Precision Oncology by Point-of-Care Therapeutic Drug Monitoring and Dosage Adjustment of Conventional Cytotoxic Chemotherapies: A Perspective
Abstract
:1. Introduction
2. Examples of TDM for Cytotoxic Compounds
2.1. The First Cytotoxic Agent to Be Followed with TDM: Methotrexate
2.2. Consistently Subject to TDM: Busulfan
2.3. Sporadically Subject to TDM: Etoposide
2.4. A French Specialty: TDM of 5-Fluorouracil
2.5. Not Currently Benefiting from TDM: Cyclophosphamide and Ifosfamide
3. Unmet Needs in TDM for Chemotherapeutics
4. Adapting TDM to Cytotoxic Agents Using a POC Approach
4.1. Point-of-Care Tests in Oncology Treatments
4.2. Current Sensors for Chemotherapeutics
4.3. Continuous TDM and Wearable Technologies
5. Model-Based Dose Adjustment as the Ultimate Goal of POC TDM
5.1. Reliability of the Interpretation and Recommendation Platform
5.2. Precision Dosing: Convergence between PK and PD Data
5.3. TDM as a Source of Continuous Learning
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knezevic, C.E.; Clarke, W. Cancer Chemotherapy: The Case for Therapeutic Drug Monitoring. Ther. Drug Monit. 2020, 42, 6–19. [Google Scholar] [CrossRef]
- De Jonge, M.E.; Huitema, A.D.; Schellens, J.H.; Rodenhuis, S.; Beijnen, J.H. Individualised cancer chemotherapy: Strategies and performance of prospective studies on therapeutic drug monitoring with dose adaptation: A review. Clin. Pharmacokinet. 2005, 44, 147–173. [Google Scholar] [CrossRef] [PubMed]
- Widmer, N.; Csajka, C.; Grouzmann, E.; Decosterd, L.A.; Buclin, T.; Biollaz, J.; Werner, D.; Eap, D.C.B.; Regli, D.L.; Burnand, D.B. Revue Médicale Suisse: Suivi thérapeutique des médicaments (I) les principes. Rev. Méd. Suisse 2008, 4, 1644–1648. [Google Scholar]
- Maier, C.; de Wiljes, J.; Hartung, N.; Kloft, C.; Huisinga, W. A continued learning approach for model-informed precision dosing: Updating models in clinical practice. CPT Pharmacomet. Syst. Pharmacol. 2022, 11, 185–198. [Google Scholar] [CrossRef]
- Lennard, L. Therapeutic drug monitoring of cytotoxic drugs. Br. J. Clin. Pharmacol. 2001, 52 (Suppl. 1), 75S–87S. [Google Scholar] [CrossRef] [PubMed]
- Paci, A.; Veal, G.; Bardin, C.; Leveque, D.; Widmer, N.; Beijnen, J.; Astier, A.; Chatelut, E. Review of therapeutic drug monitoring of anticancer drugs part 1—Cytotoxics. Eur. J. Cancer 2014, 50, 2010–2019. [Google Scholar] [CrossRef] [PubMed]
- Smita, P.; Narayan, P.A.; Kumaravel, J.; Gaurav, P. Therapeutic drug monitoring for cytotoxic anticancer drugs: Principles and evidence-based practices. Front. Oncol. 2022, 12, 1015200. [Google Scholar] [CrossRef]
- Widmer, N.; Grouzmann, E.; Fayet, A.; Csajka, C.; Decosterd, L.A.; Buclin, T.; Werner, D.; Marchetti, O.; Eap, C.B.; Burnand, D. Revue Médicale Suisse: Suivi thérapeutique des médicaments (II) la pratique clinique. Revue Méd. Suisse 2008, 4, 1649–1660. [Google Scholar]
- Decosterd, L.A.; Widmer, N.; Andre, P.; Aouri, M.; Buclin, T. The emerging role of multiplex tandem mass spectrometry analysis for therapeutic drug monitoring and personalized medicine. TrAC Trends Anal. Chem. 2016, 84, 5–13. [Google Scholar] [CrossRef]
- Bardin, C.; Veal, G.; Paci, A.; Chatelut, E.; Astier, A.; Leveque, D.; Widmer, N.; Beijnen, J. Therapeutic drug monitoring in cancer—Are we missing a trick? Eur. J. Cancer 2014, 50, 2005–2009. [Google Scholar] [CrossRef]
- Aicua-Rapun, I.; Andre, P.; Rossetti, A.O.; Ryvlin, P.; Hottinger, A.F.; Decosterd, L.A.; Buclin, T.; Novy, J. Therapeutic Drug Monitoring of Newer Antiepileptic Drugs: A Randomized Trial for Dosage Adjustment. Ann. Neurol. 2020, 87, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Decosterd, L.A.; Mercier, T.; Ternon, B.; Cruchon, S.; Guignard, N.; Lahrichi, S.; Pesse, B.; Rochat, B.; Burger, R.; Lamoth, F.; et al. Validation and clinical application of a multiplex high performance liquid chromatography—Tandem mass spectrometry assay for the monitoring of plasma concentrations of 12 antibiotics in patients with severe bacterial infections. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1157, 122160. [Google Scholar] [CrossRef] [PubMed]
