of Volumetric Absorptive Microsampling Technique: A Systematic Critical Review. Ther. Drug Monit. 2023, 45, 431–462. [Google Scholar] [CrossRef]
- Jannetto, P.J.; Fitzgerald, R.L. Effective Use of Mass Spectrometry in the Clinical Laboratory. Clin. Chem. 2016, 62, 92–98. [Google Scholar] [CrossRef]
- ICH M10 on Bioanalytical Method Validation—Scientific Guideline|European Medicines Agency n.d. Available online: https://www.ema.europa.eu/en/ich-m10-bioanalytical-method-validation-scientific-guideline (accessed on 1 July 2024).
- D’Urso, A.; Rudge, J.; Patsalos, P.N.; De Grazia, U. Volumetric Absorptive Microsampling: A New Sampling Tool for Therapeutic Drug Monitoring of Antiepileptic Drugs. Ther. Drug Monit. 2019, 41, 681–692. [Google Scholar] [CrossRef]
- Vogeser, M.; Seger, C. A decade of HPLC-MS/MS in the routine clinical laboratory—Goals for further developments. Clin. Biochem. 2008, 41, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.S.Y.; Fong, B.M.W. LC-MS/MS in the routine clinical laboratory: Has its time come? Anal. Bioanal. Chem. 2014, 406, 2289–2301. [Google Scholar] [CrossRef] [PubMed]
- Vonk, S.E.M.; Altenburg, J.; Mathôt, R.A.A.; Kemper, E.M. Correlation between trough concentration and AUC for elexacaftor, tezacaftor and ivacaftor. J. Cyst. Fibros. 2024, 23, 1007–1009. [Google Scholar] [CrossRef] [PubMed]
IVACAFTOR | ||||||||
Plasma | ||||||||
INTRA-DAY | INTER-DAY | |||||||
Conc. mean (µg/mL) | SD | CV% | Accuracy% | Conc. mean (µg/mL) | SD | CV% | Accuracy% | |
LLOQ | 0.023 | 2.48 × 10−3 | 11% | 115% | 0.023 | 1.91 × 10−3 | 8% | 115% |
QC low | 0.055 | 2.74 × 10−3 | 5% | 91% | 0.055 | 1.93 × 10−3 | 4% | 91% |
QC medium | 0.384 | 1.26 × 10−2 | 3% | 96% | 0.372 | 3.08 × 10−2 | 8% | 93% |
QC high | 9.400 | 7.75 × 10−1 | 8% | 94% | 9.800 | 3.61 × 10−1 | 4% | 98% |
DPS | ||||||||
INTRA-DAY | INTER-DAY | |||||||
Conc. mean (µg/mL) | SD | CV% | Accuracy% | Conc. mean (µg/mL) | SD | CV% | Accuracy% | |
LLOQ | 0.021 | 8.31 × 10−4 | 4% | 115% | 0.023 | 1.51 × 10−3 | 7% | 114% |
QC low | 0.065 | 3.79 × 10−3 | 6% | 108% | 0.065 | 1.96 × 10−3 | 3% | 109% |
QC medium | 0.436 | 2.28 × 10−2 | 5% | 109% | 0.436 | 2.93 × 10−2 | 7% | 109% |
QC high | 9.600 | 3.87 × 10−1 | 4% | 96% | 9.400 | 7.28 × 10−1 | 8% | 94% |
VAMS | ||||||||
INTRA-DAY | INTER-DAY | |||||||
Conc. mean (µg/mL) | SD | CV% | Accuracy% | Conc. mean (µg/mL) | SD | CV% | Accuracy% | |
LLOQ | 0.021 | 2.10 × 10−3 | 10% | 110% | 0.022 | 1.54 × 10−3 | 7% | 114% |
QC low | 0.053 | 4.22 × 10−3 | 7% | 107% | 0.059 | 6.18 × 10−3 | 10% | 99% |
QC medium | 0.420 | 4.50 × 10−2 | 11% | 105% | 0.420 | 2.52 × 10−2 | 6% | 105% |
