Green Sol–Gel Synthesis of Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fe3O4 Powders
2.2. Thermal Characterization
2.3. Structural Characterization
2.4. Morphological Characterization
2.5. Magnetic Characterization
2.6. Cytotoxicity Analysis
3. Results and Discussion
3.1. Thermal Analysis
3.2. Structural Characterization
3.3. Morphological Characterization
3.4. Magnetic Characterization
3.4.1. Magnetic Susceptibility
3.4.2. Hysteresis Loop
3.4.3. Specific Absorption Rate
3.5. Cytotoxicity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vassallo, M.; Martella, D.; Barrera, G.; Celegato, F.; Coïsson, M.; Ferrero, R.; Olivetti, E.S.; Troia, A.; Sözeri, H.; Parmeggiani, C.; et al. Improvement of Hyperthermia Properties of Iron Oxide Nanoparticles by Surface Coating. ACS Omega 2023, 8, 2143–2154. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Wang, Y.; Zhu, W.; Li, G.; Ma, X.; Zhang, Y.; Chen, S.; Tiwari, S.; Shi, K.; et al. Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy. Theranostics 2020, 10, 3793–3815. [Google Scholar] [CrossRef] [PubMed]
- Alromi, D.A.; Madani, S.Y.; Seifalian, A. Emerging Application of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer. Polymers 2021, 13, 4146. [Google Scholar] [CrossRef] [PubMed]
- da Silva, F.A.S.; de Campos, M.F. Study of Heating Curves Generated by Magnetite Nanoparticles Aiming Application in Magnetic Hyperthermia. Braz. J. Chem. Eng. 2020, 37, 543–553. [Google Scholar] [CrossRef]
- Soares, P.I.P.; Romão, J.; Matos, R.; Silva, J.C.; Borges, J.P. Design and Engineering of Magneto-Responsive Devices for Cancer Theranostics: Nano to Macro Perspective. Prog. Mater. Sci. 2021, 116, 100742. [Google Scholar] [CrossRef]
- Samrot, A.V.; Sahithya, C.S.; Selvarani, A.J.; Purayil, S.K.; Ponnaiah, P. A Review on Synthesis, Characterization and Potential Biological Applications of Superparamagnetic Iron Oxide Nanoparticles. Curr. Res. Green Sustain. Chem. 2021, 4, 100042. [Google Scholar] [CrossRef]
- Flores-Urquizo, I.A.; García-Casillas, P.; Chapa-González, C. Desarrollo de Nanopartículas Magnéticas Fe+32 X+21O4 (X= Fe, Co y Ni) Recubiertas Con Amino Silano. Rev. Mex. Ing. Biomed. 2017, 38, 402–411. [Google Scholar] [CrossRef]
- Urquizo, I.A.F.; García, T.C.H.; Loredo, S.L.; Galindo, J.T.E.; Casillas, P.E.G.; Barrón, J.C.S.; González, C.C. Effect of Aminosilane Nanoparticle Coating on Structural and Magnetic Properties and Cell Viability in Human Cancer Cell Lines. Part. Part. Syst. Charact. 2022, 39, 2200106. [Google Scholar] [CrossRef]
- Chapa González, C.; Navarro Arriaga, J.U.; García Casillas, P.E. Physicochemical Properties of Chitosan–Magnetite Nanocomposites Obtained with Different PH. Polym. Polym. Compos. 2021, 29, S1009–S1016. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Arshad, S.; Riaz, S.; Naseem, S. Synthesis of Iron Oxide Nanoparticles by Sol-Gel Technique and Their Characterization. IEEE Trans. Magn. 2014, 50, 2313763. [Google Scholar] [CrossRef]
