Controlled Release of Flurbiprofen from 3D-Printed and Supercritical Carbon Dioxide Processed Methacrylate-Based Polymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Drug Release Measurements
2.3. Steady State Determination
Algorithm 1: Pseudo-code to determine sample’s steady-state region |
For each sample n:
|
2.4. Modeling of Drug Release
2.4.1. Empirical Modeling
Zero-Order
First-Order
Higuchi
Korsmeyer-Peppas
Weibull
2.4.2. Diffusion-Based Modeling
3. Results and Discussion
3.1. Drug Release Time and Dosage at Steady State
3.2. Empirical Modeling of Drug Release
3.3. Diffusion-Based Modeling of Drug Release
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pugliese, R.; Beltrami, B.; Regondi, S.; Lunetta, C. Polymeric biomaterials for 3D printing in medicine: An overview. Ann. 3d Print. Med. 2021, 2, 100011. [Google Scholar] [CrossRef]
- Velu, R.; Kamarajan, B.P.; Ananthasubramanian, M.; Ngo, T.; Singamnenia, S. Post-process composition and biological responses of laser sintered PMMA and β-TCP composites. J. Mater. Res. 2018, 33, 1987–1998. [Google Scholar] [CrossRef]
- Valerga, A.P.; Batista, M.; Fernandez-Vidal, S.R.; Gamez, A.J. Impact of chemical postprocessing in fused deposition modelling (FDM) on Polylactic Acid (PLA) surface quality and structure. Polymers 2019, 11, 566. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.T.; Blair, S.; Kuwahara, K.; Christensen, D.; Barrera, I.; Domingo, M.; Singamneni, S. Drug impregnation for laser sintered poly(methyl methacrylate) biocomposites using supercritical carbon dioxide. J. Supercrit. Fluids 2018, 136, 29–36. [Google Scholar] [CrossRef]
- Ngo, T.T.; Hoffman, L.; Hoople, G.D.; Trevena, W.; Shakya, U.; Barr, G. Surface morphology and drug loading characterization of 3D-printedmethacrylate-based polymer facilitated by supercritical carbon dioxide. J. Supercrit. Fluids 2020, 160, 104786. [Google Scholar] [CrossRef]
- Elvira, C.; Fanovich, A.; Fernandez, M.; Fraile, J.; San Roman, J.; Domingo, C. Evaluation of drug delivery characteristics of microspheres of PMMA–PCL–cholesterol obtained by supercritical-CO2 impregnation and by dissolution–evaporation techniques. J. Control Release 2004, 99, 231–240. [Google Scholar] [CrossRef]
- Bouledjouidja, A.; Masmoudi, Y.; Sergent, M.; Badens, E. Effect of operational conditions on the supercritical carbon dioxide impregnation of anti-inflammatory and antibiotic drugs in rigid commercial intraocular lenses. J. Supercrit. Fluids 2017, 130, 63–75. [Google Scholar] [CrossRef]
- Diankov, S.; Barth, D.; Vega-Gonzalez, A.; Pentchev, I.; Subra-Paternault, P. Impregnation isotherms of hydroxybenzoic acid on PMMA in supercritical carbon dioxide. J. Supercrit. Fluids 2007, 41, 164–172. [Google Scholar] [CrossRef]