- Mercier, T.; Desfontaine, V.; Cruchon, S.; Da Silva Pereira Clara, J.A.; Briki, M.; Mazza-Stalder, J.; Kajkus, A.; Burger, R.; Suttels, V.; Buclin, T.; et al. A battery of tandem mass spectrometry assays with stable isotope-dilution for the quantification of 15 anti-tuberculosis drugs and two metabolites in patients with susceptible-, multidrug-resistant- and extensively drug-resistant tuberculosis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1211, 123456. [Google Scholar] [CrossRef] [PubMed]
- Lindley, C.; Shea, T.; McCune, J.; Shord, S.; Decker, J.; Harvey, D.; Petros, W.P.; Garbriel, D.; Serody, J.; Kirby, S.; et al. Intraindividual variability in busulfan pharmacokinetics in patients undergoing a bone marrow transplant: Assessment of a test dose and first dose strategy. Anti-Cancer Drugs 2004, 15, 453–459. [Google Scholar] [CrossRef]
- Luppa, P.B.; Muller, C.; Schlichtiger, A.; Schlebusch, H. Point-of-care testing (POCT): Current techniques and future perspectives. Trends Anal. Chem. 2011, 30, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Ates, H.C.; Roberts, J.A.; Lipman, J.; Cass, A.E.G.; Urban, G.A.; Dincer, C. On-Site Therapeutic Drug Monitoring. Trends Biotechnol. 2020, 38, 1262–1277. [Google Scholar] [CrossRef]
- Taddeo, A.; Prim, D.; Bojescu, E.D.; Segura, J.M.; Pfeifer, M.E. Point-of-Care Therapeutic Drug Monitoring for Precision Dosing of Immunosuppressive Drugs. J. Appl. Lab. Med. 2020, 5, 738–761. [Google Scholar] [CrossRef]
- Stoller, R.G.; Hande, K.R.; Jacobs, S.A.; Rosenberg, S.A.; Chabner, B.A. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N. Engl. J. Med. 1977, 297, 630–634. [Google Scholar] [CrossRef]
- SwissMedicInfo, Méthotrexate Sandoz® Solution à Diluer Pour Solution Injectable/Pour Perfusion, Sandoz Pharmaceuticals AG. Available online: https://swissmedicinfo.ch/showText.aspx?textType=FI&lang=FR&authNr=51079 (accessed on 22 February 2023).
- Maksimovic, V.; Pavlovic-Popovic, Z.; Vukmirovic, S.; Cvejic, J.; Mooranian, A.; Al-Salami, H.; Mikov, M.; Golocorbin-Kon, S. Molecular mechanism of action and pharmacokinetic properties of methotrexate. Mol. Biol. Rep. 2020, 47, 4699–4708. [Google Scholar] [CrossRef]
- Howard, S.C.; McCormick, J.; Pui, C.H.; Buddington, R.K.; Harvey, R.D. Preventing and Managing Toxicities of High-Dose Methotrexate. Oncologist 2016, 21, 1471–1482. [Google Scholar] [CrossRef]
- Leveque, D.; Santucci, R.; Gourieux, B.; Herbrecht, R. Pharmacokinetic drug-drug interactions with methotrexate in oncology. Expert Rev. Clin. Pharmacol. 2011, 4, 743–750. [Google Scholar] [CrossRef]
- Dao, K.; Ivanyuk, A.; Buclin, T.; Beck-Popovic, M.; Diezi, M. Pharmacokinetic interaction between methotrexate and chloral hydrate. Pediatr. Blood Cancer 2013, 60, 518–520. [Google Scholar] [CrossRef] [PubMed]
- Dombrowsky, E.; Jayaraman, B.; Narayan, M.; Barrett, J.S. Evaluating performance of a decision support system to improve methotrexate pharmacotherapy in children and young adults with cancer. Ther. Drug Monit. 2011, 33, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Hu, Y.; Liu, S.; Wang, G.; Zhai, S.; Zhang, X.; Li, Y.; Du, G.; Shi, Y.; Chen, Y.; et al. Medication therapy of high-dose methotrexate: An evidence-based practice guideline of the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society. Br. J. Clin. Pharmacol. 2022, 88, 2456–2472. [Google Scholar] [CrossRef]
