Pharmacokinetic and Biomarker Quantification Studies on Vancomycin-Loaded PEGylated Liposomes and Its Potential to Reduce Vancomycin-Induced Kidney Injury: A Rat Study
Abstract
:1. Introduction
2. Materials and Methods
- Animals
- Chemicals
- Preparation of PEG-VANCO-lipo
2.1. Characterization of Liposomes
Dynamic Light Scattering (DLS) Measurements
2.2. Zeta Potential Measurements
2.2.1. Determination of Loading Efficiency of VHCL into Liposomes by HPLC
2.2.2. Determination of Encapsulation Efficiency of VHCL into Liposomes by HPLC
- Animal Preparation
- Plasma sample collection from rats (serial sampling)
- Urine sample collection
- Kidney sample collection from rats
- Estimation of KIM-1 in urine
- Quantitative analysis of vancomycin (plasma and urine samples)
- Pharmacokinetic analysis
- Statistical analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Raju, V.; Nikalji, R.; Jawale, S.; Patel, H.; Ahdal, J.; Jain, R. Methicillin-Resistant Staphylococcus aureus Infections in Patients with Renal Disorders: A Review. World J. Nephrol. Urol. 2019, 8, 8–13. [Google Scholar] [CrossRef]
- Filippone, E.J.; Kraft, W.K.; Farber, J.L. The Nephrotoxicity of Vancomycin. Clin. Pharm. 2017, 102, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Pais, G.M.; Liu, J.; Zepcan, S.; Avedissian, S.N.; Rhodes, N.J.; Downes, K.J.; Moorthy, G.S.; Scheetz, M.H. Vancomycin-Induced Kidney Injury: Animal Models of Toxicodynamics, Mechanisms of Injury, Human Translation, and Potential Strategies for Prevention. Pharmacotherapy 2020, 40, 438–454. [Google Scholar] [CrossRef] [PubMed]
- Tsutsuura, M.; Moriyama, H.; Kojima, N.; Mizukami, Y.; Tashiro, S.; Osa, S.; Enoki, Y.; Taguchi, K.; Oda, K.; Fujii, S.; et al. The monitoring of vancomycin: A systematic review and meta-analyses of area under the concentration-time curve-guided dosing and trough-guided dosing. BMC Infect. Dis. 2021, 21, 153. [Google Scholar] [CrossRef]
- Vaidya, V.S.; Ramirez, V.; Ichimura, T.; Bobadilla, N.A.; Bonventre, J.V. Urinary kidney injury molecule-1: A sensitive quantitative biomarker for early detection of kidney tubular injury. Am. J. Physiol. Ren. Physiol. 2006, 290, F517–F529. [Google Scholar] [CrossRef]
- Avedissian, S.N.; Pais, G.; Liu, J.; O’Donnell, J.N.; Lodise, T.P.; Neely, M.; Prozialeck, W.C.; Lamar, P.C.; Becher, L.; Scheetz, M.H. The Pharmacodynamic-Toxicodynamic Relationship of AUC and Cmax in Vancomycin-Induced Kidney Injury in an Animal Model. Antimicrob. Agents Chemother. 2021, 65, e01945-20. [Google Scholar] [CrossRef]
- O’Donnell, J.N.; Rhodes, N.J.; Lodise, T.P.; Prozialeck, W.C.; Miglis, C.M.; Joshi, M.D.; Venkatesan, N.; Pais, G.; Cluff, C.; Lamar, P.C.; et al. 24-Hour Pharmacokinetic Relationships for Vancomycin and Novel Urinary Biomarkers of Acute Kidney Injury. Antimicrob. Agents Chemother. 2017, 61, e00416-17. [Google Scholar] [CrossRef]
- Pais, G.M.; Avedissian, S.N.; O’Donnell, J.N.; Rhodes, N.J.; Lodise, T.P.; Prozialeck, W.C.; Lamar, P.C.; Cluff, C.; Gulati, A.; Fitzgerald, J.C.; et al. Comparative Performance of Urinary Biomarkers for Vancomycin-Induced Kidney Injury According to Timeline of Injury. Antimicrob. Agents Chemother. 2019, 63, e00079-19. [Google Scholar] [CrossRef]
- Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A specific and sensitive biomarker of kidney injury. Scand. J. Clin. Lab. Investig. Suppl. 2008, 241, 78–83. [Google Scholar] [CrossRef]
- Han, W.K.; Bailly, V.; Abichandani, R.; Thadhani, R.; Bonventre, J.V. Kidney Injury Molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002, 62, 237–244. [Google Scholar] [CrossRef]
- Geng, J.; Qiu, Y.; Qin, Z.; Su, B. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: A systematic review and Bayesian meta-analysis. J. Transl. Med. 2021, 19, 105. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yu, J.; Prayogo, G.W.; Cao, W.; Wu, Y.; Jia, Z.; Zhang, A. Understanding kidney injury molecule 1: A novel immune factor in kidney pathophysiology. Am. J. Transl. Res. 2019, 11, 1219–1229. [Google Scholar]
- Papp, N.; Panicker, J.; Rubino, J.; Pais, G.; Czechowicz, A.; Prozialeck, W.C.; Griffin, B.; Weissig, V.; Scheetz, M.; Joshi, M.D. In Vitro Nephrotoxicity and Permeation of Vancomycin Hydrochloride Loaded Liposomes. Pharmaceutics 2022, 14, 1153. [Google Scholar] [CrossRef] [PubMed]
- Deray, G. Amphotericin B nephrotoxicity. J. Antimicrob. Chemother. 2002, 49 (Suppl. S1), 37–41. [Google Scholar] [CrossRef] [PubMed]
- Adler-Moore, J.; Proffitt, R.T. AmBisome: Liposomal formulation, structure, mechanism of action and pre-clinical experience. J. Antimicrob. Chemother. 2002, 49 (Suppl. S1), 21–30. [Google Scholar] [CrossRef] [PubMed]
- Bartomeu Garcia, C.; Shi, D.; Webster, T.J. Tat-functionalized liposomes for the treatment of meningitis: An in vitro study. Int. J. Nanomed. 2017, 12, 3009–3021. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, J.; Gao, J.; Chen, S.; Huang, G. Chitosan coated vancomycin hydrochloride liposomes: Characterizations and evaluation. Int. J. Pharm. 2015, 495, 508–515. [Google Scholar] [CrossRef]
- Gonzalez Gomez, A.; Xu, C.; Hosseinidoust, Z. Preserving the Efficacy of Glycopeptide Antibiotics during Nanoencapsulation in Liposomes. ACS Infect. Dis. 2019, 5, 1794–1801. [Google Scholar] [CrossRef]
- Rukavina, Z.; Vanić, Ž. Current Trends in Development of Liposomes for Targeting Bacterial Biofilms. Pharmaceutics 2016, 8, 18. [Google Scholar] [CrossRef]
- Thapa, R.K.; Kiick, K.L.; Sullivan, M.O. Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds. Acta Biomater. 2020, 103, 115–128. [Google Scholar] [CrossRef]
- Sande, L.; Sanchez, M.; Montes, J.; Wolf, A.J.; Morgan, M.A.; Omri, A.; Liu, G.Y. Liposomal encapsulation of vancomycin improves killing of methicillin-resistant Staphylococcus aureus in a murine infection model. J. Antimicrob. Chemother. 2012, 67, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Scriboni, A.B.; Couto, V.M.; Ribeiro, L.N.M.; Freires, I.A.; Groppo, F.C.; de Paula, E.; Franz-Montan, M.; Cogo-Müller, K. Fusogenic Liposomes Increase the Antimicrobial Activity of Vancomycin Against Staphylococcus aureus Biofilm. Front. Pharm. 2019, 10, 1401. [Google Scholar] [CrossRef] [PubMed]
- Hajiahmadi, F.; Alikhani, M.Y.; Shariatifar, H.; Arabestani, M.R.; Ahmadvand, D. The bactericidal effect of liposomal vancomycin as a topical combating system against Methicillin-resistant Staphylococcus aureus skin wound infection in mice. Med. J. Islam. Repub. Iran. 2019, 33, 153. [Google Scholar] [CrossRef]