QC high | 9.520 | 4.74 × 10−1 | 5% | 95% | 9.120 | 7.32 × 10−1 | 8% | 91% |
TEZACAFTOR | ||||||||
Plasma | ||||||||
INTRA-DAY | INTER-DAY | |||||||
Conc. mean (µg/mL) | SD | CV% | Accuracy% | Conc. mean (µg/mL) | SD | CV% | Accuracy% | |
LLOQ | 0.021 | 1.60 × 10−3 | 8% | 106% | 0.022 | 2.14 × 10−3 | 10% | 112% |
QC low | 0.053 | 3.44 × 10−3 | 6% | 88% | 0.052 | 1.57 × 10−3 | 3% | 87% |
QC medium | 0.364 | 1.23 × 10−2 | 3% | 91% | 0.364 | 2.47 × 10−2 | 7% | 91% |
QC high | 10.520 | 7.83 × 10−1 | 7% | 105% | 10.830 | 9.96 × 10−1 | 9% | 108% |
DPS | ||||||||
INTRA-DAY | INTER-DAY | |||||||
Conc. mean (µg/mL) | SD | CV% | Accuracy% | Conc. mean (µg/mL) | SD | CV% | Accuracy% | |
LLOQ | 0.022 | 1.66 × 10−3 | 8% | 110% | 0.022 | 2.92 × 10−3 | 13% | 112% |
QC low | 0.064 | 5.26 × 10−3 | 8% | 7% | 0.064 | 5.14 × 10−3 | 8% | 106% |
QC medium | 0.448 | 2.68 × 10−2 | 6% | 12% | 0.440 | 1.97 × 10−2 | 4% | 110% |
QC high | 8.490 | 4.85 × 10− | 6% | 85% | 9.370 | 6.55 × 10−1 | 7% | 94% |
VAMS | ||||||||
INTRA-DAY | INTER-DAY | |||||||
Conc. mean (µg/mL) | SD | CV% | Accuracy% | Conc. mean (µg/mL) | SD | CV% | Accuracy% | |
LLOQ | 0.023 | 1.18 × 10−3 | 5% | 15% | 0.023 | 1.43 × 10−3 | 6% | 115% |
QC low | 0.059 | 2.83 × 10−3 | 5% | −7% | 0.058 | 2.76 × 10−3 | 5% | 97% |
QC medium | 0.408 | 3.69 × 10−3 | 1% | 2% | 0.412 | 2.35 × 10−2 | 6% | 103% |
QC high | 9.420 | 7.97 × 10−1 | 8% | −6% | 9.800 | 5.76 × 10−1 | 6% | 98% |
ELEXACAFTOR | ||||||||
Plasma | ||||||||
INTRA-DAY | INTER-DAY | |||||||
Conc. mean (µg/mL) | SD | CV% | Accuracy% | Conc. mean (µg/mL) | SD | CV% | Accuracy% | |
LLOQ | 0.021 | 1.07 × 10−3 | 5% | 105% | 0.022 | 2.30 × 10−3 | 10% | 110% |
QC low | 0.058 | 4.80 × 10−3 | 8% | 98% | 0.057 | 2.87 × 10−3 | 5% | 95% |
QC medium | 0.404 | 2.15 × 10−2 | 5% | 101% | 0.384 | 3.25 × 10−2 | 8% | 96% |
QC high | 9.910 | 6.13 × 10−1 | 6% | 99% | 9.950 | 4.66 × 10−1 | 5% | 100% |
DPS | ||||||||
INTRA-DAY | INTER-DAY | |||||||
Conc. mean (µg/mL) | SD | CV% | Accuracy% | Conc. mean (µg/mL) | SD | CV% | Accuracy% | |
LLOQ | 0.023 | 1.41 × 10−3 | 6% | 13% | 0.022 | 1.18 × 10−3 | 5% | 112% |
QC low | 0.065 | 2.83 × 10−3 | 4% | 9% | 0.065 | 2.72 × 10−3 | 4% | 108% |
QC medium | 0.480 | 2.62 × 10−2 | 5% | 9% | 0.432 | 2.04 × 10−2 | 5% | 108% |
QC high | 10.860 | 8.66 × 10−1 | 8% | 8% | 9.520 | 6.11 × 10−1 | 6% | 95% |
VAMS | ||||||||
INTRA-DAY | INTER-DAY | |||||||
Conc. mean (µg/mL) | SD | CV% | Accuracy% | Conc. mean (µg/mL) | SD | CV% | Accuracy% | |
LLOQ | 0.023 | 4.90 × 10−4 | 2% | 15% | 0.023 | 5.21 × 10−4 | 2% | 115% |
QC low | 0.065 | 3.19 × 10−3 | 5% | 9% | 0.064 | 5.78 × 10−3 | 9% | 106% |
