Progress of Antimicrobial Mechanisms of Stilbenoids
Abstract
:1. Introduction
2. The Family of Stilbenoids
3. Structural Diversity and Antimicrobial Activity of Stilbenoids
3.1. Methylation
3.2. Isomerization
3.3. Prenylation
3.4. Oligomerization
Targets | Compounds | Details | Determination Methods | Refs |
---|---|---|---|---|
Cell membrane | Longistylin A | MRSA, MIC = 1.56 µg/mL; disturbing membrane potential and increasing permeability. | Micro-well dilution. | [33] |
Toremifene | P. gingivalis and S. mutans, MICs = 12.5–25 µM; disrupting the cell membrane. | Micro-well dilution. | [34] | |
Dehydro-δ-viniferin | L. monocytogenes, MIC = 2 μg/mL. | Micro-well dilution. | [35] | |
Pterostilbene | F. nucleatum, MIC = 20 µg/mL utilizing 2-hydroxypropyl-β-cyclodextrin as a solubilizer. | Micro-well dilution. | [36] | |
Resveratrol | S. aureus ATCC 25923, MIC = 512 μg/mL; P. aeruginosa ATCC 27853, MIC > 512 μg/mL. | Micro-well dilution. | [32] | |
Cajaninstilbene acid derivative 5b | S. aureus ATCC25923, MIC = 4 μg/mL; S. epidermidis ATCC12228, MIC = 1 μg/mL; B. subtilis ATCC6633, MIC = 0.5 μg/mL; interferring in PG synthesis pathway by targeting PgsA. | Micro-well dilution. | [37,38] | |
PME | A. flavus, IC50 = 260 μg/mL; binding the phospholipids of cell membrane. | Agar drug plate growth assay. | [25] | |
Cell wall | Duotap-520 | MRSAs, MICs = 4 μM; VRE, MIC = 6 μM; binding to lipid II. | Micro-well dilution. | [39] |
GW458344X | Inhibiting MurC activity, IC50 = 368 μM; MurD, IC50 = 104 μM; MurE, IC50 = 49 μM; MurF, IC50 = 59 μM. | Enzyme activity test. | [40] | |
135C | S. aureus, MICs = 0.12–0.5 μg/mL; targeting cell wall teichoic acids. | Micro-well dilution. | [41] | |
Plagiochin E | Inhibiting the activity of chitin synthases. | Enzyme activity test. | [42] | |
Tamoxifen | S. pombe, MIC = 32 μg/mL; inhibiting Ccr1 NADPH-cytochrome P450 reductase activitie. | Micro-well dilution. | [43] | |
DNA | Resveratrol-trans-dihydrodimer | B. cereus, MIC = 15.0 μM; L. monocytogenes, MIC = 125 μM; S. aureus, MIC = 62.0 μM; E. coli, MIC = 123 μM, upon addition of the efflux pump inhibitor; inhibiting DNA gyrase. | Micro-well dilution. | [44] |
Triazolyl-pterostilbene derivative 4d | MRSAs, MICs = 1.2–2.4 μg/mL, MBCs = 19.5–39 μg/mL; inhibiting the activity of DNA polymerase. | Micro-well dilution. | [45] | |
Oxyresveratrol | C. albicans ATCC90028, MIC = 5.0 μg/mL; C. parapsilosis ATCC22019, MIC = 5 μg/mL; inflicting cleavage on DNA. | Micro-well dilution. | [46] | |
Resveratrol | S. typhimurium, MIC = 5 μg/mL; inducing DNA disruption. | Micro-well dilution. | [47] | |
Mitochondria | Resveratrol | C. albicans ATCC 90028, MIC = 20 µM; inducing mitochondria-dependent apoptosis. | Micro-well dilution. | [48] |
Plagiochin E | C. albicans CA2, MIC = 16 μg/mL; inducing mitochondria-dependent apoptosis. | - | [49,50] | |
ATPase | Resveratrol and piceatannol | Inhibiting ATPase activity; piceatannol, IC50 = 14 μM; resveratrol, IC50 = 94 μM. | Enzyme activity test. | [51] |
Cell-division | Resveratrol | E. coli, MIC = 456 μg/mL; preventing Z-ring formation. | - | [52] |
PTS system | Cajaninstilbene acid | Sensitive Enterococcus strains and VRE strains, MICs = 0.5–2 μg/mL; inhibiting carbohydrate specific type II transporters of PTS system. | Micro-well dilution; proteomics; q-PCR. | [53] |
Calmodulin–calcineurin pathway | Tamoxifen | S. pombe, MIC = 35 μg/mL; Candida spp. and C. neoformans, MICs = 8–64 μg/mL; directly binding to calmodulin. | Agar drug plate growth assay; micro-well dilution | [54,55,56] |
Virulence factors | Erianin | S. aureus ATCC25904, MIC = 512 μg/mL; inhibiting the activity of SrtA with a IC50 = 20.91 ± 2.31 μg/mL. | Micro-well dilution. | [57] |
Resveratrol | Reducing the secretion of α-hemolysin by downregulating saeRS. | Red blood hemolysis assay. | [58,59] | |
DIDS | Inhibiting V. vulnificus toxicity to HeLa cells at 10–300 μM with no influence on host cell viability and bacterial growth; reducing the expression of TolCV1. | - | [60] | |
Raloxifene | Enhancing the survival percentage of C. elegans infected with P. aeruginosa PA14 at 12.5–100 μg/mL; inhibiting pyocyanin production by binding and inhibiting PhzB2. | - | [61] | |
(-)-Hopeaphenol | Reducing cell entry and subsequent intracellular growth of bacteria; inhibiting the expression of YopE with a IC50 = 8.8 μM; inhibiting the activity of YopH with a IC50 = 2.9 μM. | A luminescent reporter-gene assay (YopE); an enzyme-based YopH assay. | [62,63] | |
Hopeaphenol, isohopeaphenol, kobophenol A and ampelopsin A | Reducing the pathogenicity of P. syringae pv. tomato DC3000 on leaves; reducing the expression of hrpA, hrpL and hopP1 genes without influence on bacterial growth. | [64,65] | ||
Biofilm | Resveratrol | Inhibiting swarming of P. mirabilis at 15 μg/mL, and completely inhibited swarming at 60 μg/mL. | - | [66] |
S. typhimurium SL1344, MIC > 512 μg/mL; inhibiting adhesion of S. typhimurium to HeLa cells; downregulating the expression of flagella genes. | - | [67] | ||
P. gingivalis, MICs= 78.12–156.25 μg/mL; reducing the expression fimbriae genes. | - | [68] | ||
V. cholerae, MIC = 60 μg/mL; antibiofilm at 10–30 μg/mL; inhibiting the activity of AphB. | Crystal violet assay; confocal laser scanning microscopy. | [69] | ||