- Muppidi, K.; Pumerantz, A.S.; Wang, J.; Betageri, G. Development and Stability Studies of Novel Liposomal Vancomycin Formulations. ISRN Pharm. 2012, 2012, 636743. [Google Scholar] [CrossRef] [PubMed]
- Muppidi, K.; Wang, J.; Betageri, G.; Pumerantz, A.S. PEGylated Liposome Encapsulation Increases the Lung Tissue Concentration of Vancomycin. Antimicrob. Agents Chemother. 2011, 55, 4537–4542. [Google Scholar] [CrossRef]
- Pumerantz, A.; Muppidi, K.; Agnihotri, S.; Guerra, C.; Venketaraman, V.; Wang, J.; Betageri, G. Preparation of liposomal vancomycin and intracellular killing of meticillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents 2011, 37, 140–144. [Google Scholar] [CrossRef]
- Pumerantz, A.S. PEGylated liposomal vancomycin: A glimmer of hope for improving treatment outcomes in MRSA pneumonia. Recent. Pat. Antiinfect. Drug Discov. 2012, 7, 205–212. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, W.; Hair, D.; Xu, J.; Wu, C.; Han, C.C. Light scattering studies of stereocomplex formation of stereoregular poly(methyl methacrylate) in solutions. Eur. Polym. J. 2005, 41, 447–452. [Google Scholar] [CrossRef]
- Joshi, M.D.; O’Donnell, J.N.; Venkatesan, N.; Chang, J.; Nguyen, H.; Rhodes, N.J.; Pais, G.; Chapman, R.L.; Griffin, B.; Scheetz, M.H. High-Performance Liquid Chromatography Method for Rich Pharmacokinetic Sampling Schemes in Translational Rat Toxicity Models with Vancomycin. Clin. Transl. Sci. 2017, 10, 496–502. [Google Scholar] [CrossRef]
- Pais, G.M.; Chang, J.; Liu, J.; Scheetz, M.H. A translational rat model to assess glomerular function changes with vancomycin. Int. J. Antimicrob. Agents 2022, 59, 106583. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Pais, G.M.; Valdez, K.; Marianski, S.; Barreto, E.F.; Scheetz, M.H. Glomerular Function and Urinary Biomarker Changes between Vancomycin and Vancomycin plus Piperacillin-Tazobactam in a Translational Rat Model. Antimicrob. Agents Chemother. 2022, 66, e0213221. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, W.C. Liposomal, Nanoparticle, and Conjugated Formulations of Anticancer Agents. Clin. Cancer Res. 2005, 11, 8230–8234. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, M.; Azadi, A.; Rafiei, P. Pharmacokinetic consequences of pegylation. Drug Deliv. 2006, 13, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Ellbogen, M.H.; Olsen, K.M.; Gentry-Nielsen, M.J.; Preheim, L.C. Efficacy of liposome-encapsulated ciprofloxacin compared with ciprofloxacin and ceftriaxone in a rat model of pneumococcal pneumonia. J. Antimicrob. Chemother. 2003, 51, 83–91. [Google Scholar] [CrossRef]
- Alavi, S.E.; Koohi Moftakhari Esfahani, M.; Raza, A.; Adelnia, H.; Ebrahimi Shahmabadi, H. PEG-grafted liposomes for enhanced antibacterial and antibiotic activities: An in vivo study. NanoImpact 2022, 25, 100384. [Google Scholar] [CrossRef]
