Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients
Abstract
1. Introduction
2. Research Strategy
3. Theoretical Background
3.1. About the Design Qualification of E-Tongues
3.1.1. Potentiometry-Based Electronic Tongues
Wording | Explanation | Scheme/Figure | Reference, e.g., |
---|---|---|---|
Discrete selectivity | Sensors are selective towards one specific ion species | [32,35] | |
Low selectivity | Sensors are selective towards a number of different analytes | [25,29] | |
Overlapping selectivity | [38] | ||
Cross-selectivity | Applied wording particularly for ASTREE liquid and taste analyzer (AlphaMOS, Toulouse, France), but also in the context of other e-tongues | [15,20,33] | |
Cross-sensitivity | Sensors show responses to a number of different analytes with distinguishable and reproducible sensor signals | [15,33] | |
Global selectivity | Sensors respond consistently to the same taste species Basis of Insent taste sensing systems (Insent Inc., Atsugi-Shi, Japan) | [25,29] |
3.1.2. Voltammetry-Based Electronic Tongues
3.1.3. Electrochemical Impedance-Based Electronic Tongues
3.1.4. Different, Different, but Same…?
3.2. About the Operational Qualification of E-Tongues
4. Results and Discussion with Regard to the Performance Qualification
4.1. Analytical Performance Qualification
4.2. Qualification for Taste-Masking Evaluation Performance
4.2.1. Solutions
4.2.2. Powders, Microspheres, and Granules
4.2.3. Orodispersible (Mini-)Tablets
4.2.4. Other Solid Dosage Forms
4.2.5. Indicators for Successful Taste-Masking Performance
4.3. Performance Regarding Bitterness Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Medicines Agency. ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology; European Medicines Agency: Amsterdam, The Netherlands, 1995; pp. 1–16. [Google Scholar]
- Council of the European Union, European Parliament. Regulation (EC) No. 1901/2006 on medicinal products for pediatric use and amending Regulation (EEC) No 1768/92, Directive 2001/20/EC, Directive 2001/83/EC and Regulation (EC) No 726/2004. Regulation (EC) No. 1901/2006 2006. Off. J. Eur. Union 2006, L378, 1–31. [Google Scholar]
- Stewart, K.D.; Johnston, J.A.; Matza, L.S.; Curtis, S.E.; Havel, H.A.; Sweetana, S.A.; Gelhorn, H.L. Preference for pharmaceutical formulation and treatment process attributes. Patient Prefer. Adherence 2016, 10, 1385–1399. [Google Scholar] [CrossRef]
- Clapham, D.; Bennett, J.; Cram, A.; Discihnger, A.; Inghelbrecht, S.; Pensé-Lhéritier, A.-M.; Ruiz, F.; Salunke, S.; Schiele, J.; Soto, J.; et al. Proposed tool to compare and assess the applicability of taste assessment techniques for pharmaceuticals. J. Pharm. Sci. 2022, 111, 1219–1223. [Google Scholar] [CrossRef]
- Immohr, L.I.; Dischinger, A.; Kühl, P.; Kletzl, H.; Sturm, S.; Günther, A.; Pein-Hackelbusch, M. Early pediatric formulation development with new chemical entities: Opportunities of e-tongue besides human taste assessment. Int. J. Pharm. 2017, 530, 201–212. [Google Scholar] [CrossRef]
- Mohamed-Ahmed, A.H.A.; Soto, J.; Ernest, T.; Tuleu, C. Non-human tools for the evaluation of bitter taste in the design and development of medicines: A systematic review. Drug Discov. Today 2016, 21, 1170–1180. [Google Scholar] [CrossRef]
- Kapsimali, M.; Barlow, L.A. Developing a sense of taste. Semin. Cell Dev. Biol. 2013, 24, 200–209. [Google Scholar] [CrossRef]
- Liman, E.R.; Zhang, Y.V.; Montell, C. Peripheral coding of taste. Neuron 2014, 81, 984–1000. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, J.; Zhao, Y.; Xu, F.; Hu, Y. Recent advances in bitterness evaluation methods. Anal. Methods 2012, 4, 599–608. [Google Scholar] [CrossRef]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. Taste sensing systems (electronic tongues) for pharmaceutical applications. Int. J. Pharm. 2011, 417, 256–271. [Google Scholar] [CrossRef]
- World Health Organization. Supplementary Guidelines on Good Manufacturing Practices: Validation; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2006; Annex 4; pp. 107–178. [Google Scholar]
- Toko, K. Taste Sensor with global selectivity. Mat. Sci. Eng. C 1996, 4, 69–82. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A. Cross-sensitivity evaluation of chemical sensors for electronic tongue: Determination of heavy metal ions. Sens. Actuators B Chem. 1997, 44, 532–537. [Google Scholar] [CrossRef]
- Winquist, F.; Krantz-Rülcker, C.; Wide, P.; Lundström, I. Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry. Meas. Sci. Technol. 1998, 9, 1937–1946. [Google Scholar] [CrossRef]
- Winquist, F.; Krantz-Rülcker, C.; Lundström, I. Electronic Tongues. MRS Bull. 2004, 29, 726–731. [Google Scholar] [CrossRef]
- Boniatti, J.; Tappin, M.R.R.; da S Teixeira, R.G.; de A V Gandos, T.; Rios, L.P.S.; Ferreira, I.A.M.; Oliveira, K.C.; Calil-Elias, S.; Santana, A.K.M.; Da Fonseca, L.B.; et al. In Vivo and In Vitro Taste Assessment of Artesunate-Mefloquine, Praziquantel, and Benznidazole Drugs for Neglected Tropical Diseases and Pediatric Patients. AAPS PharmSciTech 2021, 23, 22. [Google Scholar] [CrossRef]