QC medium | 0.436 | 2.02 × 10−2 | 5% | 9% | 0.420 | 3.28 × 10−2 | 8% | 105% |
QC high | 9.700 | 5.55 × 10−1 | 6% | −3% | 9.820 | 5.52 × 10−1 | 6% | 98% |
IVACAFTOR | ||||||
7 days | ||||||
+4 °C | +25 °C (RT) | |||||
Plasma | DPS | VAMS | Plasma | DPS | VAMS | |
QC low | 105% (2%) | 103% (7%) | 98% (6%) | 95% (4%) | 93% (5%) | 92% (5%) |
QC high | 109% (2%) | 105% (5%) | 91% (3%) | 106% (2%) | 92% (6%) | 94% (2%) |
3 days | ||||||
+4 °C | +25 °C (RT) | |||||
Plasma | DPS | VAMS | Plasma | DPS | VAMS | |
QC low | 102% (5%) | 95% (2%) | 98% (6%) | 96% (2%) | 94% (3%) | 93% (6%) |
QC high | 109% (4%) | 107% (3%) | 97% (5%) | 105% (3%) | 104% (6%) | 92% (4%) |
TEZACAFTOR | ||||||
7 days | ||||||
+4 °C | +25 °C (RT) | |||||
Plasma | DPS | VAMS | Plasma | DPS | VAMS | |
QC low | 104% (2%) | 90% (6%) | 92% (5%) | 93% (2%) | 96% (5%) | 95% (4%) |
QC high | 105% (3%) | 102% (4%) | 95% (4%) | 109% (4%) | 99% (6%) | 99% (5%) |
3 days | ||||||
+4 °C | +25 °C (RT) | |||||
Plasma | DPS | VAMS | Plasma | DPS | VAMS | |
QC low | 99% (3%) | 94% (5%) | 92% (5%) | 94% (2%) | 91% (5%) | 93% (3%) |
QC high | 109% (5%) | 101% (4%) | 94% (2%) | 106% (1%) | 99% (3%) | 98% (6%) |
ELEXACAFTOR | ||||||
7 days | ||||||
+4 °C | +25 °C (RT) | |||||
Plasma | DPS | VAMS | Plasma | DPS | VAMS | |
QC low | 100% (4%) | 98% (6%) | 93% (2%) | 99% (4%) | 91% (2%) | 98% (4%) |
QC high | 101% (3%) | 99% (7%) | 97% (5%) | 108% (2%) | 94% (3%) | 92% (3%) |
3 days | ||||||
+4 °C | +25 °C (RT) | |||||
Plasma | DPS | VAMS | Plasma | DPS | VAMS | |
QC low | 103% (2%) | 94% (2%) | 98% (5%) | 98% (2%) | 99% (2%) | 97% (5%) |
QC high | 103% (3%) | 106% (2%) | 99% (4%) | 108% (3%) | 105% (3%) | 98% (4%) |
ELEXACAFTOR | |||||||
Patient | Plasma concentration (µg/mL) | DPS concentration (µg/mL) | VAMS concentration measured (µg/mL) | VAMS concentration corrected (µg/mL) * | % difference plasma vs. DPS | % difference plasma vs. VAMS | Blood-to-Plasma ratio (R) |
1 | 3.559 | 3.666 | - | - | 3% | - | - |
2 | 4.509 | 4.248 | - | - | −6% | - | - |
3 | 6.479 | 5.961 | - | - | −8% | - | - |
4 | 8.343 | 7.387 | 4.462 | 8.099 | −11% | 3% | 0.53 |
5 | 2.897 | 2.947 | 1.698 | 2.968 | 2% | −2% | 0.59 |
6 | 3.477 | 3.161 | 1.973 | 3.518 | −9% | −1% | 0.57 |
7 | 8.654 | 7.965 | 6.052 | 9.545 | −8% | −10% | 0.70 |
8 | 3.572 | 3.535 | 2.677 | 4.208 | −1% | −18% | 0.75 |
TEZACAFTOR | |||||||
Patient | Plasma concentration (µg/mL) | DPS concentration (µg/mL) | VAMS concentration measured (µg/mL) | VAMS concentration corrected (µg/mL) * | % difference plasma vs. DPS | % difference plasma vs. VAMS | Blood-to-Plasma ratio (R) |
1 | 2.919 | 3.100 | - | - | 6% | - | - |
2 | 1.688 | 1.621 | - | - | -4% | - | - |