- Schmid, J.; Wahl, M.A.; Daniels, R. Supercritical fluid technology for the development of 3D printed controlled drug release dosage forms. Pharmaceutics 2021, 13, 543. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Ramburrun, P.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Pillay, V. Design of chitospheres loaded with pristine polymer particles for extended drug delivery via polyelectrolyte complexation and particulate leaching. Int. J. Pharm. 2015, 479, 189–206. [Google Scholar] [CrossRef]
- Simoes, M.C.R.; Cragg, S.M.; Barbu, E.; De Sousa, F.B. The potential of electrospun poly(methyl methacrylate)/polycaprolactone core–sheath fibers for drug delivery applications. J. Mater. Sci. 2019, 54, 5712–5725. [Google Scholar] [CrossRef]
- Sohrabi, A.; Shaibani, P.M.; Etayash, H.; Kaur, K.; Thundat, T. Sustained drug release and antibacterial activity of ampicillin incorporated poly(methyl methacrylate)enylon6 core/shell nanofibers. Polymer 2013, 54, 2699–2705. [Google Scholar] [CrossRef]
- Lin, M.; Wang, H.; Meng, S.; Zhong, W.; Li, Z.; Cai, R.; Chen, Z.; Zhou, X.; Du, Q. Structure and release behavior of PMMA/silica composite drug delivery system. J. Pharm. Sci. 2007, 96, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Zupančič, S.; Sinha-Ray, S.; Sinha-Ray, S.; Kristl, J.; Yarin, A.L. Long-term sustained ciprofloxacin release from PMMA and hydrophilic polymer blended nanofibers. Mol. Pharm. 2016, 13, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.S.V.K.; Chung, I.; Reddy, K.M.; Ha, C.S. PMMA-based microgels for controlled release of an anticancer drug. J. Appl. Polym. Sci. 2009, 111, 845–853. [Google Scholar] [CrossRef]
- Janas, C.; Mast, M.P.; Kirsamer, L.; Angioni, C.; Gao, F.; Mäntele, W.; Dressman, J.; Wacker, M.G. The dispersion releaser technology is an effective method for testing drug release from nanosized drug carriers. Euro. J. Pharma. Biopharma. 2017, 115, 73–83. [Google Scholar] [CrossRef]
- Anwar, S.; Carroll, J.J. Carbon Dioxide Thermodynamic Properties Handbook: Covering Temperatures From −20° to 250 °C and Pressures up to 1000 Bar, Incorporated, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 45–52. Available online: http://ebookcentral.proquest.com/lib/sandiego/detail.action?docID=4462532 (accessed on 8 February 2023).
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm.-Drug Res. 2010, 67, 217–223. [Google Scholar]
- Freitas, M.N.; Marchetti, J.M. Nimesulide PLA microspheres as a potential sustained release system for the treatment of inflammatory diseases. Int. J. Pharm. 2005, 295, 201–211. [Google Scholar] [CrossRef]
- Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 2010, 7, 429–444. [Google Scholar] [CrossRef]
- Shinkai, T.; Ito, K.; Yokoyama, H. Swelling measurement of polymers in high pressure carbon dioxide using a spectroscopic reflectometer. J. Supercrit. Fluids 2014, 95, 553–559. [Google Scholar] [CrossRef]