- Riul Júnior, A.; Malmegrim, R.R.; Fonseca, F.J.; Mattoso, L.H.C. An artificial taste sensor based on conducting polymers. Biosens. Bioelectron. 2003, 18, 1365–1369. [Google Scholar] [CrossRef]
- Lucklum, R.; Hauptmann, P. The quartz crystal microbalance: Mass sensitivity, viscoelasticity and acoustic amplification. Sens. Actuators B Chem. 2000, 70, 30–36. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Llobera, A.; Vila-Planas, J.; Capdevila, F.; Demming, S.; Büttgenbach, S.; Mínguez, S.; Jiménez-Jorquera, C. Hybrid electronic tongue based on optical and electrochemical microsensors for quality control of wine. Analyst 2010, 135, 1718–1725. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids: (IUPAC technical report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Mostafa, G.A.-H. Potentiometric PVC Membrane Sensors and Their Analytical Applications in Pharmaceuticals and Environmental Samples at Micro- and Nano-Level. In Nanomedicine for Drug Delivery and Therapeutics; Mishra, A.K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 87–133. [Google Scholar]
- Krantz-Rülcker, C.; Stenberg, M.; Winquist, F.; Lundström, I. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: A review. Anal. Chim. Acta 2001, 426, 217–226. [Google Scholar] [CrossRef]
- Smith, W.H. Electroanalytical Chemistry: Basic Principles and Applications (Plambeck, James A.). J. Chem. Educ. 1984, 61, A185. [Google Scholar] [CrossRef]
- Umezawa, Y.; Bühlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report). Pure Appl. Chem. 2000, 72, 1851–2082. [Google Scholar] [CrossRef]
- Toko, K. A taste sensor. Meas. Sci. Technol. 1998, 9, 1919–1936. [Google Scholar] [CrossRef]
- Toko, K. Taste sensor. Sens. Actuators B Chem. 2000, 64, 205–215. [Google Scholar] [CrossRef]
- Toko, K. (Ed.) Biochemical Sensors: Mimicking Gustatory and Olfactory Senses; Pan Stanford Publishing: Singapore, 2016; ISBN 9789814267076. [Google Scholar]
- Hayashi, K.; Yamanaka, M.; Toko, K.; Yamafuji, K. Multichannel taste sensor using lipid membranes. Sens. Actuators B Chem. 1990, 2, 205–213. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Habara, M.; Ikezazki, H.; Chen, R.; Naito, Y.; Toko, K. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors 2010, 10, 3411–3443. [Google Scholar] [CrossRef]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. Performance qualification of an electronic tongue based on ICH guideline Q2. J. Pharm. Biomed. Anal. 2010, 51, 497–506. [Google Scholar] [CrossRef]
- Chapman, D.L.L. A contribution to the theory of electrocapillarity. Philos. Mag. 1913, 25, 475–481. [Google Scholar] [CrossRef]
- Di Natale, C.; Davide, F.; Brunink, J.A.J.; D’Amico, A.; Vlasov, Y.G.; Legin, A.V.; Rudnitskaya, A.M. Multicomponent analysis of heavy metal cations and inorganic anions in liquids by a non-selective chalcogenide glass sensor array. Sens. Actuators B Chem. 1996, 34, 539–542. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A. Electronic tongues and their analytical application. Anal. Bioanal. Chem. 2002, 373, 136–146. [Google Scholar] [CrossRef]
- Moody, G.J.; Oke, R.B.; Thomas, J.D.R. A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix. Analyst 1970, 95, 910. [Google Scholar] [CrossRef]
- Mostafa, G.A.E.-H. Potentiometric PVC Membrane Sensor for the Determination of Scopolamine in Some Pharmaceutical Formulations. Anal. Sci. 2002, 18, 1335–1338. [Google Scholar] [CrossRef]
- Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, 17, 70–71. [Google Scholar] [CrossRef]
- Moss, S.D.; Janata, J.; Johnson, C.C. Potassium Ion-Sensitive Field Effect Transistor. Anal. Chem. 1975, 47, 2238–2243. [Google Scholar] [CrossRef]
- Riul, A.; Dantas, C.A.R.; Miyazaki, C.M.; Oliveira, O.N. Recent advances in electronic tongues. Analyst 2010, 135, 2481–2495. [Google Scholar] [CrossRef]
- Pein, M.; Eckert, C.; Preis, M.; Breitkreutz, J. New protocol for \alphaAstree electronic tongue enabling full performance qualification according to ICH Q2. J. Pharm. Biomed. Anal. 2013, 83, 157–163. [Google Scholar] [CrossRef]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. A comparative study on two electronic tongues for pharmaceutical formulation development. J. Pharm. Biomed. Anal. 2011, 55, 272–281. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Keeney, M.P. Taste masking analysis in pharmaceutical formulation development using an electronic tongue. Int. J. Pharm. 2006, 310, 118–124. [Google Scholar] [CrossRef]
- Lorenz, J.K.; Reo, J.P.; Hendl, O.; Worthington, J.H.; Petrossian, V.D. Evaluation of a taste sensor instrument (electronic tongue) for use in formulation development. Int. J. Pharm. 2009, 367, 65–72. [Google Scholar] [CrossRef]
- del Valle, M. Electronic tongues employing electrochemical sensors. Electroanalysis 2010, 22, 1539–1555. [Google Scholar] [CrossRef]