S. mutans, MIC = 800 μg/mL; inhibiting biofilm formation at 50–400 μg/mL; reducing the biosynthesis of polysaccharide. | Growth curve assay; crystal violet assay; confocal laser scanning microscopy. | [70,71] | ||
Inhibiting pyocyanin production of P. aeruginosa PAO1 by directly binding LasR. | - | [72] | ||
Reducing MN production. | - | [73] | ||
Resveratrol and oxyresveratrol | Antibiofilm at 10 μg/mL and 100 μg/mL; reducing fimbriae production and the swarming motility of UPEC. | Crystal violet assay; confocal laser scanning microscopy. | [74] | |
Trans-stilbene | Reducing biofilm of S. aureus ATCC6538 at 50–200 μg/mL; decreasing the expression of intercellular adhesion locus. | Crystal violet assay; confocal laser scanning microscopy. | [58] | |
Piceatannol | S. mutans, MIC50 = 564 ± 38 μM; antibiofilm, IC50 = 52 ± 6 μM; inhibiting the activity of GtfB and GtfC. | Crystal violet assay; confocal laser scanning microscopy. | [75] | |
Oxyresveratrol | S. mutans, MIC = 500 μg/mL; reducing biofilm formation at 62.5–250 μg/mL; suppressing the expression of gtfB and gtfC. | Micro-well dilution; confocal laser scanning microscopy. | [76] | |
Amorfrutin B | Antibiofilm activity against P. aeruginosa PAO1 with a biofilm inhibition ratio of 50.3 ± 2.7 at 50 μM; binding the receptors of signal molecule. | Crystal violet assay. | [77] | |
Cajaninstilbene acid analogue 3o | Inhibiting biofilm formation of P. aeruginosa with inhibition ratio of 49.50 ± 1.35% at 50 μM; suppressing the expression of lasB and pqsA. | Crystal violet assay. | [78] | |
Riccardin D | Inhibiting biofilm formation at 16 µg/mL and 64 µg/mL using central venous catheter (CVC)-associated C. albicans biofilms in an infectious rabbit model; reducing the expression of hypha-specific genes. | XTT reduction assay; scanning electron microscopy; confocal laser scanning microscopy. | [79,80] | |
Pterostilbene | Inhibiting the formation of C. albicans biofilms in vitro at 1–32 μg/mL; downregulating the expression of filamentation-related genes. | XTT reduction assays; confocal laser scanning microscopy; scanning electron microscopy. | [81] | |
Reversing antibiotic resistance | Resveratrol | Enhancing the efficacy of aminoglycosides against Gram-positive pathogens; inhibiting the activity of ATP synthase. | - | [82] |
Increasing susceptibility of P. aeruginosa PAO1 biofilm to aminoglycosides; inhibiting the expression of signaling molecule synthase genes lasI and rhlI. | - | [83,84] | ||
Pterostilbene | Restoring the effectiveness of meropenem against NDM-expressing strains; inhibiting NDM-1 hydrolysis activity at 4–32 μg/mL. | - | [85] | |
Cajaninstilbene acid | Restoring the susceptibility of polymyxin B to mcr-1 positive Gram-negative bacteria; inhibiting the enzymatic activity of MCR-1. | - | [86] | |
Resveratrol, pterostilbene, and pinosylvin | Increasing sensitivity of A. butzleri strains to chloramphenicol, erythromycin and ciprofloxacin by acting as EPIs. | - | [87,88,89] | |
Piceatannol | Increasing sensitivity of S. aureus to ciprofloxacin by decreasing PMF. | - | [90] |
4. Antimicrobial Mechanisms of Stilbenoids
4.1. Direct Antimicrobial Mechanisms of Stilbenoids
4.1.1. Targeting the Cell Membrane
4.1.2. Targeting the Cell Wall
4.1.3. Targeting the DNA
4.1.4. Targeting the Mitochondria
4.1.5. Actions on other Conventional Targets
4.2. Stilbenoids Targeting Virulence Factors
4.3. Stilbenoids Targeting Biofilms
4.3.1. Prevention of Initial Attachment
4.3.2. Targeting Biofilm Maturation
4.3.3. Disarming Pathogens within the Biofilm
4.4. Reversing Antibiotic Resistance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef] [PubMed]
- Szkudelski, T.; Szkudelska, K. Resveratrol and diabetes: From animal to human studies. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2015, 1852, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska, P.; Rychlicka, M.; Groborz, S.; Kruszyńska, A.; Ledesma-Amaro, R.; Rapak, A.; Gliszczyńska, A.; Lazar, Z. Studies on the Anticancer and Antioxidant Activities of Resveratrol and Long-Chain Fatty Acid Esters. Int. J. Mol. Sci. 2023, 24, 7167. [Google Scholar] [CrossRef]
- Bonnefont-Rousselot, D. Resveratrol and Cardiovascular Diseases. Nutrients 2016, 8, 250. [Google Scholar] [CrossRef]
- Mattio, L.M.; Catinella, G.; Dallavalle, S.; Pinto, A. Stilbenoids: A Natural Arsenal against Bacterial Pathogens. Antibiotics 2020, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.M.; Atanasova, V.; Tardif, C.; Richard-Forget, F. Stilbenoids as Promising Natural Product-Based Solutions in a Race against Mycotoxigenic Fungi: A Comprehensive Review. J. Agric. Food Chem. 2023, 71, 5075–5092. [Google Scholar] [CrossRef]
- Takaoka, M. Resveratrol, a new phenolic compound, from Veratrum grandiflorum. Chem. Soc. Jpn. 1939, 60, 1090–1100. [Google Scholar]
- Xue, Y.Q.; Di, J.M.; Luo, Y.; Cheng, K.J.; Wei, X.; Shi, Z. Resveratrol oligomers for the prevention and treatment of cancers. Oxid. Med. Cell. Longev. 2014, 2014, 765832. [Google Scholar] [CrossRef]
- Lin, M.; Yao, C.-S. Natural Oligostilbenes. In Studies in Natural Products Chemistry; Attaur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 33, pp. 601–644. [Google Scholar]