- Xu, J.; Yang, H.; Fu, W.; Du, K.; Sui, Y.; Chen, J.; Zeng, Y.; Li, M.; Zou, G. Preparation and Magnetic Properties of Magnetite Nanoparticles by Sol-Gel Method. J. Magn. Magn. Mater. 2007, 309, 307–311. [Google Scholar] [CrossRef]
- Benali, A.; Bejar, M.; Dhahri, E.; Sajieddine, M.; Graça, M.P.F.; Valente, M.A. Magnetic, Raman and Mössbauer Properties of Double-Doping LaFeO3 Perovskite Oxides. Mater. Chem. Phys. 2015, 149–150, 467–472. [Google Scholar] [CrossRef]
- Angermann, A.; Töpfer, J. Synthesis of Magnetite Nanoparticles by Thermal Decomposition of Ferrous Oxalate Dihydrate. J. Mater. Sci. 2008, 43, 5123–5130. [Google Scholar] [CrossRef]
- Fotukian, S.M.; Barati, A.; Soleymani, M.; Alizadeh, A.M. Solvothermal Synthesis of CuFe2O4 and Fe3O4 Nanoparticles with High Heating Efficiency for Magnetic Hyperthermia Application. J. Alloys Compd. 2020, 816, 152548. [Google Scholar] [CrossRef]
- Daou, T.J.; Pourroy, G.; Bégin-Colin, S.; Grenèche, J.M.; Ulhaq-Bouillet, C.; Legaré, P.; Bernhardt, P.; Leuvrey, C.; Rogez, G. Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles. Chem. Mater. 2006, 18, 4399–4404. [Google Scholar] [CrossRef]
- Da Silva, S.W.; Nakagomi, F.; Silva, M.S.; Franco, A.; Garg, V.K.; Oliveira, A.C.; Morais, P.C. Raman Study of Cations’ Distribution in ZnxMg 12xFe2O4 Nanoparticles. J. Nanopart. Res. 2012, 14, 1–10. [Google Scholar] [CrossRef]
- Jagadeesha Angadi, V.; Manjunatha, K.; Praveena, K.; Pattar, V.K.; Jeevan Fernandes, B.; Manjunatha, S.O.; Husain, J.; Angadi, S.V.; Horakeri, L.D.; Ramesh, K.P. Magnetic Properties of Larger Ionic Radii Samarium and Gadalonium Doped Manganese Zinc Ferrite Nanoparticles Prepared by Solution Combustion Method. J. Magn. Magn. Mater. 2021, 529, 167899. [Google Scholar] [CrossRef]
- Sopoušek, J.; Pinkas, J.; Buršík, J.; Svoboda, M.; Krásenský, P. Continuous Flow Synthesis of Iron Oxide Nanoparticles Using Water-in-Oil Microemulsion. Colloid J. 2020, 82, 727–734. [Google Scholar] [CrossRef]
- Vidal-Vidal, J.; Rivas, J.; López-Quintela, M.A. Synthesis of Monodisperse Maghemite Nanoparticles by the Microemulsion Method. Colloids Surf. A Physicochem. Eng. Asp. 2006, 288, 44–51. [Google Scholar] [CrossRef]
- Teixeira, S.S.; Graça, M.P.F.; Lucas, J.; Valente, M.A.; Soares, P.I.P.; Lança, M.C.; Vieira, T.; Silva, J.C.; Borges, J.P.; Jinga, L.I.; et al. Nanostructured LiFe5O8 by a Biogenic Method for Applications from Electronics to Medicine. Nanomaterials 2021, 11, 193. [Google Scholar] [CrossRef]
- Gomes, M.D.A.; Magalhães, L.G.; Paschoal, A.R.; Macedo, Z.S.; Lima, Á.S.; Eguiluz, K.I.B.; Salazar-Banda, G.R. An Eco-Friendly Method of BaTiO3 Nanoparticle Synthesis Using Coconut Water. J. Nanomater. 2018, 2018, 5167182. [Google Scholar] [CrossRef]
