Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients
Abstract
:1. Introduction
2. Research Strategy
3. Theoretical Background
3.1. About the Design Qualification of E-Tongues
3.1.1. Potentiometry-Based Electronic Tongues
Wording | Explanation | Scheme/Figure | Reference, e.g., |
---|---|---|---|
Discrete selectivity | Sensors are selective towards one specific ion species | [32,35] | |
Low selectivity | Sensors are selective towards a number of different analytes | [25,29] | |
Overlapping selectivity | [38] | ||
Cross-selectivity | Applied wording particularly for ASTREE liquid and taste analyzer (AlphaMOS, Toulouse, France), but also in the context of other e-tongues | [15,20,33] | |
Cross-sensitivity | Sensors show responses to a number of different analytes with distinguishable and reproducible sensor signals | [15,33] | |
Global selectivity | Sensors respond consistently to the same taste species Basis of Insent taste sensing systems (Insent Inc., Atsugi-Shi, Japan) | [25,29] |
3.1.2. Voltammetry-Based Electronic Tongues
3.1.3. Electrochemical Impedance-Based Electronic Tongues
3.1.4. Different, Different, but Same…?
3.2. About the Operational Qualification of E-Tongues
4. Results and Discussion with Regard to the Performance Qualification
4.1. Analytical Performance Qualification
4.2. Qualification for Taste-Masking Evaluation Performance
4.2.1. Solutions
4.2.2. Powders, Microspheres, and Granules
4.2.3. Orodispersible (Mini-)Tablets
4.2.4. Other Solid Dosage Forms
4.2.5. Indicators for Successful Taste-Masking Performance
4.3. Performance Regarding Bitterness Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Medicines Agency. ICH Topic Q 2 (R1) Validation of Analytical Procedures: Text and Methodology; European Medicines Agency: Amsterdam, The Netherlands, 1995; pp. 1–16. [Google Scholar]
- Council of the European Union, European Parliament. Regulation (EC) No. 1901/2006 on medicinal products for pediatric use and amending Regulation (EEC) No 1768/92, Directive 2001/20/EC, Directive 2001/83/EC and Regulation (EC) No 726/2004. Regulation (EC) No. 1901/2006 2006. Off. J. Eur. Union 2006, L378, 1–31. [Google Scholar]
- Stewart, K.D.; Johnston, J.A.; Matza, L.S.; Curtis, S.E.; Havel, H.A.; Sweetana, S.A.; Gelhorn, H.L. Preference for pharmaceutical formulation and treatment process attributes. Patient Prefer. Adherence 2016, 10, 1385–1399. [Google Scholar] [CrossRef]
- Clapham, D.; Bennett, J.; Cram, A.; Discihnger, A.; Inghelbrecht, S.; Pensé-Lhéritier, A.-M.; Ruiz, F.; Salunke, S.; Schiele, J.; Soto, J.; et al. Proposed tool to compare and assess the applicability of taste assessment techniques for pharmaceuticals. J. Pharm. Sci. 2022, 111, 1219–1223. [Google Scholar] [CrossRef]
- Immohr, L.I.; Dischinger, A.; Kühl, P.; Kletzl, H.; Sturm, S.; Günther, A.; Pein-Hackelbusch, M. Early pediatric formulation development with new chemical entities: Opportunities of e-tongue besides human taste assessment. Int. J. Pharm. 2017, 530, 201–212. [Google Scholar] [CrossRef]
- Mohamed-Ahmed, A.H.A.; Soto, J.; Ernest, T.; Tuleu, C. Non-human tools for the evaluation of bitter taste in the design and development of medicines: A systematic review. Drug Discov. Today 2016, 21, 1170–1180. [Google Scholar] [CrossRef]
- Kapsimali, M.; Barlow, L.A. Developing a sense of taste. Semin. Cell Dev. Biol. 2013, 24, 200–209. [Google Scholar] [CrossRef]
- Liman, E.R.; Zhang, Y.V.; Montell, C. Peripheral coding of taste. Neuron 2014, 81, 984–1000. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, J.; Zhao, Y.; Xu, F.; Hu, Y. Recent advances in bitterness evaluation methods. Anal. Methods 2012, 4, 599–608. [Google Scholar] [CrossRef]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. Taste sensing systems (electronic tongues) for pharmaceutical applications. Int. J. Pharm. 2011, 417, 256–271. [Google Scholar] [CrossRef]
- World Health Organization. Supplementary Guidelines on Good Manufacturing Practices: Validation; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2006; Annex 4; pp. 107–178. [Google Scholar]
- Toko, K. Taste Sensor with global selectivity. Mat. Sci. Eng. C 1996, 4, 69–82. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A. Cross-sensitivity evaluation of chemical sensors for electronic tongue: Determination of heavy metal ions. Sens. Actuators B Chem. 1997, 44, 532–537. [Google Scholar] [CrossRef]
- Winquist, F.; Krantz-Rülcker, C.; Wide, P.; Lundström, I. Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry. Meas. Sci. Technol. 1998, 9, 1937–1946. [Google Scholar] [CrossRef]
- Winquist, F.; Krantz-Rülcker, C.; Lundström, I. Electronic Tongues. MRS Bull. 2004, 29, 726–731. [Google Scholar] [CrossRef]
- Boniatti, J.; Tappin, M.R.R.; da S Teixeira, R.G.; de A V Gandos, T.; Rios, L.P.S.; Ferreira, I.A.M.; Oliveira, K.C.; Calil-Elias, S.; Santana, A.K.M.; Da Fonseca, L.B.; et al. In Vivo and In Vitro Taste Assessment of Artesunate-Mefloquine, Praziquantel, and Benznidazole Drugs for Neglected Tropical Diseases and Pediatric Patients. AAPS PharmSciTech 2021, 23, 22. [Google Scholar] [CrossRef]
