A Novel 2-Methoxyestradiol Derivative: Disrupting Mitosis Inhibiting Cell Motility and Inducing Apoptosis in HeLa Cells In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Structure
2.2. Cell Lines
2.3. Hoechst 33258–Propidium Iodide Fluorescent Double Staining
2.4. Cell Cycle Analysis Using Flow Cytometry
2.5. MTT Assay for Cell Viability
2.6. Tubulin Polymerisation Assay
2.7. Wound-Healing Assay
2.8. Boyden Chamber Assay
2.9. Molecular Simulation
2.10. Estrogenic Activity Assay
2.11. MTT Assay of 4a on the Growth Inhibition of MCF7 and T47D Cell Lines
2.12. Statistical Analysis
3. Results
3.1. Apoptosis-Inducing Effect of 4a with Fluorescent Double Staining
3.2. Compound 4a Induced Cell Cycle Disturbance via Flow Cytometry
3.3. Compound 4a Lacked Swift Cytotoxic Effects
3.4. Effects of Compound 4a on Tubulin Polymerisation
3.5. Inhibitory Effect of 4a on HeLa Cell Migration
3.6. Tumour Anti-Invasive Activity of 4a on HeLa Cells
3.7. Molecular Simulation of 4a Binding in Tubulin
3.8. Estrogenic Activity of Compound 4a
3.9. Antiproliferative Activity of 4a on T47D and MCF7 Breast Cancer Cell Lines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, W.L.; Auchus, R.J. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocr. Rev. 2011, 32, 81–151. [Google Scholar] [CrossRef]
- Ascenzi, P.; Bocedi, A.; Marino, M. Structure-Function Relationship of Estrogen Receptor Alpha and Beta: Impact on Human Health. Mol. Asp. Med. 2006, 27, 299–402. [Google Scholar] [CrossRef] [PubMed]
- Barodawala, S.M.; Chadha, K.; Kavishwar, V.; Murthy, A.; Shetye, S. Cervical Cancer Screening by Molecular Pap-Transformation of Gynecologic Cytology. Diagn. Cytopathol. 2019, 47, 374–381. [Google Scholar] [CrossRef]
- Münger, K.; Howley, P.M. Human Papillomavirus Immortalization and Transformation Functions. Virus Res. 2002, 89, 213–228. [Google Scholar] [CrossRef]
- Shrivastava, S.; Mahantshetty, U.; Engineer, R.; Chopra, S.; Hawaldar, R.; Hande, V.; Kerkar, R.A.; Maheshwari, A.; Shylasree, T.S.; Ghosh, J.; et al. Cisplatin Chemoradiotherapy vs. Radiotherapy in FIGO Stage IIIB Squamous Cell Carcinoma of the Uterine Cervix: A Randomized Clinical Trial. JAMA Oncol. 2018, 4, 506–513. [Google Scholar] [CrossRef]
- Wright, J.D.; Matsuo, K.; Huang, Y.; Tergas, A.I.; Hou, J.Y.; Khoury-Collado, F.; St Clair, C.M.; Ananth, C.V.; Neugut, A.I.; Hershman, D.L. Prognostic Performance of the 2018 International Federation of Gynecology and Obstetrics Cervical Cancer Staging Guidelines. Obstet. Gynecol. 2019, 134, 49–57. [Google Scholar] [CrossRef]
- Olusola, P.; Banerjee, H.N.; Philley, J.V.; Dasgupta, S. Human Papilloma Virus-Associated Cervical Cancer and Health Disparities. Cells 2019, 8, 622. [Google Scholar] [CrossRef] [PubMed]
- WHO International Agency for Research on Cancer. Cervical Cancer: Estimated Incidence, Mortality and Prevalence Worldwide in 2012; WHO International Agency for Research on Cancer: Geneva, Switzerland, 2015. [Google Scholar]
- Momenimovahed, Z.; Salehiniya, H. Incidence, Mortality and Risk Factors of Cervical Cancer in the World. Biomed. Res. Ther. 2017, 4, 1795–1811. [Google Scholar] [CrossRef]
- Olorunfemi, G.; Ndlovu, N.; Masukume, G.; Chikandiwa, A.; Pisa, P.T.; Singh, E. Temporal Trends in the Epidemiology of Cervical Cancer in South Africa (1994–2012). Int. J. Cancer 2018, 143, 2238–2249. [Google Scholar] [CrossRef]