- Le Guellec, C.; Blasco, H.; Benz, I.; Hulin, A.; Pour le groupe Suivi Thérapeutique Pharmacologique de la Société Française de Pharmacologie et de Thérapeutique. Therapeutic drug monitoring of methotrexate after its administration in high-dose protocols. Therapie 2010, 65, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Beechinor, R.J.; Thompson, P.A.; Hwang, M.F.; Vargo, R.C.; Bomgaars, L.R.; Gerhart, J.G.; Dreyer, Z.E.; Gonzalez, D. The Population Pharmacokinetics of High-Dose Methotrexate in Infants with Acute Lymphoblastic Leukemia Highlight the Need for Bedside Individualized Dose Adjustment: A Report from the Children’s Oncology Group. Clin. Pharmacokinet. 2019, 58, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Marsit, H.; Philippe, M.; Neely, M.; Rushing, T.; Bertrand, Y.; Ducher, M.; Leclerc, V.; Guitton, J.; Bleyzac, N.; Goutelle, S. Intra-individual Pharmacokinetic Variability of Intravenous Busulfan in Hematopoietic Stem Cell-Transplanted Children. Clin. Pharmacokinet. 2020, 59, 1049–1061. [Google Scholar] [CrossRef]
- Choong, E.; Uppugunduri, C.R.S.; Marino, D.; Kuntzinger, M.; Doffey-Lazeyras, F.; Lo Piccolo, R.; Chalandon, Y.; Peters, C.; Daali, Y.; Ansari, M. Therapeutic Drug Monitoring of Busulfan for the Management of Pediatric Patients: Cross-Validation of Methods and Long-Term Performance. Ther. Drug Monit. 2018, 40, 84–92. [Google Scholar] [CrossRef]
- Lawson, R.; Staatz, C.E.; Fraser, C.J.; Hennig, S. Review of the Pharmacokinetics and Pharmacodynamics of Intravenous Busulfan in Paediatric Patients. Clin. Pharmacokinet. 2021, 60, 17–51. [Google Scholar] [CrossRef]
- Bartelink, I.H.; Lalmohamed, A.; van Reij, E.M.; Dvorak, C.C.; Savic, R.M.; Zwaveling, J.; Bredius, R.G.; Egberts, A.C.; Bierings, M.; Kletzel, M.; et al. Association of busulfan exposure with survival and toxicity after haemopoietic cell transplantation in children and young adults: A multicentre, retrospective cohort analysis. Lancet Haematol. 2016, 3, e526–e536. [Google Scholar] [CrossRef]
- Feng, X.; Wu, Y.; Zhang, J.; Li, J.; Zhu, G.; Fan, D.; Yang, C.; Zhao, L. Busulfan systemic exposure and its relationship with efficacy and safety in hematopoietic stem cell transplantation in children: A meta-analysis. BMC Pediatr. 2020, 20, 176. [Google Scholar] [CrossRef] [PubMed]
- Seydoux, C.; Battegay, R.; Halter, J.; Heim, D.; Rentsch, K.M.; Passweg, J.R.; Medinger, M. Impact of busulfan pharmacokinetics on outcome in adult patients receiving an allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2022, 57, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Goutelle, S.; Thoma, Y.; Buffet, R.; Philippe, M.; Buclin, T.; Guidi, M.; Csajka, C. Implementation and Cross-Validation of a Pharmacokinetic Model for Precision Dosing of Busulfan in Hematopoietic Stem Cell Transplanted Children. Pharmaceutics 2022, 14, 2107. [Google Scholar] [CrossRef] [PubMed]
- Neroutsos, E.; Nalda-Molina, R.; Paisiou, A.; Zisaki, K.; Goussetis, E.; Spyridonidis, A.; Kitra, V.; Grafakos, S.; Valsami, G.; Dokoumetzidis, A. Development of a Population Pharmacokinetic Model of Busulfan in Children and Evaluation of Different Sampling Schedules for Precision Dosing. Pharmaceutics 2022, 14, 647. [Google Scholar] [CrossRef] [PubMed]
- Buclin, T.; Thoma, Y.; Widmer, N.; Andre, P.; Guidi, M.; Csajka, C.; Decosterd, L.A. The Steps to Therapeutic Drug Monitoring: A Structured Approach Illustrated With Imatinib. Front. Pharmacol. 2020, 11, 177. [Google Scholar] [CrossRef]
- Lin, Y.S.; Kerr, S.J.; Randolph, T.; Shireman, L.M.; Senn, T.; McCune, J.S. Prediction of Intravenous Busulfan Clearance by Endogenous Plasma Biomarkers Using Global Pharmacometabolomics. Metabolomics 2016, 12, 161. [Google Scholar] [CrossRef]
- Delgado, J.L.; Hsieh, C.M.; Chan, N.L.; Hiasa, H. Topoisomerases as anticancer targets. Biochem. J. 2018, 475, 373–398. [Google Scholar] [CrossRef]
- Smyth, R.D.; Pfeffer, M.; Scalzo, A.; Comis, R.L. Bioavailability and pharmacokinetics of etoposide (VP-16). Semin. Oncol. 1985, 12, 48–51. [Google Scholar]
- ETOPOPHOS® (Etoposide Phosphate) for INJECTION. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/020457s013lbl.pdf (accessed on 14 March 2023).