- Riul Júnior, A.; Malmegrim, R.R.; Fonseca, F.J.; Mattoso, L.H.C. An artificial taste sensor based on conducting polymers. Biosens. Bioelectron. 2003, 18, 1365–1369. [Google Scholar] [CrossRef]
- Lucklum, R.; Hauptmann, P. The quartz crystal microbalance: Mass sensitivity, viscoelasticity and acoustic amplification. Sens. Actuators B Chem. 2000, 70, 30–36. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Llobera, A.; Vila-Planas, J.; Capdevila, F.; Demming, S.; Büttgenbach, S.; Mínguez, S.; Jiménez-Jorquera, C. Hybrid electronic tongue based on optical and electrochemical microsensors for quality control of wine. Analyst 2010, 135, 1718–1725. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A.; Di Natale, C.; D’Amico, A. Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids: (IUPAC technical report). Pure Appl. Chem. 2005, 77, 1965–1983. [Google Scholar] [CrossRef]
- Mostafa, G.A.-H. Potentiometric PVC Membrane Sensors and Their Analytical Applications in Pharmaceuticals and Environmental Samples at Micro- and Nano-Level. In Nanomedicine for Drug Delivery and Therapeutics; Mishra, A.K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 87–133. [Google Scholar]
- Krantz-Rülcker, C.; Stenberg, M.; Winquist, F.; Lundström, I. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: A review. Anal. Chim. Acta 2001, 426, 217–226. [Google Scholar] [CrossRef]
- Smith, W.H. Electroanalytical Chemistry: Basic Principles and Applications (Plambeck, James A.). J. Chem. Educ. 1984, 61, A185. [Google Scholar] [CrossRef]
- Umezawa, Y.; Bühlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report). Pure Appl. Chem. 2000, 72, 1851–2082. [Google Scholar] [CrossRef]
- Toko, K. A taste sensor. Meas. Sci. Technol. 1998, 9, 1919–1936. [Google Scholar] [CrossRef]
- Toko, K. Taste sensor. Sens. Actuators B Chem. 2000, 64, 205–215. [Google Scholar] [CrossRef]
- Toko, K. (Ed.) Biochemical Sensors: Mimicking Gustatory and Olfactory Senses; Pan Stanford Publishing: Singapore, 2016; ISBN 9789814267076. [Google Scholar]
- Hayashi, K.; Yamanaka, M.; Toko, K.; Yamafuji, K. Multichannel taste sensor using lipid membranes. Sens. Actuators B Chem. 1990, 2, 205–213. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Habara, M.; Ikezazki, H.; Chen, R.; Naito, Y.; Toko, K. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors 2010, 10, 3411–3443. [Google Scholar] [CrossRef]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. Performance qualification of an electronic tongue based on ICH guideline Q2. J. Pharm. Biomed. Anal. 2010, 51, 497–506. [Google Scholar] [CrossRef]
- Chapman, D.L.L. A contribution to the theory of electrocapillarity. Philos. Mag. 1913, 25, 475–481. [Google Scholar] [CrossRef]
- Di Natale, C.; Davide, F.; Brunink, J.A.J.; D’Amico, A.; Vlasov, Y.G.; Legin, A.V.; Rudnitskaya, A.M. Multicomponent analysis of heavy metal cations and inorganic anions in liquids by a non-selective chalcogenide glass sensor array. Sens. Actuators B Chem. 1996, 34, 539–542. [Google Scholar] [CrossRef]
- Vlasov, Y.; Legin, A.; Rudnitskaya, A. Electronic tongues and their analytical application. Anal. Bioanal. Chem. 2002, 373, 136–146. [Google Scholar] [CrossRef]
- Moody, G.J.; Oke, R.B.; Thomas, J.D.R. A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix. Analyst 1970, 95, 910. [Google Scholar] [CrossRef]
- Mostafa, G.A.E.-H. Potentiometric PVC Membrane Sensor for the Determination of Scopolamine in Some Pharmaceutical Formulations. Anal. Sci. 2002, 18, 1335–1338. [Google Scholar] [CrossRef]
- Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. 1970, 17, 70–71. [Google Scholar] [CrossRef]
- Moss, S.D.; Janata, J.; Johnson, C.C. Potassium Ion-Sensitive Field Effect Transistor. Anal. Chem. 1975, 47, 2238–2243. [Google Scholar] [CrossRef]
- Riul, A.; Dantas, C.A.R.; Miyazaki, C.M.; Oliveira, O.N. Recent advances in electronic tongues. Analyst 2010, 135, 2481–2495. [Google Scholar] [CrossRef]
- Pein, M.; Eckert, C.; Preis, M.; Breitkreutz, J. New protocol for \alphaAstree electronic tongue enabling full performance qualification according to ICH Q2. J. Pharm. Biomed. Anal. 2013, 83, 157–163. [Google Scholar] [CrossRef]
- Woertz, K.; Tissen, C.; Kleinebudde, P.; Breitkreutz, J. A comparative study on two electronic tongues for pharmaceutical formulation development. J. Pharm. Biomed. Anal. 2011, 55, 272–281. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Keeney, M.P. Taste masking analysis in pharmaceutical formulation development using an electronic tongue. Int. J. Pharm. 2006, 310, 118–124. [Google Scholar] [CrossRef]
- Lorenz, J.K.; Reo, J.P.; Hendl, O.; Worthington, J.H.; Petrossian, V.D. Evaluation of a taste sensor instrument (electronic tongue) for use in formulation development. Int. J. Pharm. 2009, 367, 65–72. [Google Scholar] [CrossRef]