- Nikitin, L.N.; Said-Galiyev, E.E.; Vinokur, R.A.; Khokhlov, A.R.; Gallyamov, M.O.; Schaumburg, K. Poly(methyl methacrylate) and poly(butyl methacrylate) swelling in supercritical carbon dioxide. Macromolecules 2002, 35, 934–940. [Google Scholar] [CrossRef]
- Rajendran, A.; Bonavoglia, B.; Forrer, N.; Storti, G.; Mazzotti, M.; Mor-bidelli, M. Simultaneous measurement of swelling and sorption in a supercritical CO2-poly(methyl methacrylate) system. Ind. Eng. Chem. Res. 2005, 44, 2549–2560. [Google Scholar] [CrossRef]
- Pantoula, M.; Schnitzler, J.V.; Eggers, R.; Panayiotou, C. Sorption and swelling in glassy polymer/carbon dioxide systems part II-swelling. J. Supercrit. Fluids 2007, 39, 426–434. [Google Scholar] [CrossRef]
- Li, R.; Zhang, Z.; Fang, T. Experimental research on swelling and glass transition behavior of poly(methyl methacrylate) in supercritical carbon dioxide. J. Supercrit. Fluids 2016, 110, 110–116. [Google Scholar] [CrossRef]
- López-Periago, A.; Argemí, A.; Andanson, J.M.; Fernández, V.; García-González, C.A.; Kazarian, S.G.; Saurina, J.; Domingo, C. Impregnation of a biocompatible polymer aided by supercritical CO2: Evaluation of drug stability and drug-matrix interactions. J. Supercrit. Fluids 2009, 48, 56–63. [Google Scholar] [CrossRef]
- Kosmidis, K.; Argyrakis, P.; Macheras, P. A reappraisal of drug release laws using Monte Carlo simulations: The prevalence of the Weibull function. Pharm. Res. 2003, 20, 988–995. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, M.; Park, C.G.; Lee, J.E.; Prausnitz, M.R.; Choy, Y.B. Microchip for sustained drug delivery by diffusion through microchannels. AAPS Pharm. Sci. Tech. 2012, 13, 211–217. [Google Scholar] [CrossRef]
- Brazel, C.S.; Peppas, N.A. Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers. Polymer 1999, 40, 3383–3398. [Google Scholar] [CrossRef]
- Akyüz, L.; Duman, F.; Kaya, M. Encapsulation of flurbiprofen by chitosan using a spray-drying method with in vitro drug releasing and molecular docking. Turk. J. Pharm. Sci. 2017, 14, 34–39. [Google Scholar] [CrossRef]
Drug Delivery System | ScCO2 Processing Temperature (K) | ScCO2 Processing Pressure (bar) | CO2 Density (kg/m3) | Average Drug Loading × 100 (%) |
---|---|---|---|---|
A | 313 | 115 | 702.2 | 16.00 ± 0.92 |
B | 313 | 125 | 731.2 | 16.67 ± 1.05 |
C | 313 | 135 | 753.6 | 15.63 ± 3.05 |
D | 313 | 148 | 777.0 | 14.18 ± 0.64 |
E | 323 | 115 | 548.8 | 21.02 ± 2.35 |
F | 323 | 125 | 613.0 | 23.28 ± 0.61 |
G | 323 | 135 | 655.5 | 24.08 ± 1.43 |
H | 323 | 148 | 694.6 | 21.75 ± 4.07 |
Drug Delivery System | First-Order | Higuchi | Korsmeyer-Peppas | Weibull |
---|---|---|---|---|
A | k = (1.02 ± 0.24) × 10−2 R2 = [0.88, 0.96] | k = (4.28 ± 0.55) × 10−2 R2 = [0.34, 0.87] | k = 0.52 ± 0.11 n = 1.07 ± 0.03 R2 = [0.17, 0.39] | a = 147.91 ± 2.91 b = 0.48 ± 0.07 R2 = 0.91 |
B | k = (1.25 ± 0.30) × 10−2 R2 = [0.92, 0.97] | k = (4.59 ± 0.36) × 10−2 R2 = [0.80, 0.90] | k = 0.56 ± 0.11 n = 1.05 ± 0.04 R2 = [0.08, 0.40] | a = 132.94 ± 39.63 b = 0.56 ± 0.05 R2 = [0.95, 0.98] |