- Veal, G.J.; Errington, J.; Thomas, H.D.; Boddy, A.V.; Lowis, S. Biliary excretion of etoposide in children with cancer. Cancer Chemother. Pharmacol. 2006, 58, 415–417. [Google Scholar] [CrossRef]
- Lowis, S.P.; Price, L.; Pearson, A.D.; Newell, D.R.; Cole, M. A study of the feasibility and accuracy of pharmacokinetically guided etoposide dosing in children. Br. J. Cancer 1998, 77, 2318–2323. [Google Scholar] [CrossRef]
- Montgomery, B.; Lin, D.W. Toxicities of chemotherapy for genitourinary malignancies. In Complications of Urologic Surgery: Diagnosis, Prevention, and Management, 4th ed.; Taneja, S.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 117–123. [Google Scholar] [CrossRef]
- Freyer, G.; Ligneau, B.; Tranchand, B.; Ardiet, C.; Souquet, P.J.; Court-Fortune, I.; Riou, R.; Rebattu, P.; Morignat, E.; Boissel, J.P.; et al. The prognostic value of etoposide area under the curve (AUC) at first chemotherapy cycle in small cell lung cancer patients: A multicenter study of the groupe Lyon-Saint-Etienne d’Oncologie Thoracique (GLOT). Lung Cancer 2001, 31, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Moeung, S.; Chevreau, C.; Marsili, S.; Massart, C.; Flechon, A.; Delva, R.; Gravis, G.; Lotz, J.P.; Bay, J.O.; Gross-Goupil, M.; et al. Pharmacokinetic and Pharmacogenetic Study of Etoposide in High-Dose Protocol (TI-CE) for Advanced Germ Cell Tumors. Pharm. Res. 2020, 37, 147. [Google Scholar] [CrossRef] [PubMed]
- Santini, J.; Milano, G.; Thyss, A.; Renee, N.; Viens, P.; Ayela, P.; Schneider, M.; Demard, F. 5-FU therapeutic monitoring with dose adjustment leads to an improved therapeutic index in head and neck cancer. Br. J. Cancer 1989, 59, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Kobuchi, S.; Ito, Y. Application of Pharmacometrics of 5-Fluorouracil to Personalized Medicine: A Tool for Predicting Pharmacokinetic-Pharmacodynamic/Toxicodynamic Responses. Anti-Cancer Res. 2020, 40, 6585–6597. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, R.A.; de Valdivia, E.G.; Visa, N. The Incorporation of 5-Fluorouracil into RNA Affects the Ribonucleolytic Activity of the Exosome Subunit Rrp6. Mol. Cancer Res. 2011, 9, 332–340. [Google Scholar] [CrossRef]
- Casale, J.; Patel, P. Fluorouracil. In StatPearls; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Deac, A.L.; Burz, C.C.; Bocse, H.F.; Bocsan, I.C.; Buzoianu, A.D. A review on the importance of genotyping and phenotyping in fluoropyrimidine treatment. Med. Pharm. Rep. 2020, 93, 223–230. [Google Scholar] [CrossRef]
- Latchman, J.; Guastella, A.; Tofthagen, C. 5-Fluorouracil toxicity and dihydropyrimidine dehydrogenase enzyme: Implications for practice. Clin. J. Oncol. Nurs. 2014, 18, 581–585. [Google Scholar] [CrossRef]
- Jose, N.; Joel, A.; Selvakumar, R.J.; Ramireddy, J.; John, A.O.; Georgy, J.T.; Singh, A.; Ram, T.S. Diagnosis and management of 5-fluorouracil (5-FU)-induced acute leukoencephalopathy: Lessons learnt from a single-Centre case series. J. Egypt. Natl. Cancer Inst. 2022, 34, 22. [Google Scholar] [CrossRef]
- Cristina, V.; Mahachie, J.; Mauer, M.; Buclin, T.; Van Cutsem, E.; Roth, A.; Wagner, A.D. Association of Patient Sex With Chemotherapy-Related Toxic Effects: A Retrospective Analysis of the PETACC-3 Trial Conducted by the EORTC Gastrointestinal Group. JAMA Oncol. 2018, 4, 1003–1006. [Google Scholar] [CrossRef]
- Wagner, A.D.; Grothey, A.; Andre, T.; Dixon, J.G.; Wolmark, N.; Haller, D.G.; Allegra, C.J.; de Gramont, A.; VanCutsem, E.; Alberts, S.R.; et al. Sex and Adverse Events of Adjuvant Chemotherapy in Colon Cancer: An Analysis of 34 640 Patients in the ACCENT Database. J. Natl. Cancer Inst. 2021, 113, 400–407. [Google Scholar] [CrossRef]