- del Valle, M. Electronic tongues employing electrochemical sensors. Electroanalysis 2010, 22, 1539–1555. [Google Scholar] [CrossRef]
- Winquist, F.; Wide, P.; Lundström, I. An electronic tongue based on voltammetry. Anal. Chim. Acta 1997, 357, 21–31. [Google Scholar] [CrossRef]
- Scholz, F. Voltammetric techniques of analysis: The essentials. ChemTexts 2015, 1, 17. [Google Scholar] [CrossRef]
- Cetó, X.; Pérez, S.; Prieto-Simón, B. Fundamentals and application of voltammetric electronic tongues in quantitative analysis. TrAC Trends Anal. Chem. 2022, 157, 116765. [Google Scholar] [CrossRef]
- Wang, M.; Cetó, X.; del Valle, M. A novel electronic tongue using electropolymerized molecularly imprinted polymers for the simultaneous determination of active pharmaceutical ingredients. Biosens. Bioelectron. 2022, 198, 113807. [Google Scholar] [CrossRef]
- Park, S.-M.; Yoo, J.-S. Peer reviewed: Electrochemical impedance spectroscopy for better electrochemical measurements. Anal. Chem 2003, 75, 455A–461A. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical impedance spectroscopy—A tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef]
- Pioggia, G.; Di Francesco, F.; Marchetti, A.; Ferro, M.; Leardi, R.; Ahluwalia, A. A composite sensor array impedentiometric electronic tongue Part II. Discrimination of basic tastes. Biosens. Bioelectron. 2007, 22, 2624–2628. [Google Scholar] [CrossRef]
- Pein, M.; Kirsanov, D.; Ciosek, P.; del Valle, M.; Yaroshenko, I.; Wesoły, M.; Zabadaj, M.; Gonzalez-Calabuig, A.; Wróblewski, W.; Legin, A. Independent comparison study of six different electronic tongues applied for pharmaceutical analysis. J. Pharm. Biomed. Anal. 2015, 114, 321–329. [Google Scholar] [CrossRef]
- Pein, M.; Gondongwe, X.D.; Habara, M.; Winzenburg, G. Interlaboratory testing of Insent e-tongues. Int. J. Pharm. 2014, 469, 228–237. [Google Scholar] [CrossRef]
- Legin, A.; Rudnitskaya, A.; Clapham, D.; Seleznev, B.; Lord, K.; Vlasov, Y. Electronic tongue for pharmaceutical analytics: Quantification of tastes and masking effects. Anal. Bioanal. Chem. 2004, 380, 36–45. [Google Scholar] [CrossRef]
- Guhmann, M.; Preis, M.; Gerber, F.; Pöllinger, N.; Breitkreutz, J.; Weitschies, W. Design, development and in-vitro evaluation of diclofenac taste-masked orodispersible tablet formulations. Drug Dev. Ind. Pharm. 2015, 41, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Dun, J.; Zhao, F.; Qi, X. In-vitro and in-vivo evaluation of taste-masked ibuprofen formulated in oral dry emulsions. Drug Dev. Ind. Pharm. 2021, 47, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Yi, E.J.; Kim, J.Y.; Rhee, Y.S.; Kim, S.H.; Lee, H.J.; Park, C.W.; Park, E.S. Preparation of sildenafil citrate microcapsules and in vitro/in vivo evaluation of taste masking efficiency. Int. J. Pharm. 2014, 466, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Du Choi, H.; Kim, N.A.; Nam, T.S.; Lee, S.; Jeong, S.H. Evaluation of taste-masking effects of pharmaceutical sweeteners with an electronic tongue system. Drug Dev. Ind. Pharm. 2014, 40, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Insent. Webpage: Machine Specification (TS-5000Z). 2024. Available online: https://www.insentjp.com/ (accessed on 8 May 2024).
- AlphaMOS. ASTREE Application Note. 2024. Available online: https://www.thei.edu.hk/f/page/4007/16308/ASTREE%20Application%20Note.pdf (accessed on 8 May 2024).
- Khaydukova, M.; Kirsanov, D.; Pein-Hackelbusch, M.; Immohr, L.I.; Gilemkhanova, V.; Legin, A. Critical view on drug dissolution in artificial saliva: A possible use of in-line e-tongue measurements. Eur. J. Pharm. Sci. 2017, 99, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Wesoły, M.; Kluk, A.; Sznitowska, M.; Ciosek, P.; Wróblewski, W. Influence of experimental conditions on electronic tongue results-Case of Valsartan minitablets dissolution. Sensors 2016, 16, 1353. [Google Scholar] [CrossRef] [PubMed]
- Oman, S.F.; Camões, M.F.; Powell, K.J.; Rajagopalan, R.; Spitzer, P. Guidelines for potentiometric measurements in suspensions part A. The suspension effect: IUPAC technical report. Pure Appl. Chem. 2007, 79, 67–79. [Google Scholar] [CrossRef]
- Immohr, L.I.; Turner, R.; Pein-Hackelbusch, M. Impact of sodium lauryl sulfate in oral liquids on e-tongue measurements. Int. J. Pharm. 2016, 515, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, Z.; Szöllosi, D.; Zaukuu, J.L.Z.; Bodor, Z.; Vitális, F.; Aouadi, B.; Zsom-Muha, V.; Gillay, Z. Factors influencing the long-term stability of electronic tongue and application of improved drift correction methods. Biosensors 2020, 10, 74. [Google Scholar] [CrossRef]
- Maksymiuk, K.; Stelmach, E.; Michalska, A. Unintended changes of ion-selective membranes composition—Origin and effect on analytical performance. Membranes 2020, 10, 266. [Google Scholar] [CrossRef]
- Mettler; Toledo. A Guide to Ion Selective Measurement. 2024. Available online: https://www.mt.com/au/en/home/library/guides/lab-analytical-instruments/Ion-selective-electrode-guide.html (accessed on 8 May 2024).