- Wang, Y.H.; Huang, K.S.; Lin, M. Four new stilbene dimers from the lianas of Gnetum hainanense. J. Asian Nat. Prod. Res. 2001, 3, 169–176. [Google Scholar] [CrossRef]
- De Natale, A.; Pollio, A.; De Marco, A.; Luongo, G.; Di Fabio, G.; Zarrelli, A. Phenanthrene Dimers: Promising Source of Biologically Active Molecules. Curr. Top. Med. Chem. 2022, 22, 939–956. [Google Scholar] [CrossRef]
- Xu, D.L.; Pan, Y.C.; Li, L.; ShangGuan, Y.N.; Zhang, S.B.; Liu, G.Y.; Cheng, L.; Xiao, S.J. Chemical constituents of Bletilla striata. J. Asian Nat. Prod. Res. 2019, 21, 1184–1189. [Google Scholar] [CrossRef]
- Xue, Z.; Li, S.; Wang, S.; Wang, Y.; Yang, Y.; Shi, J.; He, L. Mono-, Bi-, and triphenanthrenes from the tubers of Cremastra appendiculata. J. Nat. Prod. 2006, 69, 907–913. [Google Scholar] [CrossRef]
- Yang, M.; Cai, L.; Tai, Z.; Zeng, X.; Ding, Z. Four new phenanthrenes from Monomeria barbata Lindl. Fitoterapia 2010, 81, 992–997. [Google Scholar] [CrossRef]
- Tóth, B.; Hohmann, J.; Vasas, A. Phenanthrenes: A Promising Group of Plant Secondary Metabolites. J. Nat. Prod. 2018, 81, 661–678. [Google Scholar] [CrossRef]
- Preisig-Müller, R.; Gnau, P.; Kindl, H. The inducible 9,10-dihydrophenanthrene pathway: Characterization and expression of bibenzyl synthase and S-adenosylhomocysteine hydrolase. Arch. Biochem. Biophys. 1995, 317, 201–207. [Google Scholar] [CrossRef]
- Wenzel, E.; Somoza, V. Metabolism and bioavailability of trans-resveratrol. Mol. Nutr. Food Res. 2005, 49, 472–481. [Google Scholar] [CrossRef]
- Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid. Med. Cell. Longev. 2015, 2015, 837042. [Google Scholar] [CrossRef]
- Jeandet, P.; Douillet-Breuil, A.C.; Bessis, R.; Debord, S.; Sbaghi, M.; Adrian, M. Phytoalexins from the Vitaceae: Biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 2002, 50, 2731–2741. [Google Scholar] [CrossRef]
- Lee, S.K.; Lee, H.j.; Min, H.y.; Park, E.j.; Lee, K.m.; Ahn, Y.h.; Cho, Y.j.; Pyee, J.H. Antibacterial and antifungal activity of pinosylvin, a constituent of pine. Fitoterapia 2005, 76, 258–260. [Google Scholar] [CrossRef]
- Zakova, T.; Rondevaldova, J.; Bernardos, A.; Landa, P.; Kokoska, L. The relationship between structure and in vitro antistaphylococcal effect of plant-derived stilbenes. Acta Microbiol. Immunol. Hung. 2018, 65, 467–476. [Google Scholar] [CrossRef]
- Pastorkova, E.; Zakova, T.; Landa, P.; Novakova, J.; Vadlejch, J.; Kokoska, L. Growth inhibitory effect of grape phenolics against wine spoilage yeasts and acetic acid bacteria. Int. J. Food Microbiol. 2012, 161, 209–213. [Google Scholar] [CrossRef]
- Yang, S.C.; Tseng, C.H.; Wang, P.W.; Lu, P.L.; Weng, Y.H.; Yen, F.L.; Fang, J.Y. Pterostilbene, a Methoxylated Resveratrol Derivative, Efficiently Eradicates Planktonic, Biofilm, and Intracellular MRSA by Topical Application. Front. Microbiol. 2017, 8, 1103. [Google Scholar] [CrossRef]
- Li, X.; Yao, L.; Xiong, B.; Wu, Y.; Chen, S.; Xu, Z.; Qiu, S.X. Inhibitory Mechanism of Pinosylvin Monomethyl Ether against Aspergillus flavus. J. Agric. Food Chem. 2022, 70, 15840–15847. [Google Scholar] [CrossRef]
- Kukrić, Z.; Topalic-Trivunovic, N.L. Antibacterial activity of cis- and trans-resveratrol isolated from Polygonum cuspidatum rhizome. Acta Period. Technol. 2006, 37, 131–136. [Google Scholar] [CrossRef]
- Brents, L.K.; Medina-Bolivar, F.; Seely, K.A.; Nair, V.; Bratton, S.M.; Ñopo-Olazabal, L.; Patel, R.Y.; Liu, H.; Doerksen, R.J.; Prather, P.L.; et al. Natural prenylated resveratrol analogs arachidin-1 and -3 demonstrate improved glucuronidation profiles and have affinity for cannabinoid receptors. Xenobiotica 2012, 42, 139–156. [Google Scholar] [CrossRef]
- Araya-Cloutier, C.; den Besten, H.M.; Aisyah, S.; Gruppen, H.; Vincken, J.P. The position of prenylation of isoflavonoids and stilbenoids from legumes (Fabaceae) modulates the antimicrobial activity against Gram positive pathogens. Food Chem. 2017, 226, 193–201. [Google Scholar] [CrossRef]
- Yuan, S.W.; Chen, S.H.; Guo, H.; Chen, L.T.; Shen, H.J.; Liu, L.; Gao, Z.Z. Elucidation of the Complete Biosynthetic Pathway of Phomoxanthone A and Identification of a Para-Para Selective Phenol Coupling Dimerase. Org. Lett. 2022, 24, 3069–3074. [Google Scholar] [CrossRef]
- Gabaston, J.; Cantos-Villar, E.; Biais, B.; Waffo-Teguo, P.; Renouf, E.; Corio-Costet, M.F.; Richard, T.; Mérillon, J. Stilbenes from Vitis vinifera L. Waste: A Sustainable Tool for Controlling Plasmopara viticola. J. Agric. Food Chem. 2017, 65, 2711–2718. [Google Scholar] [CrossRef]
- Park, H.B.; Goddard, T.N.; Oh, J.; Patel, J.; Wei, Z.; Perez, C.E.; Mercado, B.Q.; Wang, R.; Wyche, T.P.; Piizzi, G.; et al. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew. Chem. Int. Ed. 2020, 59, 7871–7880. [Google Scholar] [CrossRef]
- Mattio, L.M.; Dallavalle, S.; Musso, L.; Filardi, R.; Franzetti, L.; Pellegrino, L.; D’Incecco, P.; Mora, D.; Pinto, A.; Arioli, S. Antimicrobial activity of resveratrol-derived monomers and dimers against foodborne pathogens. Sci. Rep. 2019, 9, 19525. [Google Scholar] [CrossRef]
- Wu, J.; Li, B.; Xiao, W.; Hu, J.; Xie, J.; Yuan, J.; Wang, L. Longistylin A, a natural stilbene isolated from the leaves of Cajanus cajan, exhibits significant anti-MRSA activity. Int. J. Antimicrob. Agents 2020, 55, 105821. [Google Scholar] [CrossRef]