- Manali, Í.F.; Rodrigues, L.C.V.; Braga, A.H.; Galante, D.; Teixeira, V.C. Structural and Optical Properties of Europium- and Titanium-Doped Y2O3 Nanoparticles. Luminescence 2020, 35, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Muniz, E.P.; Proveti, J.R.C.; Pereira, R.D.; Segatto, B.; Porto, P.S.S.; Nascimento, V.P.; Schettino, M.A.; Passamani, E.C. Influence of Heat-Treatment Environment on Ni-Ferrite Nanoparticle Formation from Coconut Water Precursor. J. Mater. Sci. 2013, 48, 1543–1554. [Google Scholar] [CrossRef]
- Laia, A.S.; Gomes, M.A.; Brandão-Silva, A.C.; Xing, Y.; Maciel, G.S.; Macedo, Z.S.; Valerio, M.E.G.; Rodrigues, J.J.; Alencar, M.A.R.C. Nd3+ Doped Y2O3 Micro- and Nanoparticles: A Comparative Study on Temperature Sensing and Optical Heating Performance within the 1st Biological Window. Opt. Mater. 2023, 142, 114126. [Google Scholar] [CrossRef]
- Gomes, M.A.; Brandão-Silva, A.C.; Avila, J.F.M.; Alencar, M.A.R.C.; Rodrigues, J.J.; Macedo, Z.S. Particle Size Effect on Structural and Optical Properties of Y2O3:Nd3+ Nanoparticles Prepared by Coconut Water-Assisted Sol-Gel Route. J. Lumin. 2018, 200, 43–49. [Google Scholar] [CrossRef]
- Silva, M.N.B.; Duque, J.G.D.S.; Gouveia, D.X.; De Paiva, J.A.C.; Macedo, M.A. Novel Route for the Preparation of Nanosized NiFe2O4 Powders. J. Appl. Phys. 2004, 43, 5249–5252. [Google Scholar] [CrossRef]
- de Paiva, J.A.C.; Graça, M.P.F.; Monteiro, J.; Macedo, M.A.; Valente, M.A. Spectroscopy Studies of NiFe2O4 Nanosized Powders Obtained Using Coconut Water. J. Alloys Compd. 2009, 485, 637–641. [Google Scholar] [CrossRef]
- Lucas, J.M.F.; Soreto Teixeira, S.; Gavinho, S.R.; Prezas, P.R.; Silva, C.C.; Sales, A.J.M.; Valente, M.A.; Almeida, A.F.; Freire, F.N.; Salgueiro, C.C.M.; et al. Niobium Oxide Prepared by Sol–Gel Using Powder Coconut Water. J. Mater. Sci. Mater. Electron. 2019, 30, 11346–11353. [Google Scholar] [CrossRef]
- Cardoso, V.F.; Francesko, A.; Ribeiro, C.; Bañobre-López, M.; Martins, P.; Lanceros-Mendez, S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv. Healthc. Mater. 2018, 7, 1700845. [Google Scholar] [CrossRef]
- Costa, B.; Carvalho, J.; Gavinho, S.; Vieira, T.; Silva, J.C.; Soares, P.I.P.; Valente, M.A.; Soreto, S.; Graça, M. Preparation and Characterization of Zinc Ferrite and Gadolinium Iron Garnet Composite for Biomagnetic Applications. Materials 2024, 17, 2949. [Google Scholar] [CrossRef]
- Regadas, J.S.; Gavinho, S.R.; Teixeira, S.S.; de Jesus, J.V.; Pádua, A.S.; Silva, J.C.; Devesa, S.; Graça, M.P.F. Influence of the Particle Size on the Electrical, Magnetic and Biological Properties of the Bioglass® Containing Iron Oxide. Magnetochemistry 2023, 9, 209. [Google Scholar] [CrossRef]
- ISO Standard 10993-5; Biological Evaluation of Medical Devices. Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Müller, M.; Villalba, J.C.; Anaissi, F.J. Decomposição Térmica (TG-DTA) de Sais de Ferro [FeCl3.6H2O] e [Fe(NO3)3.9H2O] Com Análise Morfológica e Química Do Produto Final. Semin. Ciências Exatas E Tecnológicas 2014, 35, 9. [Google Scholar] [CrossRef]