- Kojima, H.; Kurihara, T.; Yoshida, M.; Haraguchi, T.; Nishikawa, H.; Ikegami, S.; Okuno, T.; Yamashita, T.; Nishikawa, J.; Tsujino, H.; et al. A New bitterness evaluation index obtained using the taste sensor for 48 active pharmaceutical ingredients of pediatric medicines. Chem. Pharm. Bull. 2021, 69, 537–547. [Google Scholar] [CrossRef] [PubMed]
- European Directorate for the Quality of Medicines. European Pharmacopoeia—Edition 10; EDQM, Ed.; EDQM: Strasbourg, France, 2023. [Google Scholar]
- Li, S.; Zhang, Y.; Khan, A.R.; He, S.; Wang, Y.; Xu, J.; Zhai, G. Quantitative prediction of the bitterness of atomoxetine hydrochloride and taste-masked using hydroxypropyl-\beta-cyclodextrin: A biosensor evaluation and interaction study. Asian J. Pharm. Sci. 2020, 15, 492–505. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wu, F.; Singh, V.; Guo, T.; Ren, X.; Yin, X.; Shao, Q.; York, P.; Patterson, L.H.; Zhang, J. Host-guest kinetic interactions between HP-\beta-cyclodextrin and drugs for prediction of bitter taste masking. J. Pharm. Biom. Anal. 2017, 140, 232–238. [Google Scholar] [CrossRef]
- Cirri, M.; Mura, P.; Benedetti, S.; Buratti, S. Development of a hydroxypropyl-β-cyclodextrin-based liquid formulation for the oral administration of propranolol in pediatric therapy. Pharmaceutics 2023, 15, 2217. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.-L.; Tang, W.-H.; Chen, W.C.; Diako, C.; Ross, C.F.; Li, S.-D. Development of a rapidly dissolvable oral pediatric formulation for mefloquine using liposomes. Mol. Pharmaceutics 2017, 14, 1969–1979. [Google Scholar] [CrossRef]
- Ogbonna, J.D.N.; Cunha, E.; Attama, A.A.; Ofokansi, K.C.; Ferreira, H.; Pinto, S.; Gomes, J.; Marx, Í.M.G.; Peres, A.M.; Lobo, J.M.S.; et al. Overcoming challenges in pediatric formulation with a patient-centric design approach: A proof-of-concept study on the design of an oral solution of a bitter drug. Pharmaceuticals 2022, 15, 1331. [Google Scholar] [CrossRef]
- Li, H.; Fan, X.; Wu, X.; Yue, Y.; Li, C.; Gui, X.; Wang, Y.; Yao, J.; Wang, J.; Zhang, L.; et al. Study on the taste-masking effect and mechanism of Acesulfame K on berberine hydrochloride. Drug Dev. Ind. Pharm. 2023, 49, 92–102. [Google Scholar] [CrossRef]
- Immohr, L.I.; Hedfeld, C.; Lang, A.; Pein-Hackelbusch, M. Suitability of e-tongue sensors to assess taste-masking of pediatric liquids by different beverages considering their physico-chemical properties. AAPS PharmSciTech. 2017, 18, 330–340. [Google Scholar] [CrossRef]
- Toko, K. Research and development of taste sensors as a novel analytical tool. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2023, 99, 173–189. [Google Scholar] [CrossRef]
- Dubois, G.E. Saccharin and Cyclamate. In Sweeteners and Sugar Alternatives in Food Technology; O’Donnell, K., Kearsley, M.W., Eds.; Wiley: New York, NY, USA, 2012; pp. 137–166. ISBN 9780470659687. [Google Scholar]
- Sarkar, A.; Xu, F.; Lee, S. Human saliva and model saliva at bulk to adsorbed phases—Similarities and differences. Adv. Colloid Interface Sci. 2019, 273, 102034. [Google Scholar] [CrossRef]
- Amelian, A.; Szekalska, M.; Ciosek, P.; Basa, A.; Winnicka, K. Characterization and taste masking evaluation of microparticles with cetirizine dihydrochloride and methacrylate-based copolymer obtained by spray drying. Acta Pharm. 2017, 67, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Wesoły, M.; Zabadaj, M.; Amelian, A.; Winnicka, K.; Wróblewski, W.; Ciosek, P. Tasting cetirizine-based microspheres with an electronic tongue. Sens. Actuators B Chem. 2017, 238, 1190–1198. [Google Scholar] [CrossRef]
- Fukada, M.; Kadota, K.; Nogami, S.; Uchiyama, H.; Shirakawa, Y.; Tozuka, Y. Development of bitter-taste masked instant jelly formulations of diphenhydramine hydrochloride with Easy-to-Consume granules. Chem. Pharm. Bull. 2023, 71, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Wasilewska, K.; Szekalska, M.; Ciosek-Skibinska, P.; Lenik, J.; Basa, A.; Jacyna, J.; Markuszewski, M.; Winnicka, K. Ethylcellulose in organic solution or aqueous dispersion form in designing taste-masked microparticles by the spray drying technique with a model bitter drug: Rupatadine fumarate. Polymers 2019, 11, 522. [Google Scholar] [CrossRef] [PubMed]
- Panraksa, P.; Boonsermsukcharoen, K.; Hwang, K.-M.; Park, E.-S.; Jantrawut, P. Taste Masking of Nizatidine Using Ion-Exchange Resins. Processes 2019, 7, 779. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Wu, C.; Pan, X.; Peng, T. Dry suspension containing coated pellets with pH-dependent drug release behavior for the taste-masking of Azithromycin. AAPS PharmSciTech 2023, 24, 21. [Google Scholar] [CrossRef] [PubMed]