- De Vuyst, H.; Alemany, L.; Lacey, C.; Chibwesha, C.J.; Sahasrabuddhe, V.; Banura, C.; Denny, L.; Parham, G.P. The Burden of Human Papillomavirus Infections and Related Diseases in Sub-Saharan Africa. Vaccine 2013, 31 (Suppl. S5), F32–F46. [Google Scholar] [CrossRef]
- Wipperman, J.; Neil, T.; Williams, T. Cervical Cancer: Evaluation and Management. Am. Fam. Physician 2018, 97, 449–454. [Google Scholar] [PubMed]
- Luqmani, Y.A. Mechanisms of Drug Resistance in Cancer Chemotherapy. Med. Princ. Pract. 2005, 14 (Suppl. S1), 35–48. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.-S.; Koh, C.-G.; Li, H.-Y. Mitosis-Targeted Anti-Cancer Therapies: Where They Stand. Cell Death Dis. 2012, 3, e411. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Saez, I.; Skoufias, D.A. Eg5 Targeting Agents: From New Anti-Mitotic Based Inhibitor Discovery to Cancer Therapy and Resistance. Biochem. Pharmacol. 2021, 184, 114364. [Google Scholar] [CrossRef] [PubMed]
- Fanale, D.; Bronte, G.; Passiglia, F.; Calò, V.; Castiglia, M.; Di Piazza, F.; Barraco, N.; Cangemi, A.; Catarella, M.T.; Insalaco, L.; et al. Stabilizing versus Destabilizing the Microtubules: A Double-Edge Sword for an Effective Cancer Treatment Option? Anal. Cell. Pathol. 2015, 2015, 690916. [Google Scholar] [CrossRef] [PubMed]
- Dalton, W.B.; Nandan, M.O.; Moore, R.T.; Yang, V.W. Human Cancer Cells Commonly Acquire DNA Damage during Mitotic Arrest. Cancer Res. 2007, 67, 11487–11492. [Google Scholar] [CrossRef] [PubMed]
- Anstead, G.M.; Carlson, K.E.; Katzenellenbogen, J.A. The Estradiol Pharmacophore: Ligand Structure-Estrogen Receptor Binding Affinity Relationships and a Model for the Receptor Binding Site. Steroids 1997, 62, 268–303. [Google Scholar] [CrossRef] [PubMed]
- Molnár, B.; Kinyua, N.I.; Mótyán, G.; Leits, P.; Zupkó, I.; Minorics, R.; Balogh, G.T.; Frank, É. Regioselective Synthesis, Physicochemical Properties and Anticancer Activity of 2-Aminomethylated Estrone Derivatives. J. Steroid Biochem. Mol. Biol. 2022, 219, 106064. [Google Scholar] [CrossRef] [PubMed]
- Massaro, R.R.; Faião-Flores, F.; Rebecca, V.W.; Sandri, S.; Alves-Fernandes, D.K.; Pennacchi, P.C.; Smalley, K.S.M.; Maria-Engler, S.S. Inhibition of Proliferation and Invasion in 2D and 3D Models by 2-Methoxyestradiol in Human Melanoma Cells. Pharmacol. Res. 2017, 119, 242–250. [Google Scholar] [CrossRef]
- LaVallee, T.M.; Zhan, X.H.; Herbstritt, C.J.; Kough, E.C.; Green, S.J.; Pribluda, V.S. 2-Methoxyestradiol Inhibits Proliferation and Induces Apoptosis Independently of Estrogen Receptors Alpha and Beta. Cancer Res. 2002, 62, 3691–3697. [Google Scholar]
- Siebert, A.E.; Sanchez, A.L.; Dinda, S.; Moudgil, V.K. Effects of Estrogen Metabolite 2-Methoxyestradiol on Tumor Suppressor Protein P53 and Proliferation of Breast Cancer Cells. Syst. Biol. Reprod. Med. 2011, 57, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Parada-Bustamante, A.; Valencia, C.; Reuquen, P.; Diaz, P.; Rincion-Rodriguez, R.; Orihuela, P.A. Role of 2-Methoxyestradiol, an Endogenous Estrogen Metabolite, in Health and Disease. Mini Rev. Med. Chem. 2015, 15, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, C.; Liu, X.; Hou, P.; Guo, X.; Ding, F.; Wang, Z.; Hu, Y.; Li, Z.; Zhang, Z. High Oral Bioavailability of 2-Methoxyestradiol in PEG-PLGA Micelles-Microspheres for Cancer Therapy. Eur. J. Pharm. Biopharm. 2017, 117, 116–122. [Google Scholar] [CrossRef] [PubMed]