3 | 3.483 | 3.403 | - | - | -2% | - | - |
4 | 3.267 | 2.895 | 1.721 | 3.124 | −12% | 4% | 0.53 |
5 | 1.159 | 1.148 | 0.601 | 1.050 | −1% | 9% | 0.52 |
6 | 1.599 | 1.435 | 0.846 | 1.508 | −11% | 6% | 0.53 |
7 | 2.631 | 2.481 | 1.801 | 2.847 | −6% | −8% | 0.69 |
8 | 1.163 | 1.040 | 0.736 | 1.235 | −10% | −6% | 0.63 |
IVACAFTOR | |||||||
Patient | Plasma concentration (µg/mL) | DPS concentration (µg/mL) | VAMS concentration measured (µg/mL) | VAMS concentration corrected (µg/mL) * | % difference plasma vs. DPS | % difference plasma vs. VAMS | Blood-to-Plasma ratio (R) |
1 | 0.757 | 0.804 | - | - | 5% | - | - |
2 | 0.758 | 0.793 | - | - | 4% | - | - |
3 | 1.552 | 1.616 | - | - | 5% | - | - |
4 | 0.999 | 0.883 | 0.507 | 0.919 | −12% | 8% | 0.51 |
5 | 0.357 | 0.384 | 0.201 | 0.351 | 6% | 2% | 0.56 |
6 | 0.130 | 0.127 | 0.072 | 0.128 | 0% | 2% | 0.55 |
7 | 1.234 | 1.179 | 0.860 | 1.356 | −4% | −10% | 0.70 |
8 | 0.441 | 0.436 | 0.317 | 0.498 | 0% | −20% | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pigliasco, F.; Cafaro, A.; Barco, S.; Cresta, F.; Casciaro, R.; Pedemonte, N.; Mattioli, F.; Castellani, C.; Cangemi, G. A Novel LC-MS/MS Method for the Measurement of Elexacaftor, Tezacaftor and Ivacaftor in Plasma, Dried Plasma Spot (DPS) and Whole Blood in Volumetric Absorptive Microsampling (VAMS) Devices. Pharmaceutics 2025, 17, 200. https://doi.org/10.3390/pharmaceutics17020200
Pigliasco F, Cafaro A, Barco S, Cresta F, Casciaro R, Pedemonte N, Mattioli F, Castellani C, Cangemi G. A Novel LC-MS/MS Method for the Measurement of Elexacaftor, Tezacaftor and Ivacaftor in Plasma, Dried Plasma Spot (DPS) and Whole Blood in Volumetric Absorptive Microsampling (VAMS) Devices. Pharmaceutics. 2025; 17(2):200. https://doi.org/10.3390/pharmaceutics17020200
Chicago/Turabian StylePigliasco, Federica, Alessia Cafaro, Sebastiano Barco, Federico Cresta, Rosaria Casciaro, Nicoletta Pedemonte, Francesca Mattioli, Carlo Castellani, and Giuliana Cangemi. 2025. "A Novel LC-MS/MS Method for the Measurement of Elexacaftor, Tezacaftor and Ivacaftor in Plasma, Dried Plasma Spot (DPS) and Whole Blood in Volumetric Absorptive Microsampling (VAMS) Devices" Pharmaceutics 17, no. 2: 200. https://doi.org/10.3390/pharmaceutics17020200
APA StylePigliasco, F., Cafaro, A., Barco, S., Cresta, F., Casciaro, R., Pedemonte, N., Mattioli, F., Castellani, C., & Cangemi, G. (2025). A Novel LC-MS/MS Method for the Measurement of Elexacaftor, Tezacaftor and Ivacaftor in Plasma, Dried Plasma Spot (DPS) and Whole Blood in Volumetric Absorptive Microsampling (VAMS) Devices. Pharmaceutics, 17(2), 200. https://doi.org/10.3390/pharmaceutics17020200