- Cal, K.; Mikolaszek, B.; Hess, T.; Papaioannou, M.; Lenik, J.; Ciosek-Skibińska, P.; Wall, H.; Paszkowska, J.; Romanova, S.; Garbacz, G.; et al. The use of Calcium Phosphate-based starter pellets for the preparation of Sprinkle IR MUPS formulation of Rosuvastatin Calcium. Pharmaceuticals 2023, 16, 242. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Xiao, C.; Chang, X.; Sun, Y.; Fan, W.; Tian, B.; Gao, D.; Xiao, Y.; Wu, X.; et al. Mesoporous silica carrier-based composites for taste-masking of bitter drug: Fabrication and palatability evaluation. AAPS PharmSciTech 2022, 23, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Wasilewska, K.; Ciosek-Skibińska, P.; Lenik, J.; Srčič, S.; Basa, A.; Winnicka, K. Utilization of ethylcellulose microparticles with rupatadine fumarate in designing orodispersible minitablets with taste masking effect. Materials 2020, 13, 2715. [Google Scholar] [CrossRef]
- Nakamura, H.; Uchida, S.; Sugiura, T.; Namiki, N. The prediction of the palatability of orally disintegrating tablets by an electronic gustatory system. Int. J. Pharm. 2015, 493, 305–312. [Google Scholar] [CrossRef]
- Amelian, A.; Wasilewska, K.; Wesoły, M.; Ciosek-Skibińska, P.; Winnicka, K. Taste-masking assessment of orally disintegrating tablets and lyophilisates with cetirizine dihydrochloride microparticles. Saudi Pharm. J. 2017, 25, 1144–1150. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Hong, X.; Han, X.; Liu, B.; Li, X.; Zhang, H.; Gao, J.; Liu, N.; Gao, X.; et al. Taste masking study based on an Electronic Tongue: The formulation design of 3D printed Levetiracetam instant-dissolving tablets. Pharm. Res. 2021, 38, 831–842. [Google Scholar] [CrossRef]
- Hu, J.; Fitaihi, R.; Abukhamees, S.; Abdelhakim, H.E. Formulation and characterization of Carbamazepine orodispersible 3D-printed mini-tablets for pediatric use. Pharmaceutics 2023, 15, 250. [Google Scholar] [CrossRef]
- Preis, M.; Grother, L.; Axe, P.; Breitkreutz, J. In-vitro and in-vivo evaluation of taste-masked cetirizine hydrochloride formulated in oral lyophilisates. Int. J. Pharm. 2015, 491, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Cho, S.M.; Cui, J.H.; Cao, Q.R.; Oh, E.; Lee, B.J. In vitro and in vivo correlation of disintegration and bitter taste masking using orally disintegrating tablet containing ion exchange resin-drug complex. Int. J. Pharm. 2013, 455, 31–39. [Google Scholar] [CrossRef]
- Pein, M.; Preis, M.; Eckert, C.; Kiene, F.E. Taste-masking assessment of solid oral dosage forms-a critical review. Int. J. Pharm. 2014, 465, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Alshetaili, A.S.; Almutairy, B.K.; Tiwari, R.V.; Morott, J.T.; Alshehri, S.M.; Feng, X.; Alsulays, B.B.; Park, J.-B.; Zhang, F.; Repka, M.A. Preparation and evaluation of hot-melt extruded patient-centric Ketoprofen mini-tablets. Curr. Drug Deliv. 2016, 13, 730–741. [Google Scholar] [CrossRef] [PubMed]
- Keating, A.V.; Soto, J.; Tuleu, C.; Forbes, C.; Zhao, M.; Craig, D.Q.M. Solid state characterization and taste masking efficiency evaluation of polymer based extrudates of isoniazid for pediatric administration. Int. J. Pharm. 2018, 536, 536–546. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Douroumis, D. An in-vitro-in-vivo taste assessment of bitter drug: Comparative electronic tongues study. J. Pharm. Pharmacol. 2014, 67, 43–55. [Google Scholar] [CrossRef]
- Ekweremadu, C.S.; Abdelhakim, H.E.; Craig, D.Q.M.; Barker, S.A. Development and evaluation of feline tailored amlodipine besylate mini-tablets using L-lysine as a candidate flavouring agent. Pharmaceutics 2020, 12, 917. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, D.; He, J.; Han, X.; Lin, J.; Lan, Y.; Xiong, X.; Yu, L.; Yang, M.; Han, L. A novel method to mask the bitter taste of berberine hydrochloride: Powder surface modification. Pharmacogn. Mag. 2018, 14, 253. [Google Scholar] [PubMed]
- Alopaeus, J.F.; Göbel, A.; Breitkreutz, J.; Sande, S.A.; Tho, I. Investigation of hydroxypropyl-\beta-cyclodextrin inclusion complexation of two poorly soluble model drugs and their taste-sensation—Effect of electrolytes, freeze-drying and incorporation into oral film formulations. J. Drug Deliv. Sci. Technol. 2021, 61, 102245. [Google Scholar] [CrossRef]
- Preis, M.; Pein, M.; Breitkreutz, J. Development of a taste-masked orodispersible film containing dimenhydrinate. Pharmaceutics 2012, 4, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Abdelhakim, H.E.; Coupe, A.; Tuleu, C.; Edirisinghe, M.; Craig, D.Q.M.; Abdelhakim, H.E.; Coupe, A.; Tuleu, C.; Edirisinghe, M.; Craig, D.Q.M. Utilising co-axial electrospinning as a taste-masking technology for paediatric drug delivery. Pharmaceutics 2021, 13, 1665. [Google Scholar] [CrossRef] [PubMed]