- López-Lázaro, M. Two Preclinical Tests to Evaluate Anticancer Activity and to Help Validate Drug Candidates for Clinical Trials. Oncoscience 2015, 2, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, Post-Treatment Recovery, and Selectivity Analysis of Naturally Occurring Podophyllotoxins from Bursera fagaroides Var. fagaroides on Breast Cancer Cell Lines. Molecules 2016, 21, 1013. [Google Scholar] [CrossRef]
- Liu, P.; Kim, B.; Friesner, R.A.; Berne, B.J. Replica Exchange with Solute Tempering: A Method for Sampling Biological Systems in Explicit Water. Proc. Natl. Acad. Sci. USA 2005, 102, 13749–13754. [Google Scholar] [CrossRef]
- Schrödinger, R. Schrödinger Release 2022-4: Desmond Molecular Dynamics System, DE Shaw Research, New York, NY, 2022; Maestro-Desmond Interoperability Tools; Schrödinger: New York, NY, USA, 2022. [Google Scholar]
- Schrödinger Release, 2022–2024: Glide; Schrödinger, LLC: New York, NY, USA, 2022.
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger Release, 2022–2024: Prime; Schrödinger, LLC: New York, NY, USA, 2022.
- Wilson, V.S.; Bobseine, K.; Gray, L.E.J. Development and Characterization of a Cell Line That Stably Expresses an Estrogen-Responsive Luciferase Reporter for the Detection of Estrogen Receptor Agonist and Antagonists. Toxicol. Sci. 2004, 81, 69–77. [Google Scholar] [CrossRef]
- Jurášek, M.; Černohorská, M.; Řehulka, J.; Spiwok, V.; Sulimenko, T.; Dráberová, E.; Darmostuk, M.; Gurská, S.; Frydrych, I.; Buriánová, R.; et al. Estradiol Dimer Inhibits Tubulin Polymerization and Microtubule Dynamics. J. Steroid Biochem. Mol. Biol. 2018, 183, 68–79. [Google Scholar] [CrossRef]
- Soerjomataram, I.; Bray, F. Planning for Tomorrow: Global Cancer Incidence and the Role of Prevention 2020–2070. Nat. Rev. Clin. Oncol. 2021, 18, 663–672. [Google Scholar] [CrossRef]
- Nagy, V.; Mounir, R.; Szebeni, G.J.; Szakonyi, Z.; Gémes, N.; Minorics, R.; Germán, P.; Zupkó, I. Investigation of Anticancer Properties of Monoterpene-Aminopyrimidine Hybrids on A2780 Ovarian Cancer Cells. Int. J. Mol. Sci. 2023, 24, 10581. [Google Scholar] [CrossRef]
- Minorics, R.; Zupko, I. Steroidal Anticancer Agents: An Overview of Estradiol-Related Compounds. Anticancer Agents Med. Chem. 2018, 18, 652–666. [Google Scholar] [CrossRef]
- Pribluda, V.S.; Gubish, E.R.J.; Lavallee, T.M.; Treston, A.; Swartz, G.M.; Green, S.J. 2-Methoxyestradiol: An Endogenous Antiangiogenic and Antiproliferative Drug Candidate. Cancer Metastasis Rev. 2000, 19, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Toné, S.; Sugimoto, K.; Tanda, K.; Suda, T.; Uehira, K.; Kanouchi, H.; Samejima, K.; Minatogawa, Y.; Earnshaw, W.C. Three Distinct Stages of Apoptotic Nuclear Condensation Revealed by Time-Lapse Imaging, Biochemical and Electron Microscopy Analysis of Cell-Free Apoptosis. Exp. Cell Res. 2007, 313, 3635–3644. [Google Scholar] [CrossRef] [PubMed]
- Mitchison, T.J. The Proliferation Rate Paradox in Antimitotic Chemotherapy. Mol. Biol. Cell 2012, 23, 1–232. [Google Scholar] [CrossRef] [PubMed]
- Rieder, C.L.; Maiato, H. Stuck in Division or Passing through: What Happens When Cells cannot Satisfy the Spindle Assembly Checkpoint. Dev. Cell 2004, 7, 637–651. [Google Scholar] [CrossRef]