- Acharya, G.; Cruz Carreras, M.T.; Rice, T.W. 5-FU-induced leukoencephalopathy with reversible lesion of splenium of corpus callosum in a patient with colorectal cancer. BMJ Case Rep. 2017, 2017, bcr-2017. [Google Scholar] [CrossRef] [PubMed]
- Akitake, R.; Miyamoto, S.; Nakamura, F.; Horimatsu, T.; Ezoe, Y.; Muto, M.; Chiba, T. Early detection of 5-FU-induced acute leukoencephalopathy on diffusion-weighted MRI. Jpn. J. Clin. Oncol. 2011, 41, 121–124. [Google Scholar] [CrossRef]
- Saif, M.W.; Choma, A.; Salamone, S.J.; Chu, E. Pharmacokinetically guided dose adjustment of 5-fluorouracil: A rational approach to improving therapeutic outcomes. J. Natl. Cancer Inst. 2009, 101, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Chavani, O. 5-Fluorouracil Response Prediction and Blood Level-Guided Therapy in Oncology: Existing Evidence Fundamentally Supports Instigation. Ther. Drug Monit. 2020, 42, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Kaldate, R.R.; Haregewoin, A.; Grier, C.E.; Hamilton, S.A.; McLeod, H.L. Modeling the 5-fluorouracil area under the curve versus dose relationship to develop a pharmacokinetic dosing algorithm for colorectal cancer patients receiving FOLFOX6. Oncologist 2012, 17, 296–302. [Google Scholar] [CrossRef]
- Freeman, K.; Saunders, M.P.; Uthman, O.A.; Taylor-Phillips, S.; Connock, M.; Court, R.; Gurung, T.; Sutcliffe, P.; Clarke, A. Is monitoring of plasma 5-fluorouracil levels in metastatic / advanced colorectal cancer clinically effective? A systematic review. BMC Cancer 2016, 16, 523. [Google Scholar] [CrossRef]
- de Jonge, M.E.; Huitema, A.D.; Rodenhuis, S.; Beijnen, J.H. Clinical pharmacokinetics of cyclophosphamide. Clin. Pharmacokinet. 2005, 44, 1135–1164. [Google Scholar] [CrossRef]
- Cai, T.; Liao, Y.; Chen, Z.; Zhu, Y.; Qiu, X. The Influence of Different Triazole Antifungal Agents on the Pharmacokinetics of Cyclophosphamide. Ann. Pharmacother. 2020, 54, 676–683. [Google Scholar] [CrossRef]
- Marr, K.A.; Leisenring, W.; Crippa, F.; Slattery, J.T.; Corey, L.; Boeckh, M.; McDonald, G.B. Cyclophosphamide metabolism is affected by azole antifungals. Blood 2004, 103, 1557–1559. [Google Scholar] [CrossRef]
- Carreras, E.; Dufour, C.; Mohty, M.; Kroger, N. (Eds.) The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies, 7th ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Ben-Barouch, S.; Cohen, O.; Vidal, L.; Avivi, I.; Ram, R. Busulfan fludarabine vs busulfan cyclophosphamide as a preparative regimen before allogeneic hematopoietic cell transplantation: Systematic review and meta-analysis. Bone Marrow Transplant. 2016, 51, 232–240. [Google Scholar] [CrossRef]
- de Jonge, M.E.; Huitema, A.D.; Beijnen, J.H.; Rodenhuis, S. High exposures to bioactivated cyclophosphamide are related to the occurrence of veno-occlusive disease of the liver following high-dose chemotherapy. Br. J. Cancer 2006, 94, 1226–1230. [Google Scholar] [CrossRef] [PubMed]
- Ekhart, C.; Gebretensae, A.; Rosing, H.; Rodenhuis, S.; Beijnen, J.H.; Huitema, A.D. Simultaneous quantification of cyclophosphamide and its active metabolite 4-hydroxycyclophosphamide in human plasma by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 854, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Sadagopan, N.; Cohen, L.; Roberts, B.; Collard, W.; Omer, C. Liquid chromatography-tandem mass spectrometric quantitation of cyclophosphamide and its hydroxy metabolite in plasma and tissue for determination of tissue distribution. J. Chromatogr. B Biomed. Sci. Appl. 2001, 759, 277–284. [Google Scholar] [CrossRef]