- Kazsoki, A.; Palcsó, B.; Omer, S.M.; Kovacs, Z.; Zelkó, R. Formulation of Levocetirizine-loaded core-shell type nanofibrous orally dissolving webs as a potential alternative for immediate release dosage forms. Pharmaceutics 2022, 14, 1442. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.R.P.; Bhutada, K.; Kaushal, P. Taste evaluation by electronic tongue and bioavailability enhancement of Efavirenz. AAPS PharmSciTech 2019, 20, 56. [Google Scholar] [CrossRef]
- Keating, A.V.; Soto, J.; Forbes, C.; Zhao, M.; Craig, D.Q.M.; Tuleu, C. Multi-methodological quantitative taste assessment of anti-tuberculosis drugs to support the development of palatable paediatric dosage forms. Pharmaceutics 2020, 12, 369. [Google Scholar] [CrossRef]
- European Medicines Agency. CHMP Assessment Report—HEMANGIOL; EMEA/H/C/002621/0000; European Medicines Agency: London, UK, 2014; pp. 0–88. [Google Scholar]
- Banik, D.G.; Medler, K.F. Bitter, sweet, and umami signaling in taste cells: It’s not as simple as we thought. Physiol. Behav. 2021, 20, 159–164. [Google Scholar]
- Meyerhof, W.; Batram, C.; Kuhn, C.; Brockhoff, A.; Chudoba, E.; Bufe, B.; Appendino, G.; Behrens, M. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 2010, 35, 157–170. [Google Scholar] [CrossRef]
- Glendinning, J.I. Is the bitter rejection response always adaptive? Physiol. Behav. 1994, 56, 1217–1227. [Google Scholar] [CrossRef]
- Belitz, H.D.; Wieser, H. Bitter compounds: Occurrence and structure-activity relationships. Food Rev. Int. 1985, 1, 271–354. [Google Scholar] [CrossRef]
- Gardner, R.J. Lipophilicity and the perception of bitterness. Chem. Senses 1979, 4, 275–286. [Google Scholar] [CrossRef]
- Pfeilsticker, K.; Ruffler, I.; Engel, C.; Rehage, C. Relation between bitter taste and positive surface tension of pure substances in aqueous solutions. Lebensm. Wiss. Technol. 1978, 11, 323–329. [Google Scholar]
- Agresti, C.; Tu, Z.; Ng, C.; Yang, Y.; Liang, J.F. Specific interactions between diphenhydramine and \alpha-helical poly(glutamic acid)—A new ion-pairing complex for taste masking and pH-controlled diphenhydramine release. Eur. J. Pharm. Biopharm. 2008, 70, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Sadrieh, N.; Brower, J.; Yu, L.; Doub, W.; Straughn, A.; MacHado, S.; Pelsor, F.; Saint Martin, E.; Moore, T.; Reepmeyer, J.; et al. Stability, dose uniformity, and palatability of three counterterrorism drugs—Human subject and electronic tongue studies. Pharm. Res. 2005, 22, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Fritz, F.; Preissner, R.; Banerjee, P. VirtualTaste: A web server for the prediction of organoleptic properties of chemical compounds. Nucleic Acids Res. 2021, 49, W679–W684. [Google Scholar] [CrossRef] [PubMed]
- Malavolta, M.; Pallante, L.; Mavkov, B.; Stojceski, F.; Grasso, G.; Korfiati, A.; Mavroudi, S.; Kalogeras, A.; Alexakos, C.; Martos, V.; et al. A survey on computational taste predictors. Eur. Food Res. Technol. 2022, 248, 2215–2235. [Google Scholar] [CrossRef] [PubMed]
- Boughter, J.D.; Whitney, G. Human taste thresholds for sucrose octaacetate. Chem. Senses 1993, 18, 445–448. [Google Scholar] [CrossRef]
- Deng, M.; Hida, N.; Yamazaki, T.; Morishima, R.; Kato, Y.; Fujita, Y.; Nakamura, A.; Harada, T. Comparison of bitterness intensity between Prednisolone and Quinine in a human sensory test indicated individual differences in bitter-taste perception. Pharmaceutics 2022, 14, 2454. [Google Scholar] [CrossRef]
- Soto, J.; Keeley, A.; Keating, A.V.; Mohamed-Ahmed, A.H.A.; Sheng, Y.; Winzenburg, G.; Turner, R.; Desset-Brèthes, S.; Orlu, M.; Tuleu, C. Rats can predict aversiveness of active pharmaceutical ingredients. Eur. J. Pharm. Biopharm. 2018, 133, 77–84. [Google Scholar] [CrossRef]
- Keast, R.S.J.; Roper, J. A complex relationship among chemical concentration, detection threshold, and suprathreshold intensity of bitter compounds. Chem. Senses 2007, 32, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, S.S.; Gatlin, L.A.; Sattely-Miller, E.A.; Graham, B.G.; Heiman, S.A.; Stagner, W.C.; Erickson, R.P. The effect of sweeteners on bitter taste in young and elderly subjects. Brain Res. Bull. 1994, 35, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Pfaffmann, C.; Bartoshuk, L.M.; McBurney, D.H. 5: Taste Psychophysics. In Taste; Springer: Berlin/Heidelberg, Germany, 1971; pp. 75–101. [Google Scholar]
- Sharma, D.; Chopra, R.; Bedi, N. Development and evaluation of paracetamol taste masked orally disintegrating tablets using polymer coating technique. Int. J. Pharm. Pharm. Sci. 2012, 4, 129–134. [Google Scholar]