- Gerits, E.; Defraine, V.; Vandamme, K.; De Cremer, K.; De Brucker, K.; Thevissen, K.; Cammue, B.P.; Beullens, S.; Fauvart, M.; Verstraeten, N.; et al. Repurposing Toremifene for Treatment of Oral Bacterial Infections. Antimicrob. Agents Chemother. 2017, 61, e01846-16. [Google Scholar] [CrossRef]
- Catinella, G.; Mattio, L.M.; Musso, L.; Arioli, S.; Mora, D.; Beretta, G.I.; Zaffaroni, N.; Pinto, A.; Dallavalle, S. Structural Requirements of Benzofuran Derivatives Dehydro-δ- and Dehydro-ε-viniferin for Antimicrobial Activity Against the Foodborne Pathogen Listeria monocytogenes. Int. J. Mol. Sci. 2020, 21, 2168. [Google Scholar] [CrossRef]
- Lim, Y.R.I.; Preshaw, P.M.; Lim, L.P.; Ong, M.M.A.; Lin, H.S.; Tan, K.S. Pterostilbene complexed with cyclodextrin exerts antimicrobial and anti-inflammatory effects. Sci. Rep. 2020, 10, 9072. [Google Scholar] [CrossRef]
- Lu, K.; Hou, W.; Xu, X.F.; Chen, Q.; Li, Z.; Lin, J.; Chen, W.M. Biological evaluation and chemoproteomics reveal potential antibacterial targets of a cajaninstilbene-acid analogue. Eur. J. Med. Chem. 2020, 188, 112026. [Google Scholar] [CrossRef]
- Geng, Z.Z.; Zhang, J.J.; Lin, J.; Huang, M.Y.; An, L.K.; Zhang, H.B.; Sun, P.H.; Ye, W.C.; Chen, W.M. Novel cajaninstilbene acid derivatives as antibacterial agents. Eur. J. Med. Chem. 2015, 100, 235–245. [Google Scholar] [CrossRef]
- Goddard, T.N.; Patel, J.; Park, H.B.; Crawford, J.M. Dimeric Stilbene Antibiotics Target the Bacterial Cell Wall in Drug-Resistant Gram-Positive Pathogens. Biochemistry 2020, 59, 1966–1971. [Google Scholar] [CrossRef]
- Hrast, M.; Rožman, K.; Ogris, I.; Škedelj, V.; Patin, D.; Sova, M.; Barreteau, H.; Gobec, S.; Grdadolnik, S.G.; Zega, A. Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases. J. Enzym. Inhib. Med. Chem. 2019, 34, 1010–1017. [Google Scholar] [CrossRef]
- Man, N.Y.T.; Knight, D.R.; Stewart, S.G.; McKinley, A.J.; Riley, T.V.; Hammer, K.A. Spectrum of antibacterial activity and mode of action of a novel tris-stilbene bacteriostatic compound. Sci. Rep. 2018, 8, 6912. [Google Scholar] [CrossRef]
- Wu, X.Z.; Cheng, A.X.; Sun, L.M.; Lou, H.X. Effect of plagiochin E, an antifungal macrocyclic bis(bibenzyl), on cell wall chitin synthesis in Candida albicans. Acta Pharmacol. Sin. 2008, 29, 1478–1485. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, X.; Jiang, G.; Wu, G.; Miao, H.; Liu, K.; Chen, S.; Sakamoto, N.; Kuno, T.; Yao, F.; et al. NADPH-Cytochrome P450 Reductase Ccr1 Is a Target of Tamoxifen and Participates in Its Antifungal Activity via Regulating Cell Wall Integrity in Fission Yeast. Antimicrob. Agents Chemother. 2020, 64, e00079-20. [Google Scholar] [CrossRef]
- Mora-Pale, M.; Bhan, N.; Masuko, S.; James, P.; Wood, J.; McCallum, S.; Linhardt, R.J.; Dordick, J.S.; Koffas, M.A. Antimicrobial mechanism of resveratrol-trans-dihydrodimer produced from peroxidase-catalyzed oxidation of resveratrol. Biotechnol. Bioeng. 2015, 112, 2417–2428. [Google Scholar] [CrossRef]
- Tang, K.W.; Yang, S.C.; Tseng, C.H. Design, Synthesis, and Anti-Bacterial Evaluation of Triazolyl-Pterostilbene Derivatives. Int. J. Mol. Sci. 2019, 20, 4564. [Google Scholar] [CrossRef]
- Kim, S.; Lee, D.G. Oxyresveratrol-induced DNA cleavage triggers apoptotic response in Candida albicans. Microbiology 2018, 164, 1112–1121. [Google Scholar] [CrossRef]
- Lee, W.; Lee, D.G. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against Salmonella typhimurium. Biochem. Biophys. Res. Commun. 2017, 489, 228–234. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.G. Novel antifungal mechanism of resveratrol: Apoptosis inducer in Candida albicans. Curr. Microbiol. 2015, 70, 383–389. [Google Scholar] [CrossRef]
- Wu, X.Z.; Cheng, A.X.; Sun, L.M.; Sun, S.J.; Lou, H.X. Plagiochin E, an antifungal bis(bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans. Biochim. Biophys. Acta 2009, 1790, 770–777. [Google Scholar] [CrossRef]
- Wu, X.Z.; Chang, W.Q.; Cheng, A.X.; Sun, L.M.; Lou, H.X. Plagiochin E, an antifungal active macrocyclic bis(bibenzyl), induced apoptosis in Candida albicans through a metacaspase-dependent apoptotic pathway. Biochim. Biophys. Acta BBA Gen. Subj. 2010, 1800, 439–447. [Google Scholar] [CrossRef]
- Dadi, P.K.; Ahmad, M.; Ahmad, Z. Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. Int. J. Biol. Macromol. 2009, 45, 72–79. [Google Scholar] [CrossRef]
- Hwang, D.; Lim, Y.H. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Sci. Rep. 2015, 5, 10029. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Hua, X.; Xue, Z.; Ma, J. Cajanin Stilbene Acid Inhibited Vancomycin-Resistant Enterococcus by Inhibiting Phosphotransferase System. Front. Pharmacol. 2020, 11, 473. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fang, Y.; Jaiseng, W.; Hu, L.; Lu, Y.; Ma, Y.; Furuyashiki, T. Characterization of Tamoxifen as an Antifungal Agent Using the Yeast Schizosaccharomyces pombe Model Organism. Kobe J. Med. Sci. 2015, 61, e54–e63. [Google Scholar] [PubMed]
- Dolan, K.; Montgomery, S.; Buchheit, B.; Didone, L.; Wellington, M.; Krysan, D.J. Antifungal activity of tamoxifen: In vitro and in vivo activities and mechanistic characterization. Antimicrob. Agents Chemother. 2009, 53, 3337–3346. [Google Scholar] [CrossRef] [PubMed]