- Broto, M.; McCabe, R.; Galve, R.; Marco, M.P. A high-specificity immunoassay for the therapeutic drug monitoring of cyclophosphamide. Analyst 2019, 144, 5172–5178. [Google Scholar] [CrossRef]
- Barnett, S.; Errington, J.; Sludden, J.; Jamieson, D.; Poinsignon, V.; Paci, A.; Veal, G.J. Pharmacokinetics and Pharmacogenetics of Cyclophosphamide in a Neonate and Infant Childhood Cancer Patient Population. Pharmaceuticals 2021, 14, 272. [Google Scholar] [CrossRef]
- Salinger, D.H.; McCune, J.S.; Ren, A.G.; Shen, D.D.; Slattery, J.T.; Phillips, B.; McDonald, G.B.; Vicini, P. Real-time dose adjustment of cyclophosphamide in a preparative regimen for hematopoietic cell transplant: A Bayesian pharmacokinetic approach. Clin. Cancer Res. 2006, 12, 4888–4898. [Google Scholar] [CrossRef]
- Kerbusch, T.; Huitema, A.D.; Ouwerkerk, J.; Keizer, H.J.; Mathot, R.A.; Schellens, J.H.; Beijnen, J.H. Evaluation of the autoinduction of ifosfamide metabolism by a population pharmacokinetic approach using NONMEM. Br. J. Clin. Pharmacol. 2000, 49, 555–561. [Google Scholar] [CrossRef]
- Wagner, T. Ifosfamide clinical pharmacokinetics. Clin. Pharmacokinet. 1994, 26, 439–456. [Google Scholar] [CrossRef]
- Kerbusch, T.; de Kraker, J.; Mathjt, R.A.; Beijnen, J.H. Population pharmacokinetics of ifosfamide and its dechloroethylated and hydroxylated metabolites in children with malignant disease: A sparse sampling approach. Clin. Pharmacokinet. 2001, 40, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Gangireddy, M.; Nookala, V. Ifosfamide. In StatPearls; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Torres, L.M.; Rivera-Espinosa, L.; Chavez-Pacheco, J.L.; Navas, C.F.; Demetrio, J.A.; Alemon-Medina, R.; Trujillo, F.; Perez, M.; Zapata, M.M.; Cardenas, R.; et al. A New Method to Quantify Ifosfamide Blood Levels Using Dried Blood Spots and UPLC-MS/MS in Paediatric Patients with Embryonic Solid Tumours. PLoS ONE 2015, 10, e0143421. [Google Scholar] [CrossRef]
- Kerbusch, T.; Jeuken, M.J.; Derraz, J.; van Putten, J.W.; Huitema, A.D.; Beijnen, J.H. Determination of ifosfamide, 2- and 3-dechloroethyifosfamide using gas chromatography with nitrogen-phosphorus or mass spectrometry detection. Ther. Drug Monit. 2000, 22, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Kurbanoglu, S.; Bakirhan, N.K.; Gumustas, M.; Ozkan, S.A. Modern Assay Techniques for Cancer Drugs: Electroanalytical and Liquid Chromatography Methods. Crit. Rev. Anal. Chem. 2019, 49, 306–323. [Google Scholar] [CrossRef] [PubMed]
- Pashaei, Y.; Mehrabi, M.; Shekarchi, M. A review on various analytical methods for determination of anthracyclines and their metabolites as anti-cancer chemotherapy drugs in different matrices over the last four decades. TrAC Trends Anal. Chem. 2020, 130, 115991. [Google Scholar] [CrossRef]
- Vithanachchi, D.T.; Maujean, A.; Downes, M.J.; Scuffham, P. A comprehensive review of economic evaluations of therapeutic drug monitoring interventions for cancer treatments. Br. J. Clin. Pharmacol. 2021, 87, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Polo, F.; Toffoli, G. Point-of-Care for Therapeutic Drug Monitoring of Antineoplastic Drugs. Med. Chem. 2016, 6, 6. [Google Scholar] [CrossRef]