- Winquist, F.; Wide, P.; Lundström, I. An electronic tongue based on voltammetry. Anal. Chim. Acta 1997, 357, 21–31. [Google Scholar] [CrossRef]
- Scholz, F. Voltammetric techniques of analysis: The essentials. ChemTexts 2015, 1, 17. [Google Scholar] [CrossRef]
- Cetó, X.; Pérez, S.; Prieto-Simón, B. Fundamentals and application of voltammetric electronic tongues in quantitative analysis. TrAC Trends Anal. Chem. 2022, 157, 116765. [Google Scholar] [CrossRef]
- Wang, M.; Cetó, X.; del Valle, M. A novel electronic tongue using electropolymerized molecularly imprinted polymers for the simultaneous determination of active pharmaceutical ingredients. Biosens. Bioelectron. 2022, 198, 113807. [Google Scholar] [CrossRef]
- Park, S.-M.; Yoo, J.-S. Peer reviewed: Electrochemical impedance spectroscopy for better electrochemical measurements. Anal. Chem 2003, 75, 455A–461A. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical impedance spectroscopy—A tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef]
- Pioggia, G.; Di Francesco, F.; Marchetti, A.; Ferro, M.; Leardi, R.; Ahluwalia, A. A composite sensor array impedentiometric electronic tongue Part II. Discrimination of basic tastes. Biosens. Bioelectron. 2007, 22, 2624–2628. [Google Scholar] [CrossRef]
- Pein, M.; Kirsanov, D.; Ciosek, P.; del Valle, M.; Yaroshenko, I.; Wesoły, M.; Zabadaj, M.; Gonzalez-Calabuig, A.; Wróblewski, W.; Legin, A. Independent comparison study of six different electronic tongues applied for pharmaceutical analysis. J. Pharm. Biomed. Anal. 2015, 114, 321–329. [Google Scholar] [CrossRef]
- Pein, M.; Gondongwe, X.D.; Habara, M.; Winzenburg, G. Interlaboratory testing of Insent e-tongues. Int. J. Pharm. 2014, 469, 228–237. [Google Scholar] [CrossRef]
- Legin, A.; Rudnitskaya, A.; Clapham, D.; Seleznev, B.; Lord, K.; Vlasov, Y. Electronic tongue for pharmaceutical analytics: Quantification of tastes and masking effects. Anal. Bioanal. Chem. 2004, 380, 36–45. [Google Scholar] [CrossRef]
- Guhmann, M.; Preis, M.; Gerber, F.; Pöllinger, N.; Breitkreutz, J.; Weitschies, W. Design, development and in-vitro evaluation of diclofenac taste-masked orodispersible tablet formulations. Drug Dev. Ind. Pharm. 2015, 41, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Dun, J.; Zhao, F.; Qi, X. In-vitro and in-vivo evaluation of taste-masked ibuprofen formulated in oral dry emulsions. Drug Dev. Ind. Pharm. 2021, 47, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Yi, E.J.; Kim, J.Y.; Rhee, Y.S.; Kim, S.H.; Lee, H.J.; Park, C.W.; Park, E.S. Preparation of sildenafil citrate microcapsules and in vitro/in vivo evaluation of taste masking efficiency. Int. J. Pharm. 2014, 466, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Du Choi, H.; Kim, N.A.; Nam, T.S.; Lee, S.; Jeong, S.H. Evaluation of taste-masking effects of pharmaceutical sweeteners with an electronic tongue system. Drug Dev. Ind. Pharm. 2014, 40, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Insent. Webpage: Machine Specification (TS-5000Z). 2024. Available online: https://www.insentjp.com/ (accessed on 8 May 2024).
- AlphaMOS. ASTREE Application Note. 2024. Available online: https://www.thei.edu.hk/f/page/4007/16308/ASTREE%20Application%20Note.pdf (accessed on 8 May 2024).
- Khaydukova, M.; Kirsanov, D.; Pein-Hackelbusch, M.; Immohr, L.I.; Gilemkhanova, V.; Legin, A. Critical view on drug dissolution in artificial saliva: A possible use of in-line e-tongue measurements. Eur. J. Pharm. Sci. 2017, 99, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Wesoły, M.; Kluk, A.; Sznitowska, M.; Ciosek, P.; Wróblewski, W. Influence of experimental conditions on electronic tongue results-Case of Valsartan minitablets dissolution. Sensors 2016, 16, 1353. [Google Scholar] [CrossRef] [PubMed]
- Oman, S.F.; Camões, M.F.; Powell, K.J.; Rajagopalan, R.; Spitzer, P. Guidelines for potentiometric measurements in suspensions part A. The suspension effect: IUPAC technical report. Pure Appl. Chem. 2007, 79, 67–79. [Google Scholar] [CrossRef]
- Immohr, L.I.; Turner, R.; Pein-Hackelbusch, M. Impact of sodium lauryl sulfate in oral liquids on e-tongue measurements. Int. J. Pharm. 2016, 515, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, Z.; Szöllosi, D.; Zaukuu, J.L.Z.; Bodor, Z.; Vitális, F.; Aouadi, B.; Zsom-Muha, V.; Gillay, Z. Factors influencing the long-term stability of electronic tongue and application of improved drift correction methods. Biosensors 2020, 10, 74. [Google Scholar] [CrossRef]
- Maksymiuk, K.; Stelmach, E.; Michalska, A. Unintended changes of ion-selective membranes composition—Origin and effect on analytical performance. Membranes 2020, 10, 266. [Google Scholar] [CrossRef]
- Mettler; Toledo. A Guide to Ion Selective Measurement. 2024. Available online: https://www.mt.com/au/en/home/library/guides/lab-analytical-instruments/Ion-selective-electrode-guide.html (accessed on 8 May 2024).