- Butts, A.; Koselny, K.; Chabrier-Roselló, Y.; Semighini, C.P.; Brown, J.C.; Wang, X.; Annadurai, S.; DiDone, L.; Tabroff, J.; Childers-We, J.R.; et al. Estrogen receptor antagonists are anti-cryptococcal agents that directly bind EF hand proteins and synergize with fluconazole in vivo. mBio 2014, 5, e00765-13. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, P.; He, X.; Yuan, Z.W.; Yin, Z.Q.; Fu, H.; Lin, J.; He, C.; Liang, X.; Lv, C.; Shu, G.; et al. Erianin against Staphylococcus aureus Infection via Inhibiting Sortase A. Toxins 2018, 10, 385. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, J.h.; Ryu, S.y.; Cho, M.h.; Lee, J. Stilbenes reduce Staphylococcus aureus hemolysis, biofilm formation, and virulence. Foodborne Pathog. Dis. 2014, 11, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Li, M.; Hao, Z.; Shen, X.; Liu, L.; Jin, Y.; Wang, S.; Guo, Y.; Yang, L.; Wang, L.; et al. Subinhibitory concentrations of resveratrol reduce alpha-hemolysin production in Staphylococcus aureus isolates by downregulating saeRS. Emerg. Microbes Infect. 2018, 7, 136. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.H.; Gong, Y.; Kim, S.Y.; Rhee, J.H.; Kim, Y.R. DIDS inhibits Vibrio vulnificus cytotoxicity by interfering with TolC-mediated RtxA1 toxin secretion. Eur. J. Pharmacol. 2020, 884, 173407. [Google Scholar] [CrossRef] [PubMed]
- Ho Sui, S.J.; Lo, R.; Fernandes, A.R.; Caulfield, M.D.; Lerman, J.A.; Xie, L.; Bourne, P.E.; Baillie, D.l.; Brinkman, F.S. Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int. J. Antimicrob. Agents 2012, 40, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Zetterström, C.E.; Hasselgren, J.; Salin, O.; Davis, R.A.; Quinn, R.J.; Sundin, C.; Elofsson, M. The resveratrol tetramer (-)-hopeaphenol inhibits type III secretion in the gram-negative pathogens Yersinia pseudotuberculosis and Pseudomonas aeruginosa. PLoS ONE 2013, 8, e81969. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.A.; Beattie, K.D.; Xu, M.; Yang, X.; Yin, S.; Holla, H.; Healy, P.C.; Sykes, M.; Shelper, T.; Avery, V.M.; et al. Solving the supply of resveratrol tetramers from Papua New Guinean rainforest anisoptera species that inhibit bacterial type III secretion systems. J. Nat. Prod. 2014, 77, 2633–2640. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.E.; Yoo, N.; Jeon, B.J.; Kim, B.S.; Chung, E.H. Resveratrol Oligomers, Plant-Produced Natural Products With Anti-virulence and Plant Immune-Priming Roles. Front. Plant Sci. 2022, 13, 885625. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.E.; Jeon, B.J.; Park, M.Y.; Yang, H.J.; Kwon, J.; Lee, D.H.; Kim, B.s. Inhibition of the type III secretion system of Pseudomonas syringae pv. tomato DC3000 by resveratrol oligomers identified in Vitis vinifera L. Pest Manag. Sci. 2020, 76, 2294–2303. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.B.; Lai, H.C.; Hsueh, P.R.; Chiou, R.Y.; Lin, S.B.; Liaw, S.J. Inhibition of swarming and virulence factor expression in Proteus mirabilis by resveratrol. J. Med. Microbiol. 2006, 55, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Lou, F.; Wang, K.; Hou, Y.; Shang, X.; Tang, F. Inhibitory effect of resveratrol on swimming motility and adhesion ability against Salmonella enterica serovar Typhimurium infection. Microb. Pathog. 2023, 184, 106323. [Google Scholar] [CrossRef] [PubMed]
- Kugaji, M.S.; Kumbar, V.M.; Peram, M.R.; Patil, S.; Bhat, K.G.; Diwan, P.V. Effect of Resveratrol on biofilm formation and virulence factor gene expression of Porphyromonas gingivalis in periodontal disease. APMIS 2019, 127, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Augustine, N.; Goel, A.K.; Sivakumar, K.C.; Kumar, R.A.; Thomas, S. Resveratrol—A potential inhibitor of biofilm formation in Vibrio cholerae. Phytomedicine 2014, 21, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, T.; Peng, W.; Zhu, Y. Effects of resveratrol on cariogenic virulence properties of Streptococcus mutans. BMC Microbiol. 2020, 20, 99. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Peng, W.; Yang, H.; Yao, C.; Yu, J.; Huang, C. Evaluation of resveratrol-doped adhesive with advanced dentin bond durability. J. Dent. 2021, 114, 103817. [Google Scholar] [CrossRef] [PubMed]
- Vasavi, H.S.; Sudeep, H.V.; Lingaraju, H.B.; Shyam Prasad, K. Bioavailability-enhanced Resveramax™ modulates quorum sensing and inhibits biofilm formation in Pseudomonas aeruginosa PAO1. Microb. Pathog. 2017, 104, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Rosman, C.W.K.; van der Mei, H.C.; Sjollema, J. Influence of sub-inhibitory concentrations of antimicrobials on micrococcal nuclease and biofilm formation in Staphylococcus aureus. Sci. Rep. 2021, 11, 13241. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, Y.G.; Raorane, C.J.; Ryu, S.Y.; Shim, J.J.; Lee, J. The anti-biofilm and anti-virulence activities of trans-resveratrol and oxyresveratrol against uropathogenic Escherichia coli. Biofouling 2019, 35, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Nijampatnam, B.; Zhang, H.; Cai, X.; Michalek, S.M.; Wu, H.; Velu, S.E. Inhibition of Streptococcus mutans Biofilms by the Natural Stilbene Piceatannol Through the Inhibition of Glucosyltransferases. ACS Omega 2018, 3, 8378–8385. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Fan, Y.; Wang, X.; Jiang, X.; Zou, J.; Huang, R. Effects of the natural compound, oxyresveratrol, on the growth of Streptococcus mutans, and on biofilm formation, acid production, and virulence gene expression. Eur. J. Oral Sci. 2020, 128, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.J.; Zeng, T.; Huang, Z.X.; Xu, X.F.; Lin, J.; Chen, W.M. Synthesis and Biological Evaluation of Cajaninstilbene Acid and Amorfrutins A and B as Inhibitors of the Pseudomonas aeruginosa Quorum Sensing System. J. Nat. Prod. 2018, 81, 2621–2629. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.X.; Yu, J.H.; Xu, X.J.; Xu, X.F.; Zeng, T.; Lin, J.; Chen, W.M. Cajaninstilbene acid analogues as novel quorum sensing and biofilm inhibitors of Pseudomonas aeruginosa. Microb. Pathog. 2020, 148, 104414. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, Y.; Zhang, L.; Guo, F.; Ren, L.; Yang, R.; Li, Y.; Lou, H. In vivo inhibitory effect on the biofilm formation of Candida albicans by liverwort derived riccardin D. PLoS ONE 2012, 7, e35543. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.; Sun, L.; Wu, X.; Lou, H. The inhibitory effect of a macrocyclic bisbibenzyl riccardin D on the biofilms of Candida albicans. Biol. Pharm. Bull. 2009, 32, 1417–1421. [Google Scholar] [CrossRef]
- Li, D.D.; Zhao, L.X.; Mylonakis, E.; Hu, G.H.; Zou, Y.; Huang, T.K.; Yan, L.; Wang, Y.; Jiang, Y.Y. In vitro and in vivo activities of pterostilbene against Candida albicans biofilms. Antimicrob. Agents Chemother. 2014, 58, 2344–2355. [Google Scholar] [CrossRef]
- Nøhr-Meldgaard, K.; Ovsepian, A.; Ingmer, H.; Vestergaard, M. Resveratrol enhances the efficacy of aminoglycosides against Staphylococcus aureus. Int. J. Antimicrob. Agents 2018, 52, 390–396. [Google Scholar] [CrossRef]
- Nelson, L.K.; D’Amours, G.H.; Sproule-Willoughby, K.M.; Morck, D.W.; Ceri, H. Pseudomonas aeruginosa las and rhl quorum-sensing systems are important for infection and inflammation in a rat prostatitis model. Microbiology 2009, 155, 2612–2619. [Google Scholar] [CrossRef]
- Zhou, J.W.; Chen, T.T.; Tan, X.J.; Sheng, J.Y.; Jia, A.Q. Can the quorum sensing inhibitor resveratrol function as an aminoglycoside antibiotic accelerant against Pseudomonas aeruginosa? Int. J. Antimicrob. Agents 2018, 52, 35–41. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Zhou, Y.; Hu, N.; Li, J.; Wang, Y.; Niu, X.; Deng, X.; Wang, J. Pterostilbene restores carbapenem susceptibility in New Delhi metallo-β-lactamase-producing isolates by inhibiting the activity of New Delhi metallo-β-lactamases. Br. J. Pharmacol. 2019, 176, 4548–4557. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, J.; Yang, Q.; Zhang, W.; Efferth, T.; Liu, S.; Hua, X. Cajanin stilbene acid: A direct inhibitor of colistin resistance protein MCR-1 that restores the efficacy of polymyxin B against resistant Gram-negative bacteria. Phytomedicine 2023, 114, 154803. [Google Scholar] [CrossRef]
- Hwang, D.; Lim, Y.H. Resveratrol controls Escherichia coli growth by inhibiting the AcrAB-TolC efflux pump. FEMS Microbiol. Lett. 2019, 366, fnz030. [Google Scholar] [CrossRef]
- Sousa, V.; Luís, Â.; Oleastro, M.; Domingues, F.; Ferreira, S. Polyphenols as resistance modulators in Arcobacter butzleri. Folia Microbiol. 2019, 64, 547–554. [Google Scholar] [CrossRef]
- Ferreira, S.; Silva, F.; Queiroz, J.A.; Oleastro, M.; Domingues, F.C. Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions. Int. J. Food Microbiol. 2014, 180, 62–68. [Google Scholar] [CrossRef]
- Shi, M.; Bai, Y.; Qiu, Y.; Zhang, X.; Zeng, Z.; Chen, L.; Cheng, F.; Zhang, J. Mechanism of Synergy between Piceatannol and Ciprofloxacin against Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 15341. [Google Scholar] [CrossRef]
- Yang, B.; Yao, H.; Li, D.; Liu, Z. The phosphatidylglycerol phosphate synthase PgsA utilizes a trifurcated amphipathic cavity for catalysis at the membrane-cytosol interface. Curr. Res. Struct. Biol. 2021, 3, 312–323. [Google Scholar] [CrossRef]
- Breukink, E.; de Kruijff, B. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov. 2006, 5, 321–332. [Google Scholar] [CrossRef]
- Kattke, M.D.; Gosschalk, J.E.; Martinez, O.E.; Kumar, G.; Gale, R.T.; Cascio, D.; Sawaya, M.R.; Philips, M.; Brown, E.D.; Clubb, R.T. Structure and mechanism of TagA, a novel membrane-associated glycosyltransferase that produces wall teichoic acids in pathogenic bacteria. PLoS Pathog. 2019, 15, e1007723. [Google Scholar] [CrossRef]
- Yang, C.S.; Huang, W.C.; Ko, T.P.; Wang, Y.C.; Wang, A.H.; Chen, Y. Crystal structure of the N-terminal domain of TagH reveals a potential drug targeting site. Biochem. Biophys. Res. Commun. 2021, 536, 1–6. [Google Scholar] [CrossRef]
- Tiedje, C.; Holland, D.G.; Just, U.; Höfken, T. Proteins involved in sterol synthesis interact with Ste20 and regulate cell polarity. J. Cell Sci. 2007, 120, 3613–3624. [Google Scholar] [CrossRef]
- Bock, F.J.; Tait, S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 2020, 21, 85–100. [Google Scholar] [CrossRef]
- Barrows, J.M.; Goley, E.D. FtsZ dynamics in bacterial division: What, how, and why? Curr. Opin. Cell Biol. 2021, 68, 163–172. [Google Scholar] [CrossRef]
- Min, H.; Seok, Y.J. Phosphotransferase system sugars immediately induce mutations of Cra in an Escherichia coli ptsH mutant. Environ. Microbiol. 2022, 24, 5425–5436. [Google Scholar] [CrossRef]