- Alsultan, A.; Albassam, A.A.; Alturki, A.; Alsultan, A.; Essa, M.; Almuzzaini, B.; Alfadhel, S. Can First-Dose Therapeutic Drug Monitoring Predict the Steady State Area Under the Blood Concentration-Time Curve of Busulfan in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation? Front. Pediatr. 2022, 10, 834773. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, R.I.; Hayes-Conroy, A.; Caricchio, R.; Singer, B.H. From Evidence Based Medicine to Medicine Based Evidence. Am. J. Med. 2017, 130, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Salvati, E.; Stellacci, F.; Krol, S. Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine 2015, 10, 3495–3512. [Google Scholar] [CrossRef]
- Haney, K.; Tandon, P.; Divi, R.; Ossandon, M.R.; Baker, H.; Pearlman, P.C. The Role of Affordable, Point-of-Care Technologies for Cancer Care in Low- and Middle-Income Countries: A Review and Commentary. IEEE J. Transl. Eng. Health Med. 2017, 5, 2800514. [Google Scholar] [CrossRef]
- Syedmoradi, L.; Norton, M.L.; Omidfar, K. Point-of-care cancer diagnostic devices: From academic research to clinical translation. Talanta 2021, 225, 122002. [Google Scholar] [CrossRef]
- Pearce, C.M.; Resmini, M. Towards point of care systems for the therapeutic drug monitoring of imatinib. Anal. Bioanal. Chem. 2020, 412, 5925–5933. [Google Scholar] [CrossRef] [PubMed]
- Griss, R.; Schena, A.; Reymond, L.; Patiny, L.; Werner, D.; Tinberg, C.E.; Baker, D.; Johnsson, K. Bioluminescent sensor proteins for point-of-care therapeutic drug monitoring. Nat. Chem. Biol. 2014, 10, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Smutok, O.; Johnston, W.A.; Walden, P.; Ungerer, J.P.J.; Peat, T.S.; Newman, J.; Parker, J.; Nebl, T.; Hepburn, C.; et al. Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices. Nat. Commun. 2021, 12, 7137. [Google Scholar] [CrossRef]
- Carrara, S.; Cavallini, A.; Erokhin, V.; De Micheli, G. Multi-panel drugs detection in human serum for personalized therapy. Biosens. Bioelectron. 2011, 26, 3914–3919. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.P.; Pieta, P.; D’Souza, F.; Kutner, W. Molecularly Imprinted Polymer for Recognition of 5-Fluorouracil by RNA-type Nucleobase Pairing. Anal. Chem. 2013, 85, 8304–8312. [Google Scholar] [CrossRef]
- Baj-Rossi, C.; De Micheli, G.; Carrara, S. Electrochemical detection of anti-breast-cancer agents in human serum by cytochrome P450-coated carbon nanotubes. Sensors 2012, 12, 6520–6537. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Gowers, S.A.N.; Freeman, D.M.E.; Wilson, R.C.; Sharma, S.; Gilchrist, M.; MacGowan, A.; Lovering, A.; Bayliss, M.; Kyriakides, M.; et al. Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: A first-in-human evaluation in healthy volunteers. Lancet Digit. Health 2019, 1, e335–e343. [Google Scholar] [CrossRef]
- Bian, S.; Zhu, B.; Rong, G.; Sawan, M. Towards wearable and implantable continuous drug monitoring: A review. J. Pharm. Anal. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.; Tombelli, S.; Giannetti, A.; Trono, C.; O’Connell, M.; Wen, M.; Descalzo, A.B.; Bittersohl, H.; Bietenbeck, A.; Marquet, P.; et al. Immunosuppressant quantification in intravenous microdialysate—Towards novel quasi-continuous therapeutic drug monitoring in transplanted patients. Clin. Chem. Lab. Med. 2021, 59, 935–945. [Google Scholar] [CrossRef]
- Guidi, M.; Csajka, C.; Buclin, T. Parametric Approaches in Population Pharmacokinetics. J. Clin. Pharmacol. 2022, 62, 125–141. [Google Scholar] [CrossRef]
- Wicha, S.G.; Martson, A.G.; Nielsen, E.I.; Koch, B.C.P.; Friberg, L.E.; Alffenaar, J.W.; Minichmayr, I.K.; International Society of Anti-Infective Pharmacology (ISAP), the PK/PD Study Group of the European Society of Clinical Microbiology, Infectious Diseases (EPASG). From Therapeutic Drug Monitoring to Model-Informed Precision Dosing for Antibiotics. Clin. Pharmacol. Ther. 2021, 109, 928–941. [Google Scholar] [CrossRef]