- Noqta, O.A.; Aziz, A.A.; Usman, I.A.; Bououdina, M. Recent Advances in Iron Oxide Nanoparticles (IONPs): Synthesis and Surface Modification for Biomedical Applications. J. Supercond. Nov. Magn. 2019, 32, 779–795. [Google Scholar] [CrossRef]
- Dadfar, S.M.; Roemhild, K.; Drude, N.I.; von Stillfried, S.; Knüchel, R.; Kiessling, F.; Lammers, T. Iron Oxide Nanoparticles: Diagnostic, Therapeutic and Theranostic Applications. Adv. Drug Deliv. Rev. 2019, 138, 302–325. [Google Scholar] [CrossRef] [PubMed]
- El Ghandoor, H.; Zidan, H.M.; Khalil, M.M.H.; Ismail, M.I.M. Synthesis and Some Physical Properties of Magnetite (Fe3O4) Nanoparticles. Int. J. Electrochem. Sci. 2012, 7, 5734–5745. [Google Scholar] [CrossRef]
- Toby, B.H. R Factors in Rietveld Analysis: How Good Is Good Enough? Powder Diffr. 2006, 21, 67–70. [Google Scholar] [CrossRef]
- Aragón, F.H.; Coaquira, J.A.H.; Villegas-Lelovsky, L.; Da Silva, S.W.; Cesar, D.F.; Nagamine, L.C.C.M.; Cohen, R.; Menéndez-Proupin, E.; Morais, P.C. Evolution of the Doping Regimes in the Al-Doped SnO2 Nanoparticles Prepared by a Polymer Precursor Method. J. Phys. Condens. Matter 2015, 27, 095301. [Google Scholar] [CrossRef]
- Chang, D.; Lim, M.; Goos, J.A.C.M.; Qiao, R.; Ng, Y.Y.; Mansfeld, F.M.; Jackson, M.; Davis, T.P.; Kavallaris, M. Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Front. Pharmacol. 2018, 9, 831. [Google Scholar] [CrossRef]
- Wei, Y.; Quan, L.; Zhou, C.; Zhan, Q. Factors Relating to the Biodistribution & Clearance of Nanoparticles & Their Effects on in Vivo Application. Nanomedicine 2018, 13, 1495–1512. [Google Scholar] [CrossRef]
- Torres-Gómez, N.; Nava, O.; Argueta-Figueroa, L.; García-Contreras, R.; Baeza-Barrera, A.; Vilchis-Nestor, A.R. Shape Tuning of Magnetite Nanoparticles Obtained by Hydrothermal Synthesis: Effect of Temperature. J. Nanomater. 2019, 2019, 7921273. [Google Scholar] [CrossRef]
- Takai, Z.; Mustafa, M.K.; Asman, S.; Takai, Z.I.; Mustafa, M.K.; Sekak, K.A. Preparation and Characterization of Magnetite (Fe3O4) Nanoparticles By Sol-Gel Method. Int. J. Nanoelectron. Mater. 2019, 12, 37–46. [Google Scholar]
- Bohra, M.; Agarwal, N.; Singh, V. A Short Review on Verwey Transition in Nanostructured Fe3O4 Materials. J. Nanomater. 2019, 2019, 8457383. [Google Scholar] [CrossRef]
- Kuzikova, A.V.; Shelukhin, L.A.; Maksimov, F.M.; Chernov, A.I.; Pisarev, R.V.; Kalashnikova, A.M. Laser-Driven First-Order Spin Reorientation and Verwey Phase Transitions in the Magnetite Fe3O4 beyond the Range of Thermodynamic Equilibrium. Phys. Rev. B 2023, 107, 024413. [Google Scholar] [CrossRef]
- Hu, P.; Chang, T.; Chen, W.J.; Deng, J.; Li, S.L.; Zuo, Y.G.; Kang, L.; Yang, F.; Hostetter, M.; Volinsky, A.A. Temperature Effects on Magnetic Properties of Fe3O4 Nanoparticles Synthesized by the Sol-Gel Explosion-Assisted Method. J. Alloys Compd. 2019, 773, 605–611. [Google Scholar] [CrossRef]