- Harris, H.; Kalmus, H. The measurement of taste sensitivity to phenylthiourea (P.T.C.). Ann. Eugen. 1949, 15, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Onishi, H.; Takahashi, Y.; Iwata, M.; Machida, Y. Development of oral acetaminophen chewable tablets with inhibited bitter taste. Int. J. Pharm. 2003, 251, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, T.; Okuno, T.; Nishikawa, H.; Kojima, H.; Ikegami, S.; Yoshida, M.; Habara, M.; Ikezaki, H.; Uchida, T. The relationship between bitter taste sensor response and physicochemical properties of 47 pediatric medicines and their Biopharmaceutics Classification. Chem. Pharm. Bull. 2019, 67, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, T.; Uchida, T.; Yoshida, M.; Kojima, H.; Habara, M.; Ikezaki, H. The utility of the artificial taste sensor in evaluating the bitterness of drugs: Correlation with responses of human TASTE2 receptors (hTAS2Rs). Chem. Pharm. Bull. 2018, 66, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Yoshida, M.; Kobayashi, Y.; Hiraoka, M.; Ikezaki, H.; Uchida, T. Bitterness evaluation of H1-Receptor antagonists using a taste sensor. Sens. Mater. 2011, 23, 483–492. [Google Scholar]
- Ito, M.; Wada, K.; Yoshida, M.; Hazekawa, M.; Abe, K.; Chen, R.; Habara, M.; Ikezaki, H.; Uchida, T. Quantitative evaluation of bitterness of H1-receptor antagonists and masking effect of acesulfame potassium, an artificial sweetener, using a taste sensor. Sens. Mater. 2013, 25, 17–30. [Google Scholar]
- Ito, M.; Ikehama, K.; Yoshida, K.; Haraguchi, T.; Yoshida, M.; Wada, K.; Uchida, T. Bitterness prediction of H1-antihistamines and prediction of masking effects of artificial sweeteners using an electronic tongue. Int. J. Pharm. 2013, 441, 121–127. [Google Scholar] [CrossRef]
- Haraguchi, T.; Yoshida, M.; Uchida, T. Evaluation of ebastine-loaded orally disintegrating tablets using new apparatus of detecting disintegration time and e-tongue system. J. Drug Deliv. Sci. Technol. 2014, 24, 684–688. [Google Scholar] [CrossRef]
- Preis, M.; Eckert, C.; Häusler, O.; Breitkreutz, J. A comparative study on solubilizing and taste-masking capacities of hydroxypropyl-\beta-cyclodextrin and maltodextrins with high amylose content. Sens. Actuators B Chem. 2014, 193, 442–450. [Google Scholar] [CrossRef]
- Chay, S.K.; Keating, A.V.; James, C.; Aliev, A.E.; Haider, S.; Craig, D.Q. Evaluation of the taste-masking effects of (2-hydroxypropyl)-\beta-cyclodextrin on ranitidine hydrochloride; A combined biosensor, spectroscopic and molecular modelling assessment. RSC Adv. 2018, 8, 3564–3573. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Jiang, H.; Han, L.; Xiong, X.; He, Y.; Fu, C.; Xu, R.; Zhang, D.; Lin, J.; Yang, M. A novel quantified bitterness evaluation model for traditional Chinese herbs based on an animal ethology principle. Acta Pharm. Sin. B 2018, 8, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Machado, J.C.; Shimizu, F.M.; Ortiz, M.; Pinhatti, M.S.; Carr, O.; Guterres, S.S.; Oliveira, O.N.; Volpato, N.M. Efficient praziquantel encapsulation into polymer microcapsules and taste masking evaluation using an electronic tongue. Bull. Chem. Soc. Jpn. 2018, 91, 865–874. [Google Scholar] [CrossRef]
- Tan, D.C.T.; Ong, J.J.; Gokhale, R.; Heng, P.W.S. Hot melt extrusion of ion-exchange resin for taste masking. Int. J. Pharm. 2018, 547, 385–394. [Google Scholar] [CrossRef]
- Abdelhakim, H.E.; Coupe, A.; Tuleu, C.; Edirisinghe, M.; Craig, D.Q. Electrospinning optimization of Eudragit e PO with and without chlorpheniramine maleate using a Design of Experiment approach. Mol. Pharm. 2019, 16, 2557–2568. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Wu, Z.; He, J.; Lan, Y.; Wang, X.; Han, X.; Jiang, H.; Lin, J.; Xu, R.; Zhang, D.; et al. A novel bitter masking approach: Powder coating technology-take Sanhuang tablets as an example. J. Drug Deliv. Sci. Technol. 2019, 52, 46–54. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, H.; Huang, Z.; Zhu, J.; Wan, F.; Peng, T.; Pan, X.; Huang, Y.; Wu, C. Taste-masking and colloidal-stable cubosomes loaded with Cefpodoxime proxetil for pediatric oral delivery. Int. J. Pharm. 2020, 575, 118875. [Google Scholar] [CrossRef]
- Lopalco, A.; Denora, N.; Laquintana, V.; Cutrignelli, A.; Franco, M.; Robota, M.; Hauschildt, N.; Mondelli, F.; Arduino, I.; Lopedota, A. Taste masking of propranolol hydrochloride by microbeads of EUDRAGIT\textregistered E PO obtained with prilling technique for paediatric oral administration. Int. J. Pharm. 2020, 574, 118922. [Google Scholar] [CrossRef]
- Aramini, A.; Bianchini, G.; Lillini, S.; Bordignon, S.; Tomassetti, M.; Novelli, R.; Mattioli, S.; Lvova, L.; Paolesse, R.; Chierotti, M.R.; et al. Unexpected salt/cocrystal polymorphism of the ketoprofen–lysine system: Discovery of a new ketoprofen–l-lysine salt polymorph with different physicochemical and pharmacokinetic properties. Pharmaceuticals 2021, 14, 555. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Li, S.; Tan, C.P.; Kraithong, S.; Gao, Q.; Fu, X.; Zhang, B.; Huang, Q. Encapsulation of caffeine into starch matrices: Bitterness evaluation and suppression mechanism. Int. J. Biol. Macromol. 2021, 173, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Jiang, D.; Chen, C.; Wu, J.; Qin, C.; Yuan, Q.; Xue, Y.; Xiong, Y.; Zhuang, L.; Hu, N.; et al. Hybrid Integrated Cardiomyocyte Biosensors for Bitter Detection and Cardiotoxicity Assessment. ACS Sensors 2021, 6, 2593–2604. [Google Scholar] [CrossRef] [PubMed]