- Huang, K.J.; Lin, S.H.; Lin, M.R.; Ku, H.; Szkaradek, N.; Marona, H.; Hsu, A.; Shiuan, D. Xanthone derivatives could be potential antibiotics: Virtual screening for the inhibitors of enzyme I of bacterial phosphoenolpyruvate-dependent phosphotransferase system. J. Antibiot. 2013, 66, 453–458. [Google Scholar] [CrossRef]
- Brockerhoff, S.E.; Stevens, R.C.; Davis, T.N. The unconventional myosin, Myo2p, is a calmodulin target at sites of cell growth in Saccharomyces cerevisiae. J. Cell Biol. 1994, 124, 315–323. [Google Scholar] [CrossRef]
- Butts, A.; Martin, J.A.; DiDone, L.; Bradley, E.K.; Mutz, M.; Krysan, D.J. Structure-activity relationships for the antifungal activity of selective estrogen receptor antagonists related to tamoxifen. PLoS ONE 2015, 10, e0125927. [Google Scholar] [CrossRef]
- Kong, C.; Neoh, H.M.; Nathan, S. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins 2016, 8, 72. [Google Scholar] [CrossRef]
- Allen, R.C.; Popat, R.; Diggle, S.P.; Brown, S.P. Targeting virulence: Can we make evolution-proof drugs? Nat. Rev. Microbiol. 2014, 12, 300–308. [Google Scholar] [CrossRef]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Mazmanian, S.K.; Ton-That, H.; Su, K.; Schneewind, O. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc. Natl. Acad. Sci. USA 2002, 99, 2293–2298. [Google Scholar] [CrossRef]
- Mazmanian, S.K.; Liu, G.; Jensen, E.R.; Lenoy, E.; Schneewind, O. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA 2000, 97, 5510–5515. [Google Scholar] [CrossRef]
- Ng, T.B.; Liu, F.; Wang, Z.T. Antioxidative activity of natural products from plants. Life Sci. 2000, 66, 709–723. [Google Scholar] [CrossRef]
- Liu, Q.; Yeo, W.S.; Bae, T. The SaeRS Two-Component System of Staphylococcus aureus. Genes 2016, 7, 81. [Google Scholar] [CrossRef]
- Lee, S.; Song, S.; Lee, M.; Hwang, S.; Kim, J.S.; Ha, N.C.; Lee, K. Interaction between the α-barrel tip of Vibrio vulnificus TolC homologs and AcrA implies the adapter bridging model. J. Microbiol. 2014, 52, 148–153. [Google Scholar] [CrossRef]
- Willcox, M.D.P.; Zhu, H.; Conibear, T.C.R.; Hume, E.B.H.; Givskov, M.; Kjelleberg, S.; Rice, S.A. Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. Microbiology 2008, 154, 2184–2194. [Google Scholar] [CrossRef]
- Shaulov, L.; Gershberg, J.; Deng, W.; Finlay, B.B.; Sal-Man, N. The Ruler Protein EscP of the Enteropathogenic Escherichia coli Type III Secretion System Is Involved in Calcium Sensing and Secretion Hierarchy Regulation by Interacting with the Gatekeeper Protein SepL. mBio 2017, 8, e01733-16. [Google Scholar] [CrossRef]
- Xiao, Y.; Hutcheson, S.W. A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J. Bacteriol. 1994, 176, 3089–3091. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.F.; Wei, Z.M.; Beer, S.V. The hrpA and hrpC operons of Erwinia amylovora encode components of a type III pathway that secretes harpin. J. Bacteriol. 1997, 179, 1690–1697. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 2019, 17, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 2015, 7, 493–512. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, H.H. Chronic rhinosinusitis and bacterial biofilms. Curr. Opin. Otolaryngol. Head Neck Surg. 2006, 14, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Hall-Stoodley, L.; Costerton, J.w.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef]
- Nickel, J.C.; Ruseska, I.; Wright, J.B.; Costerton, J.W. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 1985, 27, 619–624. [Google Scholar] [CrossRef]
- Venkatesan, N.; Perumal, G.; Doble, M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol. 2015, 10, 1743–1750. [Google Scholar] [CrossRef]
- Hausner, M.; Wuertz, S. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl. Environ. Microbiol. 1999, 65, 3710–3713. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Wright, S.N.; Hamblin, M.; McCloskey, D.; Alcantar, M.A.; Schrübbers, L.; Lopatkin, A.J.; Satish, S.; Nili, A.; Palsson, B.O.; et al. A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action. Cell 2019, 177, 1649–1661. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, G.A.; Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 1998, 30, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Pratt, L.A.; Kolter, R. Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Mol. Microbiol. 1998, 30, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.L.; Redman, J.a.; Elimelech, M. Role of Cell Surface Lipopolysaccharides in Escherichia coli K12 adhesion and transport. Langmuir 2004, 20, 7736–7746. [Google Scholar] [CrossRef]
- Lee, S.A.; Wallis, C.M.; Rogers, E.E.; Burbank, L.p. Grapevine phenolic compounds influence cell surface adhesion of Xylella fastidiosa and bind to lipopolysaccharide. PLoS ONE 2020, 15, e0240101. [Google Scholar] [CrossRef] [PubMed]
- Krebs, S.J.; Taylor, R.K. Protection and attachment of Vibrio cholerae mediated by the toxin-coregulated pilus in the infant mouse model. J. Bacteriol. 2011, 193, 5260–5270. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Byun, H.; She, Q.; Liu, Z.; Ruggeberg, K.G.; Pu, Q.; Jung, I.J.; Zhu, D.; Brockett, M.R.; Hsiao, A.; et al. S-Nitrosylation of the virulence regulator AphB promotes Vibrio cholerae pathogenesis. PLoS Pathog. 2022, 18, e1010581. [Google Scholar] [CrossRef] [PubMed]