- Kojima, H.; Kurihara, T.; Yoshida, M.; Haraguchi, T.; Nishikawa, H.; Ikegami, S.; Okuno, T.; Yamashita, T.; Nishikawa, J.; Tsujino, H.; et al. A New bitterness evaluation index obtained using the taste sensor for 48 active pharmaceutical ingredients of pediatric medicines. Chem. Pharm. Bull. 2021, 69, 537–547. [Google Scholar] [CrossRef] [PubMed]
- European Directorate for the Quality of Medicines. European Pharmacopoeia—Edition 10; EDQM, Ed.; EDQM: Strasbourg, France, 2023. [Google Scholar]
- Li, S.; Zhang, Y.; Khan, A.R.; He, S.; Wang, Y.; Xu, J.; Zhai, G. Quantitative prediction of the bitterness of atomoxetine hydrochloride and taste-masked using hydroxypropyl-\beta-cyclodextrin: A biosensor evaluation and interaction study. Asian J. Pharm. Sci. 2020, 15, 492–505. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wu, F.; Singh, V.; Guo, T.; Ren, X.; Yin, X.; Shao, Q.; York, P.; Patterson, L.H.; Zhang, J. Host-guest kinetic interactions between HP-\beta-cyclodextrin and drugs for prediction of bitter taste masking. J. Pharm. Biom. Anal. 2017, 140, 232–238. [Google Scholar] [CrossRef]
- Cirri, M.; Mura, P.; Benedetti, S.; Buratti, S. Development of a hydroxypropyl-β-cyclodextrin-based liquid formulation for the oral administration of propranolol in pediatric therapy. Pharmaceutics 2023, 15, 2217. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.-L.; Tang, W.-H.; Chen, W.C.; Diako, C.; Ross, C.F.; Li, S.-D. Development of a rapidly dissolvable oral pediatric formulation for mefloquine using liposomes. Mol. Pharmaceutics 2017, 14, 1969–1979. [Google Scholar] [CrossRef]
- Ogbonna, J.D.N.; Cunha, E.; Attama, A.A.; Ofokansi, K.C.; Ferreira, H.; Pinto, S.; Gomes, J.; Marx, Í.M.G.; Peres, A.M.; Lobo, J.M.S.; et al. Overcoming challenges in pediatric formulation with a patient-centric design approach: A proof-of-concept study on the design of an oral solution of a bitter drug. Pharmaceuticals 2022, 15, 1331. [Google Scholar] [CrossRef]
- Li, H.; Fan, X.; Wu, X.; Yue, Y.; Li, C.; Gui, X.; Wang, Y.; Yao, J.; Wang, J.; Zhang, L.; et al. Study on the taste-masking effect and mechanism of Acesulfame K on berberine hydrochloride. Drug Dev. Ind. Pharm. 2023, 49, 92–102. [Google Scholar] [CrossRef]
- Immohr, L.I.; Hedfeld, C.; Lang, A.; Pein-Hackelbusch, M. Suitability of e-tongue sensors to assess taste-masking of pediatric liquids by different beverages considering their physico-chemical properties. AAPS PharmSciTech. 2017, 18, 330–340. [Google Scholar] [CrossRef]
- Toko, K. Research and development of taste sensors as a novel analytical tool. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2023, 99, 173–189. [Google Scholar] [CrossRef]
- Dubois, G.E. Saccharin and Cyclamate. In Sweeteners and Sugar Alternatives in Food Technology; O’Donnell, K., Kearsley, M.W., Eds.; Wiley: New York, NY, USA, 2012; pp. 137–166. ISBN 9780470659687. [Google Scholar]
- Sarkar, A.; Xu, F.; Lee, S. Human saliva and model saliva at bulk to adsorbed phases—Similarities and differences. Adv. Colloid Interface Sci. 2019, 273, 102034. [Google Scholar] [CrossRef]
- Amelian, A.; Szekalska, M.; Ciosek, P.; Basa, A.; Winnicka, K. Characterization and taste masking evaluation of microparticles with cetirizine dihydrochloride and methacrylate-based copolymer obtained by spray drying. Acta Pharm. 2017, 67, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Wesoły, M.; Zabadaj, M.; Amelian, A.; Winnicka, K.; Wróblewski, W.; Ciosek, P. Tasting cetirizine-based microspheres with an electronic tongue. Sens. Actuators B Chem. 2017, 238, 1190–1198. [Google Scholar] [CrossRef]
- Fukada, M.; Kadota, K.; Nogami, S.; Uchiyama, H.; Shirakawa, Y.; Tozuka, Y. Development of bitter-taste masked instant jelly formulations of diphenhydramine hydrochloride with Easy-to-Consume granules. Chem. Pharm. Bull. 2023, 71, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Wasilewska, K.; Szekalska, M.; Ciosek-Skibinska, P.; Lenik, J.; Basa, A.; Jacyna, J.; Markuszewski, M.; Winnicka, K. Ethylcellulose in organic solution or aqueous dispersion form in designing taste-masked microparticles by the spray drying technique with a model bitter drug: Rupatadine fumarate. Polymers 2019, 11, 522. [Google Scholar] [CrossRef] [PubMed]
- Panraksa, P.; Boonsermsukcharoen, K.; Hwang, K.-M.; Park, E.-S.; Jantrawut, P. Taste Masking of Nizatidine Using Ion-Exchange Resins. Processes 2019, 7, 779. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Wu, C.; Pan, X.; Peng, T. Dry suspension containing coated pellets with pH-dependent drug release behavior for the taste-masking of Azithromycin. AAPS PharmSciTech 2023, 24, 21. [Google Scholar] [CrossRef] [PubMed]