- Rajan, A.; Sharma, M.; Sahu, N.K. Assessing Magnetic and Inductive Thermal Properties of Various Surfactants Functionalised Fe3O4 Nanoparticles for Hyperthermia. Sci. Rep. 2020, 10, 15045. [Google Scholar] [CrossRef]
- Lee, K.; Jang, J.T.; Nakano, H.; Nakagawa, S.; Paek, S.H.; Bae, S. External Magnetic Field Dependent Shift of Superparamagnetic Blocking Temperature Due to Core/Surface Disordered Spin Interactions. Nanotechnology 2017, 28, 075710. [Google Scholar] [CrossRef]
- Abbas, M.; Parvatheeswara Rao, B.; Naga, S.M.; Takahashi, M.; Kim, C. Synthesis of High Magnetization Hydrophilic Magnetite (Fe3O4) Nanoparticles in Single Reaction—Surfactantless Polyol Process. Ceram. Int. 2013, 39, 7605–7611. [Google Scholar] [CrossRef]
- Araujo, R.N.; Nascimento, E.P.; Raimundo, R.A.; Macedo, D.A.; Mastelaro, V.R.; Neves, G.A.; Morales, M.A.; Menezes, R.R. Hybrid Hematite/Calcium Ferrite Fibers by Solution Blow Spinning: Microstructural, Optical and Magnetic Characterization. Ceram. Int. 2021, 47, 33363–33372. [Google Scholar] [CrossRef]
- Tadic, M.; Panjan, M.; Lalatone, Y.; Milosevic, I.; Tadic, B.V.; Lazovic, J. Magnetic Properties, Phase Evolution, Hollow Structure and Biomedical Application of Hematite (α-Fe2O3) and QUAIPH. Adv. Powder Technol. 2022, 33, 103847. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Tran, H.V.; Xu, S.; Lee, T.R. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Appl. Sci. 2021, 11, 11301. [Google Scholar] [CrossRef]
- Masrour, R.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.; Mounkachi, O.; El Moussaoui, H. Electronic and Magnetic Structures of Fe3O4 Ferrimagnetic Investigated by First Principle, Mean Field and Series Expansions Calculations. J. Magn. Magn. Mater. 2015, 378, 37–40. [Google Scholar] [CrossRef]
- Usov, N.A.; Gubanova, E.M.; Wei, Z.H. Specific Absorption Rate of Assembly of Magnetic Nanoparticles with Uniaxial Anisotropy. J. Phys. Conf. Ser. 2020, 1439, 012044. [Google Scholar] [CrossRef]
- Gutiérrez, L.; De La Cueva, L.; Moros, M.; Mazarío, E.; De Bernardo, S.; De La Fuente, J.M.; Morales, M.P.; Salas, G. Aggregation Effects on the Magnetic Properties of Iron Oxide Colloids. Nanotechnology 2019, 30, 112001. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.P.F.; Vieira, T.; Silva, J.C.; Soares, P.I.P.; Ferreira, N.M.; Amorim, C.O.; Teixeira, S.S.; Graça, M.P.F. Potassium Ferrite for Biomedical Applications. Materials 2023, 16, 3880. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Y.; Liu, X.L.; Ma, H.; Li, G.; Li, Y.; Gao, F.; Peng, M.; Fan, H.M.; Liang, X.J. Fe3O4-Pd Janus Nanoparticles with Amplified Dual-Mode Hyperthermia and Enhanced ROS Generation for Breast Cancer Treatment. Nanoscale Horiz. 2019, 4, 1450–1459. [Google Scholar] [CrossRef]