- Olechno, K.; Maciejewski, B.; Glowacz, K.; Lenik, J.; Ciosek-Skibinska, P.; Basa, A.; Winnicka, K. Orodispersible films with rupatadine fumarate enclosed in ethylcellulose microparticles as drug delivery platform with taste-masking effect. Materials 2022, 15, 2126. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Sun, Q.; Chen, W.; Han, Y.; Gao, Y.; Ye, J.; Wang, H.; Gao, L.; Liu, Y.; Yang, Y. The Taste-Masking Mechanism of Chitosan at the Molecular Level on Bitter Drugs of Alkaloids and Flavonoid Glycosides from Traditional Chinese Medicine. Molecules 2022, 27, 7455. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Wang, Y.; Zhao, W.; Li, J.; Shuian, D.; Liu, J. Identification of Oncorhynchus mykiss nebulin-derived peptides as bitter taste receptor TAS2R14 blockers by in silico screening and molecular docking. Food Chem. 2022, 368, 130839. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Yuan, M.; Li, S.; Zhou, Q.; Li, M.; Zeng, D.; Guo, Y.; Guo, L. Performance evaluation of E-nose and E-tongue combined with machine learning for qualitative and quantitative assessment of bear bile powder. Anal. Bioanal. Chem. 2023, 415, 3503–3513. [Google Scholar] [CrossRef]
- Uno, R.; Ohkawa, K.; Kojima, H.; Haraguchi, T.; Ozeki, M.; Kawasaki, I.; Yoshida, M.; Habara, M.; Ikezaki, H.; Uchida, T. Masking the Taste of Fixed-Dose Combination Drugs: Particular NSAIDs Can Efficiently Mask the Bitterness of Famotidine. Chem. Pharm. Bull. 2023, 71, 148–153. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, J.; Shi, L.; Liu, Q.; Zhang, F.; Wu, H. Development of child-friendly lisdexamfetamine chewable tablets using ion exchange resin as a taste-masking carrier based on the concept of Quality by Design (QbD). AAPS PharmSciTech 2023, 24, 132. [Google Scholar] [CrossRef]
Drugs | Human Thresholds [mM] * | Reference |
---|---|---|
caffeine | 1.2 (detection threshold, ø age of panellists 23 y) | [121] |
2 (detection threshold, ø age of panellists 26 y) 2.9 (recognition threshold, ø age of panellists 26 y) | [122] | |
0.7 | [123] | |
diphenhydramine | 1 | [114] |
efavirenz | 0.039 | [105] |
paracetamol | 2 | [124] |
phenylthiourea | 0.049 (taste threshold of panellists aged 10–29 y) | [125] |
0.02(tasters) 8 (non-tasters) | [123] | |
quinine HCl | 0.0083 (detection threshold, ø age of panellists 23 y) | [121] |
0.0048 (detection threshold, ø age of panellists 26 y) 0.0087 (recognition threshold, ø age of panellists 26 y) | [122] | |
0.03 | [123] | |
quinine sulphate | 0.008 | [123] |
0.012 | [126] | |
sucrose octaacetate | 0.0036/0.0098 (detection threshold, ø age of panellists 26/88 y) 0.0068/0.05 (recognition threshold, ø age of panellists 26/88 y) | [122] |
0.004 | [118] |
Drug | Bitterness Score by Sensory Testing | Euclidean Distance to Water | pH (0.1 M) | pKa (Strongest Basic) | logP * | MR [g/mol] | Drugbank Accession Number (https://go.drugbank.com/ assessed on 8 May 2024) |
---|---|---|---|---|---|---|---|
Quinine HCl dihydrate | 2.00 | 376.70 | 5.43 | 9.05 | 2.82 2.51 | 396.9 | DBSALT001044 |
Cetirizine HCl | 0.36 | 1258.78 | 3.76 | 7.74 | 2.98 0.86 | 461.8 | DBSALT001214 |
Diphenhydramine HCl | 0.45 | 495.33 | 5.20 | 8.87 | 3.44 3.65 | 291.8 | DBSALT000056 |
Chlorpheniramine maleate | 1.00 | 412.92 | 5.30 | 9.47 | 3.74 3.58 | 390.9 | DBSALT000987 |
Epinastine HCl | 1.82 | 300.63 | 5.32 | 9.31 | 2.34 3.13 | 285.8 | DBSALT000961 |
Ketotifen fumarate | 4.38 | 681.45 | 4.38 | 7.15 | 3.49 3.35 | 425.5 | DBSALT001856 |
Olopatadine HCl | 4.23 | 943.42 | 4.23 | 9.76 | 3.99 0.75 | 373.9 | DBSALT000685 |
Fexofenadine HCl | 1.18 | 945.68 | 4.30 | 9.01 | 5.02 2.94 | 538.1 | DBSALT001227 |
Azelastine HCl | 5.10 | 3.27 | 5.10 | 8.88 | 3.81 4.04 | 418.4 | DBSALT000013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner, D.; Meyer, A.; Immohr, L.I.; Pein-Hackelbusch, M. Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics 2024, 16, 658. https://doi.org/10.3390/pharmaceutics16050658
Steiner D, Meyer A, Immohr LI, Pein-Hackelbusch M. Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics. 2024; 16(5):658. https://doi.org/10.3390/pharmaceutics16050658
Chicago/Turabian StyleSteiner, Denise, Alexander Meyer, Laura Isabell Immohr, and Miriam Pein-Hackelbusch. 2024. "Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients" Pharmaceutics 16, no. 5: 658. https://doi.org/10.3390/pharmaceutics16050658