- Cal, K.; Mikolaszek, B.; Hess, T.; Papaioannou, M.; Lenik, J.; Ciosek-Skibińska, P.; Wall, H.; Paszkowska, J.; Romanova, S.; Garbacz, G.; et al. The use of Calcium Phosphate-based starter pellets for the preparation of Sprinkle IR MUPS formulation of Rosuvastatin Calcium. Pharmaceuticals 2023, 16, 242. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Xiao, C.; Chang, X.; Sun, Y.; Fan, W.; Tian, B.; Gao, D.; Xiao, Y.; Wu, X.; et al. Mesoporous silica carrier-based composites for taste-masking of bitter drug: Fabrication and palatability evaluation. AAPS PharmSciTech 2022, 23, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Wasilewska, K.; Ciosek-Skibińska, P.; Lenik, J.; Srčič, S.; Basa, A.; Winnicka, K. Utilization of ethylcellulose microparticles with rupatadine fumarate in designing orodispersible minitablets with taste masking effect. Materials 2020, 13, 2715. [Google Scholar] [CrossRef]
- Nakamura, H.; Uchida, S.; Sugiura, T.; Namiki, N. The prediction of the palatability of orally disintegrating tablets by an electronic gustatory system. Int. J. Pharm. 2015, 493, 305–312. [Google Scholar] [CrossRef]
- Amelian, A.; Wasilewska, K.; Wesoły, M.; Ciosek-Skibińska, P.; Winnicka, K. Taste-masking assessment of orally disintegrating tablets and lyophilisates with cetirizine dihydrochloride microparticles. Saudi Pharm. J. 2017, 25, 1144–1150. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Hong, X.; Han, X.; Liu, B.; Li, X.; Zhang, H.; Gao, J.; Liu, N.; Gao, X.; et al. Taste masking study based on an Electronic Tongue: The formulation design of 3D printed Levetiracetam instant-dissolving tablets. Pharm. Res. 2021, 38, 831–842. [Google Scholar] [CrossRef]
- Hu, J.; Fitaihi, R.; Abukhamees, S.; Abdelhakim, H.E. Formulation and characterization of Carbamazepine orodispersible 3D-printed mini-tablets for pediatric use. Pharmaceutics 2023, 15, 250. [Google Scholar] [CrossRef]
- Preis, M.; Grother, L.; Axe, P.; Breitkreutz, J. In-vitro and in-vivo evaluation of taste-masked cetirizine hydrochloride formulated in oral lyophilisates. Int. J. Pharm. 2015, 491, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Cho, S.M.; Cui, J.H.; Cao, Q.R.; Oh, E.; Lee, B.J. In vitro and in vivo correlation of disintegration and bitter taste masking using orally disintegrating tablet containing ion exchange resin-drug complex. Int. J. Pharm. 2013, 455, 31–39. [Google Scholar] [CrossRef]
- Pein, M.; Preis, M.; Eckert, C.; Kiene, F.E. Taste-masking assessment of solid oral dosage forms-a critical review. Int. J. Pharm. 2014, 465, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Alshetaili, A.S.; Almutairy, B.K.; Tiwari, R.V.; Morott, J.T.; Alshehri, S.M.; Feng, X.; Alsulays, B.B.; Park, J.-B.; Zhang, F.; Repka, M.A. Preparation and evaluation of hot-melt extruded patient-centric Ketoprofen mini-tablets. Curr. Drug Deliv. 2016, 13, 730–741. [Google Scholar] [CrossRef] [PubMed]
- Keating, A.V.; Soto, J.; Tuleu, C.; Forbes, C.; Zhao, M.; Craig, D.Q.M. Solid state characterization and taste masking efficiency evaluation of polymer based extrudates of isoniazid for pediatric administration. Int. J. Pharm. 2018, 536, 536–546. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Douroumis, D. An in-vitro-in-vivo taste assessment of bitter drug: Comparative electronic tongues study. J. Pharm. Pharmacol. 2014, 67, 43–55. [Google Scholar] [CrossRef]
- Ekweremadu, C.S.; Abdelhakim, H.E.; Craig, D.Q.M.; Barker, S.A. Development and evaluation of feline tailored amlodipine besylate mini-tablets using L-lysine as a candidate flavouring agent. Pharmaceutics 2020, 12, 917. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, D.; He, J.; Han, X.; Lin, J.; Lan, Y.; Xiong, X.; Yu, L.; Yang, M.; Han, L. A novel method to mask the bitter taste of berberine hydrochloride: Powder surface modification. Pharmacogn. Mag. 2018, 14, 253. [Google Scholar] [PubMed]
- Alopaeus, J.F.; Göbel, A.; Breitkreutz, J.; Sande, S.A.; Tho, I. Investigation of hydroxypropyl-\beta-cyclodextrin inclusion complexation of two poorly soluble model drugs and their taste-sensation—Effect of electrolytes, freeze-drying and incorporation into oral film formulations. J. Drug Deliv. Sci. Technol. 2021, 61, 102245. [Google Scholar] [CrossRef]
- Preis, M.; Pein, M.; Breitkreutz, J. Development of a taste-masked orodispersible film containing dimenhydrinate. Pharmaceutics 2012, 4, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Abdelhakim, H.E.; Coupe, A.; Tuleu, C.; Edirisinghe, M.; Craig, D.Q.M.; Abdelhakim, H.E.; Coupe, A.; Tuleu, C.; Edirisinghe, M.; Craig, D.Q.M. Utilising co-axial electrospinning as a taste-masking technology for paediatric drug delivery. Pharmaceutics 2021, 13, 1665. [Google Scholar] [CrossRef] [PubMed]