C | k = (8.85 ± 3.20) × 10−3 R2 = [0.92, 0.93] | k = (3.92 ± 0.81) × 10−2 R2 = [0.19, 0.88] | k = 0.58 ± 0.13 n = 1.04 ± 0.02 R2 = [0.08, 0.28] | a = 199.73 ± 129.77 b = 0.49 ± 0.07 R2 = [0.92, 0.97] |
D | k = (8.75 ± 1.30) × 10−3 R2 = [0.92, 0.98] | k = (3.91 ± 0.26) × 10−2 R2 = [0.47, 0.90] | k = 0.53 ± 0.03 n = 1.05 ± 0.00 R2 = [0.26, 0.29] | a = 199.16 ± 40.41 b = 0.57 ± 0.10 R2 = [0.80, 0.97] |
E | k = (1.04 ± 0.40) × 10−2 R2 = [0.87, 0.94] | k = (4.24 ± 0.66) × 10−2 R2 = [0.46, 0.72] | k = 0.79 ± 0.60 n = 0.98 ± 0.18 R2 = [−5.05, 0.44] | a = 171.49 ± 62.81 b = 0.49 ± 0.10 R2 = [0.86, 0.95] |
F | k = (1.16 ± 0.18) × 10−2 R2 = [0.93, 0.96] | k = (4.45 ± 0.34) × 10−2 R2 = [−0.20, 0.66] | k = 0.72 ± 0.06 n = 1.02 ± 0.02 R2 = [0.08, 0.18] | a = 90.18 ± 43.07 b = 0.47 ± 0.04 R2 = [0.97, 0.98] |
G | k = (7.92 ± 1.67) × 10−3 R2 = [0.91, 0.94] | k = (3.84 ± 0.42) × 10−2 R2 = [0.39, 0.88] | k = 0.44 ± 0.23 n = 1.09 ± 0.07 R2 = [0.09, 0.61] | a = 225.27 ± 108.59 b = 0.48 ± 0.06 R2 = [0.96, 0.99] |
H | k = (1.01 ± 0.10) × 10−2 R2 = [0.95, 0.96] | k = (4.20 ± 0.27) × 10−2 R2 = [0.70, 0.79] | k = 0.57 ± 0.08 n = 1.06 ± 0.02 R2 = [0.17, 0.41] | a = 141.46 ± 13.68 b = 0.56 ± 0.01 R2 = [0.98, 0.99] |
Drug Delivery System | DI (cm2/s), for Stage I Release(0 ≤ Mt/Mo ≤ 0.6) | DII (cm2/s), for Stage II Release (0.6 < Mt/Mo ≤ Steady State) | Diffusion Rate Reduction from Stage I to Stage II |
---|---|---|---|
A | (1.82 ± 0.14) × 10−10 | (1.29 ± 0.16) × 10−10 | 29.2% |
B | (2.07 ± 0.37) × 10−10 | (1.35 ± 0.16) × 10−10 | 34.6% |
C | (1.86 ± 0.94) × 10−10 | (1.01 ± 0.36) × 10−10 | 45.6% |
D | (1.10 ± 0.29) × 10−10 | (1.10 ± 0.10) × 10−10 | 0% |
E | (2.09 ± 1.51) × 10−10 | (1.33 ± 0.57) × 10−10 | 36.6% |
F | (3.33 ± 0.97) × 10−10 | (1.44 ± 0.18) × 10−10 | 56.7% |
G | (1.34 ± 0.96) × 10−10 | (6.54 ± 2.03) × 10−11 | 51.1% |
H | (2.04 ± 0.22) × 10−10 | (1.39 ± 0.12) × 10−10 | 32.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, T.T.; Kim, J.D. Controlled Release of Flurbiprofen from 3D-Printed and Supercritical Carbon Dioxide Processed Methacrylate-Based Polymer. Pharmaceutics 2023, 15, 1301. https://doi.org/10.3390/pharmaceutics15041301
Ngo TT, Kim JD. Controlled Release of Flurbiprofen from 3D-Printed and Supercritical Carbon Dioxide Processed Methacrylate-Based Polymer. Pharmaceutics. 2023; 15(4):1301. https://doi.org/10.3390/pharmaceutics15041301
Chicago/Turabian StyleNgo, Truc T., and Jae D. Kim. 2023. "Controlled Release of Flurbiprofen from 3D-Printed and Supercritical Carbon Dioxide Processed Methacrylate-Based Polymer" Pharmaceutics 15, no. 4: 1301. https://doi.org/10.3390/pharmaceutics15041301
APA StyleNgo, T. T., & Kim, J. D. (2023). Controlled Release of Flurbiprofen from 3D-Printed and Supercritical Carbon Dioxide Processed Methacrylate-Based Polymer. Pharmaceutics, 15(4), 1301. https://doi.org/10.3390/pharmaceutics15041301