- Weaver, B.A.A.; Cleveland, D.W. Decoding the Links between Mitosis, Cancer, and Chemotherapy: The Mitotic Checkpoint, Adaptation, and Cell Death. Cancer Cell 2005, 8, 7–12. [Google Scholar] [CrossRef]
- Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Synthesis, Biological Evaluation, and Molecular Modelling of New Naphthalene-Chalcone Derivatives as Potential Anticancer Agents on MCF-7 Breast Cancer Cells by Targeting Tubulin Colchicine Binding Site. J. Enzym. Inhib. Med. Chem. 2020, 35, 139–144. [Google Scholar] [CrossRef]
- Peyrat, J.-F.; Brion, J.-D.; Alami, M. Synthetic 2-Methoxyestradiol Derivatives: Structure-Activity Relationships. Curr. Med. Chem. 2012, 19, 4142–4156. [Google Scholar] [CrossRef]
- Keates, R.A. Microtubule Associated Proteins in Microtubule Preparations Made with and without Glycerol. Can. J. Biochem. Cell Biol. 1984, 62, 803–813. [Google Scholar] [CrossRef]
- van Vuuren, R.J.; Botes, M.; Jurgens, T.; Joubert, A.M.; van den Bout, I. Novel Sulphamoylated 2-Methoxy Estradiol Derivatives Inhibit Breast Cancer Migration by Disrupting Microtubule Turnover and Organization. Cancer Cell Int. 2019, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Nogales, E. Structural Insight into Microtubule Function. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 397–420. [Google Scholar] [CrossRef] [PubMed]
- Krendel, M.; Zenke, F.T.; Bokoch, G.M. Nucleotide Exchange Factor GEF-H1 Mediates Cross-Talk between Microtubules and the Actin Cytoskeleton. Nat. Cell Biol. 2002, 4, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Stehbens, S.; Wittmann, T. Targeting and Transport: How Microtubules Control Focal Adhesion Dynamics. J. Cell Biol. 2012, 198, 481–489. [Google Scholar] [CrossRef]
- Etienne-Manneville, S. Microtubules in Cell Migration. Annu. Rev. Cell Dev. Biol. 2013, 29, 471–499. [Google Scholar] [CrossRef] [PubMed]
- Hamel, E.; Lin, C.M.; Flynn, E.; D’Amato, R.J. Interactions of 2-Methoxyestradiol, an Endogenous Mammalian Metabolite, with Unpolymerized Tubulin and with Tubulin Polymers. Biochemistry 1996, 35, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
- Sattler, M.; Quinnan, L.R.; Pride, Y.B.; Gramlich, J.L.; Chu, S.C.; Even, G.C.; Kraeft, S.-K.; Chen, L.B.; Salgia, R. 2-Methoxyestradiol Alters Cell Motility, Migration, and Adhesion. Blood 2003, 102, 289–296. [Google Scholar] [CrossRef]
- Wang, L.; Guo, H.; Lin, C.; Yang, L.; Wang, X. Enrichment and Characterization of Cancer Stem-like Cells from a Cervical Cancer Cell Line. Mol. Med. Rep. 2014, 9, 2117–2123. [Google Scholar] [CrossRef]
- Chiang, S.P.H.; Cabrera, R.M.; Segall, J.E. Tumor Cell Intravasation. Am. J. Physiol. Cell Physiol. 2016, 311, C1–C14. [Google Scholar] [CrossRef]
- Hua, W.; Huang, X.; Li, J.; Feng, W.; Sun, Y.; Guo, C. 2-Methoxyestradiol Inhibits Melanoma Cell Growth by Activating Adaptive Immunity. Immunopharmacol. Immunotoxicol. 2022, 44, 541–547. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An Overview of Tubulin Inhibitors That Interact with the Colchicine Binding Site. Pharm. Res. 2012, 29, 2943–2971. [Google Scholar] [CrossRef] [PubMed]
- Oliva, P.; Romagnoli, R.; Cacciari, B.; Manfredini, S.; Padroni, C.; Brancale, A.; Ferla, S.; Hamel, E.; Corallo, D.; Aveic, S.; et al. Synthesis and Biological Evaluation of Highly Active 7-Anilino Triazolopyrimidines as Potent Antimicrotubule Agents. Pharmaceutics 2022, 14, 1191. [Google Scholar] [CrossRef]