- Kazsoki, A.; Palcsó, B.; Omer, S.M.; Kovacs, Z.; Zelkó, R. Formulation of Levocetirizine-loaded core-shell type nanofibrous orally dissolving webs as a potential alternative for immediate release dosage forms. Pharmaceutics 2022, 14, 1442. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.R.P.; Bhutada, K.; Kaushal, P. Taste evaluation by electronic tongue and bioavailability enhancement of Efavirenz. AAPS PharmSciTech 2019, 20, 56. [Google Scholar] [CrossRef]
- Keating, A.V.; Soto, J.; Forbes, C.; Zhao, M.; Craig, D.Q.M.; Tuleu, C. Multi-methodological quantitative taste assessment of anti-tuberculosis drugs to support the development of palatable paediatric dosage forms. Pharmaceutics 2020, 12, 369. [Google Scholar] [CrossRef]
- European Medicines Agency. CHMP Assessment Report—HEMANGIOL; EMEA/H/C/002621/0000; European Medicines Agency: London, UK, 2014; pp. 0–88. [Google Scholar]
- Banik, D.G.; Medler, K.F. Bitter, sweet, and umami signaling in taste cells: It’s not as simple as we thought. Physiol. Behav. 2021, 20, 159–164. [Google Scholar]
- Meyerhof, W.; Batram, C.; Kuhn, C.; Brockhoff, A.; Chudoba, E.; Bufe, B.; Appendino, G.; Behrens, M. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 2010, 35, 157–170. [Google Scholar] [CrossRef]
- Glendinning, J.I. Is the bitter rejection response always adaptive? Physiol. Behav. 1994, 56, 1217–1227. [Google Scholar] [CrossRef]
- Belitz, H.D.; Wieser, H. Bitter compounds: Occurrence and structure-activity relationships. Food Rev. Int. 1985, 1, 271–354. [Google Scholar] [CrossRef]
- Gardner, R.J. Lipophilicity and the perception of bitterness. Chem. Senses 1979, 4, 275–286. [Google Scholar] [CrossRef]
- Pfeilsticker, K.; Ruffler, I.; Engel, C.; Rehage, C. Relation between bitter taste and positive surface tension of pure substances in aqueous solutions. Lebensm. Wiss. Technol. 1978, 11, 323–329. [Google Scholar]
- Agresti, C.; Tu, Z.; Ng, C.; Yang, Y.; Liang, J.F. Specific interactions between diphenhydramine and \alpha-helical poly(glutamic acid)—A new ion-pairing complex for taste masking and pH-controlled diphenhydramine release. Eur. J. Pharm. Biopharm. 2008, 70, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Sadrieh, N.; Brower, J.; Yu, L.; Doub, W.; Straughn, A.; MacHado, S.; Pelsor, F.; Saint Martin, E.; Moore, T.; Reepmeyer, J.; et al. Stability, dose uniformity, and palatability of three counterterrorism drugs—Human subject and electronic tongue studies. Pharm. Res. 2005, 22, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Fritz, F.; Preissner, R.; Banerjee, P. VirtualTaste: A web server for the prediction of organoleptic properties of chemical compounds. Nucleic Acids Res. 2021, 49, W679–W684. [Google Scholar] [CrossRef] [PubMed]
- Malavolta, M.; Pallante, L.; Mavkov, B.; Stojceski, F.; Grasso, G.; Korfiati, A.; Mavroudi, S.; Kalogeras, A.; Alexakos, C.; Martos, V.; et al. A survey on computational taste predictors. Eur. Food Res. Technol. 2022, 248, 2215–2235. [Google Scholar] [CrossRef] [PubMed]
- Boughter, J.D.; Whitney, G. Human taste thresholds for sucrose octaacetate. Chem. Senses 1993, 18, 445–448. [Google Scholar] [CrossRef]
- Deng, M.; Hida, N.; Yamazaki, T.; Morishima, R.; Kato, Y.; Fujita, Y.; Nakamura, A.; Harada, T. Comparison of bitterness intensity between Prednisolone and Quinine in a human sensory test indicated individual differences in bitter-taste perception. Pharmaceutics 2022, 14, 2454. [Google Scholar] [CrossRef]
- Soto, J.; Keeley, A.; Keating, A.V.; Mohamed-Ahmed, A.H.A.; Sheng, Y.; Winzenburg, G.; Turner, R.; Desset-Brèthes, S.; Orlu, M.; Tuleu, C. Rats can predict aversiveness of active pharmaceutical ingredients. Eur. J. Pharm. Biopharm. 2018, 133, 77–84. [Google Scholar] [CrossRef]
- Keast, R.S.J.; Roper, J. A complex relationship among chemical concentration, detection threshold, and suprathreshold intensity of bitter compounds. Chem. Senses 2007, 32, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, S.S.; Gatlin, L.A.; Sattely-Miller, E.A.; Graham, B.G.; Heiman, S.A.; Stagner, W.C.; Erickson, R.P. The effect of sweeteners on bitter taste in young and elderly subjects. Brain Res. Bull. 1994, 35, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Pfaffmann, C.; Bartoshuk, L.M.; McBurney, D.H. 5: Taste Psychophysics. In Taste; Springer: Berlin/Heidelberg, Germany, 1971; pp. 75–101. [Google Scholar]
- Sharma, D.; Chopra, R.; Bedi, N. Development and evaluation of paracetamol taste masked orally disintegrating tablets using polymer coating technique. Int. J. Pharm. Pharm. Sci. 2012, 4, 129–134. [Google Scholar]