Sample | Heat Treatment Temperature of Base Powder and Conditions |
---|---|
S0 | 700 °C, for 4 h; heating rate of 5 °C/min; in normal atmosphere |
S1 | 350 °C, for 48 h; heating rate of 5 °C/min; in argon atmosphere |
S2 | 700 °C, for 4 h; heating rate of 5 °C/min; in argon atmosphere |
S3 | 400 °C, for 4 h; heating rate of 5 °C/min; in argon atmosphere (washed powder) |
Sample | Crystalline Phase | Crystalline System | wt% |
---|---|---|---|
S0 | Fe2O3 | Rhombohedral | 100% |
S1 | Fe3O4 | Cubic | * |
α-Fe2O3 | Rhombohedral | ||
FeO(OH) | Orthorhombic | ||
FeCl2·4H2O | Monoclinic | ||
FeCl2·4H2O | Unknown | ||
S2 | Fe3O4 | Monoclinic | 100% |
S3 | Fe3O4 | Cubic | 100% |
Sample | S1 | S2 | S3 | |
---|---|---|---|---|
Grain | Element | Atomic Percentage (%at) | ||
1 | O | 74.01 | 68.68 | 89.53 |
Fe | 25.70 | 31.32 | 9.82 | |
Cl | 0.30 | - | 0.65 | |
2 | O | 45.80 | 70.30 | 66.52 |
Fe | 50.88 | 29.79 | 30.42 | |
Cl | 3.33 | - | 3.05 | |
3 | O | 67.85 | 66.59 | 85.83 |
Fe | 24.52 | 33.41 | 13.08 | |
Cl | 7.63 | - | 1.09 |
Sample | S1 | S2 | S3 |
---|---|---|---|
TB (K) | 133 | 117 | 87 |
T (K) | Sample | Magnetization at 100 kOe (emu/g) | Coercive Field (kOe) | Remanent Magnetization (emu/g) |
---|---|---|---|---|
5 | S1 | 63.45 | 0.266 | 5.60 |
S2 | 83.54 | 0.032 | 4.93 | |
S3 | 51.91 | 0.544 | 14.51 | |
300 | S1 | 37.33 | 0.051 | 6.07 |
S2 | 75.88 | 0.015 | 0.75 | |
S3 | 9.70 | 0.016 | 2.23 |
Sample | ∆T (°C); ∆t = 650 s | SAR (W/g) |
---|---|---|
S1 | 20.3 ± 0.7 | 27.1 ± 5.0 |
S2 | 14.5 ± 2.1 | 19.9 ± 4.2 |
S3 | 9.57 ± 1.19 | 14.1 ± 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesus, J.; Regadas, J.; Costa, B.; Carvalho, J.; Pádua, A.; Henriques, C.; Soares, P.I.P.; Gavinho, S.; Valente, M.A.; Graça, M.P.F.; et al. Green Sol–Gel Synthesis of Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications. Pharmaceutics 2024, 16, 1578. https://doi.org/10.3390/pharmaceutics16121578
Jesus J, Regadas J, Costa B, Carvalho J, Pádua A, Henriques C, Soares PIP, Gavinho S, Valente MA, Graça MPF, et al. Green Sol–Gel Synthesis of Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications. Pharmaceutics. 2024; 16(12):1578. https://doi.org/10.3390/pharmaceutics16121578
Chicago/Turabian StyleJesus, Juliana, Joana Regadas, Bárbara Costa, João Carvalho, Ana Pádua, Célia Henriques, Paula I. P. Soares, Sílvia Gavinho, Manuel A. Valente, Manuel P. F. Graça, and et al. 2024. "Green Sol–Gel Synthesis of Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications" Pharmaceutics 16, no. 12: 1578. https://doi.org/10.3390/pharmaceutics16121578
APA StyleJesus, J., Regadas, J., Costa, B., Carvalho, J., Pádua, A., Henriques, C., Soares, P. I. P., Gavinho, S., Valente, M. A., Graça, M. P. F., & Soreto Teixeira, S. (2024). Green Sol–Gel Synthesis of Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications. Pharmaceutics, 16(12), 1578. https://doi.org/10.3390/pharmaceutics16121578