- Beyer, C.F.; Zhang, N.; Hernandez, R.; Vitale, D.; Lucas, J.; Nguyen, T.; Discafani, C.; Ayral-Kaloustian, S.; Gibbons, J.J. TTI-237: A Novel Microtubule-Active Compound with in Vivo Antitumor Activity. Cancer Res. 2008, 68, 2292–2300. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, M.O.; Prota, A.E. Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. Trends Cell Biol. 2018, 28, 776–792. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Eastman, A. Microtubule Destabilising Agents: Far More than Just Antimitotic Anticancer Drugs. Br. J. Clin. Pharmacol. 2017, 83, 255–268. [Google Scholar] [CrossRef] [PubMed]
- den Boon, J.A.; Pyeon, D.; Wang, S.S.; Horswill, M.; Schiffman, M.; Sherman, M.; Zuna, R.E.; Wang, Z.; Hewitt, S.M.; Pearson, R.; et al. Molecular Transitions from Papillomavirus Infection to Cervical Precancer and Cancer: Role of Stromal Estrogen Receptor Signaling. Proc. Natl. Acad. Sci. USA 2015, 112, E3255–E3264. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Shen, P.; Loggie, B.W.; Chang, Y.; Deuel, T.F. Identification, Cloning, and Expression of Human Estrogen Receptor-Alpha36, a Novel Variant of Human Estrogen Receptor-Alpha66. Biochem. Biophys. Res. Commun. 2005, 336, 1023–1027. [Google Scholar] [CrossRef]
Receptor Models | MM/GBSA Binding Free Energy (No Relaxation) | MM/GBSA Binding Free Energy (with Relaxation) | ||
---|---|---|---|---|
(Average kcal/mol) | Standard Deviation | (Average kcal/mol) | Standard Deviation | |
Rec01 | −41.9337 | 5.44 | −44.0776 | 5.54 |
Rec02 | −22.8293 | 5.25 | −25.8875 | 5.86 |
Rec03 | −20.8504 | 3.93 | −23.6403 | 3.96 |
Rec04 | −18.4347 | 5.35 | −21.4334 | 6.09 |
Rec05 | −40.4151 | 3.98 | −43.1558 | 4.00 |
Rec06 | −29.5527 | 3.57 | −33.3576 | 3.57 |
Rec07 | −9.6403 | 5.92 | −12.0252 | 5.86 |
Rec08 | −15.255 | 4.91 | −17.5359 | 4.67 |
Rec09 | −7.1579 | 5.85 | −9.5942 | 5.83 |
Rec10 | −16.8539 | 4.87 | −18.4593 | 5.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Njangiru, I.K.; Bózsity-Faragó, N.; Resch, V.E.; Paragi, G.; Frank, É.; Balogh, G.T.; Zupkó, I.; Minorics, R. A Novel 2-Methoxyestradiol Derivative: Disrupting Mitosis Inhibiting Cell Motility and Inducing Apoptosis in HeLa Cells In Vitro. Pharmaceutics 2024, 16, 622. https://doi.org/10.3390/pharmaceutics16050622
Njangiru IK, Bózsity-Faragó N, Resch VE, Paragi G, Frank É, Balogh GT, Zupkó I, Minorics R. A Novel 2-Methoxyestradiol Derivative: Disrupting Mitosis Inhibiting Cell Motility and Inducing Apoptosis in HeLa Cells In Vitro. Pharmaceutics. 2024; 16(5):622. https://doi.org/10.3390/pharmaceutics16050622
Chicago/Turabian StyleNjangiru, Isaac Kinyua, Noémi Bózsity-Faragó, Vivien Erzsébet Resch, Gábor Paragi, Éva Frank, György T. Balogh, István Zupkó, and Renáta Minorics. 2024. "A Novel 2-Methoxyestradiol Derivative: Disrupting Mitosis Inhibiting Cell Motility and Inducing Apoptosis in HeLa Cells In Vitro" Pharmaceutics 16, no. 5: 622. https://doi.org/10.3390/pharmaceutics16050622
APA StyleNjangiru, I. K., Bózsity-Faragó, N., Resch, V. E., Paragi, G., Frank, É., Balogh, G. T., Zupkó, I., & Minorics, R. (2024). A Novel 2-Methoxyestradiol Derivative: Disrupting Mitosis Inhibiting Cell Motility and Inducing Apoptosis in HeLa Cells In Vitro. Pharmaceutics, 16(5), 622. https://doi.org/10.3390/pharmaceutics16050622