- Harris, H.; Kalmus, H. The measurement of taste sensitivity to phenylthiourea (P.T.C.). Ann. Eugen. 1949, 15, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Onishi, H.; Takahashi, Y.; Iwata, M.; Machida, Y. Development of oral acetaminophen chewable tablets with inhibited bitter taste. Int. J. Pharm. 2003, 251, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, T.; Okuno, T.; Nishikawa, H.; Kojima, H.; Ikegami, S.; Yoshida, M.; Habara, M.; Ikezaki, H.; Uchida, T. The relationship between bitter taste sensor response and physicochemical properties of 47 pediatric medicines and their Biopharmaceutics Classification. Chem. Pharm. Bull. 2019, 67, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, T.; Uchida, T.; Yoshida, M.; Kojima, H.; Habara, M.; Ikezaki, H. The utility of the artificial taste sensor in evaluating the bitterness of drugs: Correlation with responses of human TASTE2 receptors (hTAS2Rs). Chem. Pharm. Bull. 2018, 66, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Yoshida, M.; Kobayashi, Y.; Hiraoka, M.; Ikezaki, H.; Uchida, T. Bitterness evaluation of H1-Receptor antagonists using a taste sensor. Sens. Mater. 2011, 23, 483–492. [Google Scholar]
- Ito, M.; Wada, K.; Yoshida, M.; Hazekawa, M.; Abe, K.; Chen, R.; Habara, M.; Ikezaki, H.; Uchida, T. Quantitative evaluation of bitterness of H1-receptor antagonists and masking effect of acesulfame potassium, an artificial sweetener, using a taste sensor. Sens. Mater. 2013, 25, 17–30. [Google Scholar]
- Ito, M.; Ikehama, K.; Yoshida, K.; Haraguchi, T.; Yoshida, M.; Wada, K.; Uchida, T. Bitterness prediction of H1-antihistamines and prediction of masking effects of artificial sweeteners using an electronic tongue. Int. J. Pharm. 2013, 441, 121–127. [Google Scholar] [CrossRef]
- Haraguchi, T.; Yoshida, M.; Uchida, T. Evaluation of ebastine-loaded orally disintegrating tablets using new apparatus of detecting disintegration time and e-tongue system. J. Drug Deliv. Sci. Technol. 2014, 24, 684–688. [Google Scholar] [CrossRef]
- Preis, M.; Eckert, C.; Häusler, O.; Breitkreutz, J. A comparative study on solubilizing and taste-masking capacities of hydroxypropyl-\beta-cyclodextrin and maltodextrins with high amylose content. Sens. Actuators B Chem. 2014, 193, 442–450. [Google Scholar] [CrossRef]
- Chay, S.K.; Keating, A.V.; James, C.; Aliev, A.E.; Haider, S.; Craig, D.Q. Evaluation of the taste-masking effects of (2-hydroxypropyl)-\beta-cyclodextrin on ranitidine hydrochloride; A combined biosensor, spectroscopic and molecular modelling assessment. RSC Adv. 2018, 8, 3564–3573. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Jiang, H.; Han, L.; Xiong, X.; He, Y.; Fu, C.; Xu, R.; Zhang, D.; Lin, J.; Yang, M. A novel quantified bitterness evaluation model for traditional Chinese herbs based on an animal ethology principle. Acta Pharm. Sin. B 2018, 8, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.C.; Shimizu, F.M.; Ortiz, M.; Pinhatti, M.S.; Carr, O.; Guterres, S.S.; Oliveira, O.N.; Volpato, N.M. Efficient praziquantel encapsulation into polymer microcapsules and taste masking evaluation using an electronic tongue. Bull. Chem. Soc. Jpn. 2018, 91, 865–874. [Google Scholar] [CrossRef]
- Tan, D.C.T.; Ong, J.J.; Gokhale, R.; Heng, P.W.S. Hot melt extrusion of ion-exchange resin for taste masking. Int. J. Pharm. 2018, 547, 385–394. [Google Scholar] [CrossRef]
- Abdelhakim, H.E.; Coupe, A.; Tuleu, C.; Edirisinghe, M.; Craig, D.Q. Electrospinning optimization of Eudragit e PO with and without chlorpheniramine maleate using a Design of Experiment approach. Mol. Pharm. 2019, 16, 2557–2568. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Wu, Z.; He, J.; Lan, Y.; Wang, X.; Han, X.; Jiang, H.; Lin, J.; Xu, R.; Zhang, D.; et al. A novel bitter masking approach: Powder coating technology-take Sanhuang tablets as an example. J. Drug Deliv. Sci. Technol. 2019, 52, 46–54. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, H.; Huang, Z.; Zhu, J.; Wan, F.; Peng, T.; Pan, X.; Huang, Y.; Wu, C. Taste-masking and colloidal-stable cubosomes loaded with Cefpodoxime proxetil for pediatric oral delivery. Int. J. Pharm. 2020, 575, 118875. [Google Scholar] [CrossRef]
- Lopalco, A.; Denora, N.; Laquintana, V.; Cutrignelli, A.; Franco, M.; Robota, M.; Hauschildt, N.; Mondelli, F.; Arduino, I.; Lopedota, A. Taste masking of propranolol hydrochloride by microbeads of EUDRAGIT\textregistered E PO obtained with prilling technique for paediatric oral administration. Int. J. Pharm. 2020, 574, 118922. [Google Scholar] [CrossRef]
- Aramini, A.; Bianchini, G.; Lillini, S.; Bordignon, S.; Tomassetti, M.; Novelli, R.; Mattioli, S.; Lvova, L.; Paolesse, R.; Chierotti, M.R.; et al. Unexpected salt/cocrystal polymorphism of the ketoprofen–lysine system: Discovery of a new ketoprofen–l-lysine salt polymorph with different physicochemical and pharmacokinetic properties. Pharmaceuticals 2021, 14, 555. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Li, S.; Tan, C.P.; Kraithong, S.; Gao, Q.; Fu, X.; Zhang, B.; Huang, Q. Encapsulation of caffeine into starch matrices: Bitterness evaluation and suppression mechanism. Int. J. Biol. Macromol. 2021, 173, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Jiang, D.; Chen, C.; Wu, J.; Qin, C.; Yuan, Q.; Xue, Y.; Xiong, Y.; Zhuang, L.; Hu, N.; et al. Hybrid Integrated Cardiomyocyte Biosensors for Bitter Detection and Cardiotoxicity Assessment. ACS Sensors 2021, 6, 2593–2604. [Google Scholar] [CrossRef] [PubMed]