- Götz, F. Staphylococcus and biofilms. Mol. Microbiol. 2002, 43, 1367–1378. [Google Scholar] [CrossRef]
- Blankenship, J.R.; Mitchell, A.P. How to build a biofilm: A fungal perspective. Curr. Opin. Microbiol. 2006, 9, 588–594. [Google Scholar] [CrossRef]
- Rasamiravaka, T.; Vandeputte, O.M.; Pottier, L.; Huet, J.; Rabemanantsoa, C.; Kiendrebeogo, M.; Andriantsimahavandy, A.; Rasamindrakotroka, A.; Stévigny, C.; Duez, P.; et al. Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume. PLoS ONE 2015, 10, e0132791. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Limoli, D.H.; Jones, C.J.; Wozniak, D.J. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiol. Spectr. 2015, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Jiang, X.; Yang, Q.; Zhang, Y.; Wang, C.; Huang, R. Inhibition of Streptococcus mutans Biofilm Formation by the Joint Action of Oxyresveratrol and Lactobacillus casei. Appl. Environ. Microbiol. 2022, 88, e0243621. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gozzi, K.; Yan, F.; Chai, Y. Acetic Acid Acts as a Volatile Signal to Stimulate Bacterial Biofilm Formation. mBio 2015, 6, e00392-15. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.L.; Bassler, B.L. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 2009, 43, 197–222. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jia, M.; Wang, J.; Cheng, H.; Cai, Z.; Yu, Z.; Liu, Y.; Ma, L.; Zhang, L.; Zhang, Y.; et al. Cell division factor ZapE regulates Pseudomonas aeruginosa biofilm formation by impacting the pqs quorum sensing system. mLife 2023, 2, 28–42. [Google Scholar] [CrossRef]
- Saunders, S.H.; Tse, E.C.M.; Yates, M.D.; Otero, F.J.; Trammell, S.A.; Stemp, E.D.A.; Barton, J.K.; Tender, L.M.; Newman, D.K. Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms. Cell 2020, 182, 919–932. [Google Scholar] [CrossRef]
- Costa, K.C.; Glasser, N.R.; Conway, S.J.; Newman, D.K. Pyocyanin degradation by a tautomerizing demethylase inhibits Pseudomonas aeruginosa biofilms. Science 2017, 355, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Mitscher, L.A.; Park, Y.H.; Alshamma, A.; Hudson, P.B.; Haas, T. Amorfrutin A and B, bibenzyl antimicrobial agents from Amorpha fruticosa. Phytochemistry 1981, 20, 781–785. [Google Scholar] [CrossRef]
- Fan, Y.; He, H.; Dong, Y.; Pan, H. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans. Mycopathologia 2013, 176, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Uppuluri, P.; Chaturvedi, A.k.; Srinivasan, A.; Banerjee, M.; Ramasubramaniam, A.k.; Köhler, J.r.; Kadosh, D.; Lopez-Ribot, J.L. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 2010, 6, e1000828. [Google Scholar] [CrossRef] [PubMed]
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Leng, B.; Haaber, J.; Bojer, M.S.; Vegge, C.S.; Ingmer, H. Genome-Wide Identification of Antimicrobial Intrinsic Resistance Determinants in Staphylococcus aureus. Front. Microbiol. 2016, 7, 2018. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Tran, L.; Becket, E.; Lee, K.; Chinn, L.; Park, E.; Tran, K.; Miller, J.H. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: Generating an antibiotic bar code. Antimicrob. Agents Chemother. 2010, 54, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Shenkutie, A.M.; Yao, M.Z.; Siu, G.K.; Wong, B.K.C.; Leung, P.H. Biofilm-Induced Antibiotic Resistance in Clinical Acinetobacter baumannii Isolates. Antibiotics 2020, 9, 817. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, H.; Liu, Y.H.; Feng, Y. Towards Understanding MCR-like Colistin Resistance. Trends Microbiol. 2018, 26, 794–808. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.; Poza, M.; Fernández, A.; Fernández-Mdel, C.; Mallo, S.; Merino, M.; Rumbo-Feal, S.; Cabral, M.P.; Bou, G. Involvement of the AcrAB-TolC efflux pump in the resistance, fitness, and virulence of Enterobacter cloacae. Antimicrob. Agents Chemother. 2012, 56, 2084–2090. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Wang, Z.; James, N.R.; Voss, J.E.; Klimont, E.; Ohene-Agyei, T.; Venter, H.; Chiu, W.; Luisi, B.F. Structure of the AcrAB-TolC multidrug efflux pump. Nature 2014, 509, 512–515. [Google Scholar] [CrossRef] [PubMed]
- Lowrence, R.C.; Subramaniapillai, S.G.; Ulaganathan, V.; Nagarajan, S. Tackling drug resistance with efflux pump inhibitors: From bacteria to cancerous cells. Crit. Rev. Microbiol. 2019, 45, 334–353. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Barani, M.; Bilal, M.; Sabir, F.; Rahdar, A.; Kyzas, G.Z. Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci. 2021, 266, 118914. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, Y.; Xiong, B.; Qiu, S. Progress of Antimicrobial Mechanisms of Stilbenoids. Pharmaceutics 2024, 16, 663. https://doi.org/10.3390/pharmaceutics16050663
Li X, Li Y, Xiong B, Qiu S. Progress of Antimicrobial Mechanisms of Stilbenoids. Pharmaceutics. 2024; 16(5):663. https://doi.org/10.3390/pharmaceutics16050663
Chicago/Turabian StyleLi, Xiancai, Yongqing Li, Binghong Xiong, and Shengxiang Qiu. 2024. "Progress of Antimicrobial Mechanisms of Stilbenoids" Pharmaceutics 16, no. 5: 663. https://doi.org/10.3390/pharmaceutics16050663
APA StyleLi, X., Li, Y., Xiong, B., & Qiu, S. (2024). Progress of Antimicrobial Mechanisms of Stilbenoids. Pharmaceutics, 16(5), 663. https://doi.org/10.3390/pharmaceutics16050663