- Schiffelers, R.; Storm, G.; Bakker-Woudenberg, I. Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. J. Antimicrob. Chemother. 2001, 48, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Eleraky, N.E.; Allam, A.; Hassan, S.B.; Omar, M.M. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Ogren, M.; Dias, J.N.R.; Silva, M.; Gil, S.; Tavares, L.; Aires-da-Silva, F.; Gaspar, M.M.; Aguiar, S.I. Liposomes as Antibiotic Delivery Systems: A Promising Nanotechnological Strategy against Antimicrobial Resistance. Molecules 2021, 26, 2047. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Criteria for Sample Analysis |
---|---|
Calibration standards (STDs) | The calculated concentrations of the calibration STDs, including the lower limit of quantification (LLOQ) and upper limit of quantification (ULOQ), should not deviate more than 25% from the nominal value (75.0% < Accuracy < 125.0%). At least 75% of the non-zero calibration standards (e.g., 6 in 8 calibration standards) should meet the above criteria. |
00 (Double blank) and 0 (Blank) | 1. Analyte peak area (00 or 0) ≤ Analyte peak area (LLOQ in calibration curve) 2. IS peak area (00) ≤ IS peak area (LLOQ in calibration curve) |
Quality control (QC) | The calculation of the QC samples should be within 25% of the nominal values (75.0% < Accuracy < 125.0%). At least 2/3 of the QC samples should be within the above limits. |
Unknown sample | 1. The analytical concentrations in the unknown samples were below the 75% LLOQ; they were 0. 2. The analytical concentrations in the unknown samples were above the ULOQ; they were coded “AU” (above the curve limit). The original samples were then diluted with the appropriate matrix and analyzed again in a separate run. |
Treatment | Kidney (g) | ||
---|---|---|---|
Left | Right | ||
Vancomycin Hydrochloride (VANCO) (n = 6) | Mean | 1.158 | 1.166 |
SEM | 0.012 | 0.024 | |
Vancomycin loaded PEGylated liposomes (PEG-VANCO-lipo) (n = 6) | Mean | 1.127 | 1.116 |
SEM | 0.044 | 0.043 | |
Control (n = 1) | Mean | 1.375 | 1.280 |
Treatment | Vancomycin Hydrochloride (VANCO) | Vancomycin-Loaded PEGylated Liposomes (PEG-VANCO-Lipo) | Unpaired t-Test | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
t1/2 (h) | 13.26 | 4.85 | 10.79 | 1.73 | ns |
C0 (mcg/mL) | 186.69 | 12.22 | 354.26 | 91.66 | * |
AUCINF (h × mcg/mL) | 1461.44 | 285.6 | 3698.86 | 837.24 | * |
MRT (h) | 17.073 | 5.95 | 12.95 | 2.7 | ns |
CL (mL/min/kg) | 1.7533 | 0.32 | 0.7 | 0.14 | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, M.D.; Iacoban, P.; Scheetz, M.H. Pharmacokinetic and Biomarker Quantification Studies on Vancomycin-Loaded PEGylated Liposomes and Its Potential to Reduce Vancomycin-Induced Kidney Injury: A Rat Study. Pharmaceutics 2023, 15, 1582. https://doi.org/10.3390/pharmaceutics15061582
Joshi MD, Iacoban P, Scheetz MH. Pharmacokinetic and Biomarker Quantification Studies on Vancomycin-Loaded PEGylated Liposomes and Its Potential to Reduce Vancomycin-Induced Kidney Injury: A Rat Study. Pharmaceutics. 2023; 15(6):1582. https://doi.org/10.3390/pharmaceutics15061582
Chicago/Turabian StyleJoshi, Medha D., Paulina Iacoban, and Marc H. Scheetz. 2023. "Pharmacokinetic and Biomarker Quantification Studies on Vancomycin-Loaded PEGylated Liposomes and Its Potential to Reduce Vancomycin-Induced Kidney Injury: A Rat Study" Pharmaceutics 15, no. 6: 1582. https://doi.org/10.3390/pharmaceutics15061582