- Olechno, K.; Maciejewski, B.; Glowacz, K.; Lenik, J.; Ciosek-Skibinska, P.; Basa, A.; Winnicka, K. Orodispersible films with rupatadine fumarate enclosed in ethylcellulose microparticles as drug delivery platform with taste-masking effect. Materials 2022, 15, 2126. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Sun, Q.; Chen, W.; Han, Y.; Gao, Y.; Ye, J.; Wang, H.; Gao, L.; Liu, Y.; Yang, Y. The Taste-Masking Mechanism of Chitosan at the Molecular Level on Bitter Drugs of Alkaloids and Flavonoid Glycosides from Traditional Chinese Medicine. Molecules 2022, 27, 7455. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, Y.; Zhao, W.; Li, J.; Shuian, D.; Liu, J. Identification of Oncorhynchus mykiss nebulin-derived peptides as bitter taste receptor TAS2R14 blockers by in silico screening and molecular docking. Food Chem. 2022, 368, 130839. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Yuan, M.; Li, S.; Zhou, Q.; Li, M.; Zeng, D.; Guo, Y.; Guo, L. Performance evaluation of E-nose and E-tongue combined with machine learning for qualitative and quantitative assessment of bear bile powder. Anal. Bioanal. Chem. 2023, 415, 3503–3513. [Google Scholar] [CrossRef]
- Uno, R.; Ohkawa, K.; Kojima, H.; Haraguchi, T.; Ozeki, M.; Kawasaki, I.; Yoshida, M.; Habara, M.; Ikezaki, H.; Uchida, T. Masking the Taste of Fixed-Dose Combination Drugs: Particular NSAIDs Can Efficiently Mask the Bitterness of Famotidine. Chem. Pharm. Bull. 2023, 71, 148–153. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, J.; Shi, L.; Liu, Q.; Zhang, F.; Wu, H. Development of child-friendly lisdexamfetamine chewable tablets using ion exchange resin as a taste-masking carrier based on the concept of Quality by Design (QbD). AAPS PharmSciTech 2023, 24, 132. [Google Scholar] [CrossRef]
Drugs | Human Thresholds [mM] * | Reference |
---|---|---|
caffeine | 1.2 (detection threshold, ø age of panellists 23 y) | [121] |
2 (detection threshold, ø age of panellists 26 y) 2.9 (recognition threshold, ø age of panellists 26 y) | [122] | |
0.7 | [123] | |
diphenhydramine | 1 | [114] |
efavirenz | 0.039 | [105] |
paracetamol | 2 | [124] |
phenylthiourea | 0.049 (taste threshold of panellists aged 10–29 y) | [125] |
0.02(tasters) 8 (non-tasters) | [123] | |
quinine HCl | 0.0083 (detection threshold, ø age of panellists 23 y) | [121] |
0.0048 (detection threshold, ø age of panellists 26 y) 0.0087 (recognition threshold, ø age of panellists 26 y) | [122] | |
0.03 | [123] | |
quinine sulphate | 0.008 | [123] |
0.012 | [126] | |
sucrose octaacetate | 0.0036/0.0098 (detection threshold, ø age of panellists 26/88 y) 0.0068/0.05 (recognition threshold, ø age of panellists 26/88 y) | [122] |
0.004 | [118] |
Drug | Bitterness Score by Sensory Testing | Euclidean Distance to Water | pH (0.1 M) | pKa (Strongest Basic) | logP * | MR [g/mol] | Drugbank Accession Number (https://go.drugbank.com/ assessed on 8 May 2024) |
---|---|---|---|---|---|---|---|
Quinine HCl dihydrate | 2.00 | 376.70 | 5.43 | 9.05 | 2.82 2.51 | 396.9 | DBSALT001044 |
Cetirizine HCl | 0.36 | 1258.78 | 3.76 | 7.74 | 2.98 0.86 | 461.8 | DBSALT001214 |
Diphenhydramine HCl | 0.45 | 495.33 | 5.20 | 8.87 | 3.44 3.65 | 291.8 | DBSALT000056 |
Chlorpheniramine maleate | 1.00 | 412.92 | 5.30 | 9.47 | 3.74 3.58 | 390.9 | DBSALT000987 |
Epinastine HCl | 1.82 | 300.63 | 5.32 | 9.31 | 2.34 3.13 | 285.8 | DBSALT000961 |
Ketotifen fumarate | 4.38 | 681.45 | 4.38 | 7.15 | 3.49 3.35 | 425.5 | DBSALT001856 |
Olopatadine HCl | 4.23 | 943.42 | 4.23 | 9.76 | 3.99 0.75 | 373.9 | DBSALT000685 |
Fexofenadine HCl | 1.18 | 945.68 | 4.30 | 9.01 | 5.02 2.94 | 538.1 | DBSALT001227 |
Azelastine HCl | 5.10 | 3.27 | 5.10 | 8.88 | 3.81 4.04 | 418.4 | DBSALT000013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner, D.; Meyer, A.; Immohr, L.I.; Pein-Hackelbusch, M. Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics 2024, 16, 658. https://doi.org/10.3390/pharmaceutics16050658
Steiner D, Meyer A, Immohr LI, Pein-Hackelbusch M. Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics. 2024; 16(5):658. https://doi.org/10.3390/pharmaceutics16050658
Chicago/Turabian StyleSteiner, Denise, Alexander Meyer, Laura Isabell Immohr, and Miriam Pein-Hackelbusch. 2024. "Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients" Pharmaceutics 16, no. 5: 658. https://doi.org/10.3390/pharmaceutics16050658
APA StyleSteiner, D., Meyer, A., Immohr, L. I., & Pein-Hackelbusch, M. (2024). Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics, 16(5), 658. https://doi.org/10.3390/pharmaceutics16050658