- Gotta, V.; Buclin, T.; Csajka, C.; Widmer, N. Systematic review of population pharmacokinetic analyses of imatinib and relationships with treatment outcomes. Ther. Drug Monit. 2013, 35, 150–167. [Google Scholar] [CrossRef]
- Petit-Jean, E.; Buclin, T.; Guidi, M.; Quoix, E.; Gourieux, B.; Decosterd, L.A.; Gairard-Dory, A.C.; Ubeaud-Sequier, G.; Widmer, N. Erlotinib: Another candidate for the therapeutic drug monitoring of targeted therapy of cancer? A pharmacokinetic and pharmacodynamic systematic review of literature. Ther. Drug Monit. 2015, 37, 2–21. [Google Scholar] [CrossRef]
- Nanga, T.M.; Doan, T.T.P.; Marquet, P.; Musuamba, F.T. Toward a robust tool for pharmacokinetic-based personalization of treatment with tacrolimus in solid organ transplantation: A model-based meta-analysis approach. Br. J. Clin. Pharmacol. 2019, 85, 2793–2823. [Google Scholar] [CrossRef]
- Fuchs, A.; Csajka, C.; Thoma, Y.; Buclin, T.; Widmer, N. Benchmarking therapeutic drug monitoring software: A review of available computer tools. Clin. Pharmacokinet. 2013, 52, 9–22. [Google Scholar] [CrossRef]
- Dubovitskaya, A.; Buclin, T.; Schumacher, M.; Aberer, K.; Thoma, Y. TUCUXI—An Intelligent System for Personalized Medicine: From Individualization of Treatments to Research Databases and Back. In Acm-Bcb’ 2017: Proceedings of the 8th Acm International Conference on Bioinformatics, Computational Biology, and Health Informatics; Association for Computing Machinery: New York, NY, USA, 2017; pp. 223–232. [Google Scholar] [CrossRef]
- Brocks, D.R.; Hamdy, D.A. Bayesian estimation of pharmacokinetic parameters: An important component to include in the teaching of clinical pharmacokinetics and therapeutic drug monitoring. Res. Pharm. Sci. 2020, 15, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Maier, C.; Hartung, N.; de Wiljes, J.; Kloft, C.; Huisinga, W. Bayesian Data Assimilation to Support Informed Decision Making in Individualized Chemotherapy. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Brennan, Z. FDA Wants to Know What Prevents Exposure-Response Analyses in Drug Development. In Regulatory Focus; Regulatory Affairs Professionals Society: Rockville, MD, USA, 2018. [Google Scholar]
- Maier, C.; Hartung, N.; Kloft, C.; Huisinga, W.; de Wiljes, J. Reinforcement learning and Bayesian data assimilation for model-informed precision dosing in oncology. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.H.; Tong, D.M.H.; Lucas, S.S.; Faldasz, J.D.; Goswami, S.; Keizer, R.J. Continuous Learning in Model-Informed Precision Dosing: A Case Study in Pediatric Dosing of Vancomycin. Clin. Pharmacol. Ther. 2021, 109, 233–242. [Google Scholar] [CrossRef]
- Holford, N.; Ma, G.D.; Metz, D. TDM is dead. Long live TCI! Br. J. Clin. Pharmacol. 2022, 88, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.L. Maximum-tolerated dose, optimum biologic dose, or optimum clinical value: Dosing determination of cancer therapies. J. Clin. Oncol. 2012, 30, 2815–2816. [Google Scholar] [CrossRef] [PubMed]
- Shipkova, M.; Christians, U. Improving Therapeutic Decisions: Pharmacodynamic Monitoring as an Integral Part of Therapeutic Drug Monitoring. Ther. Drug Monit. 2019, 41, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Park, K. A Review of Modeling Approaches to Predict Drug Response in Clinical Oncology. Yonsei Med. J. 2017, 58, 1–8. [Google Scholar] [CrossRef]
- Shah, M.; Rahman, A.; Theoret, M.R.; Pazdur, R. The Drug-Dosing Conundrum in Oncology—When Less Is More. N. Engl. J. Med. 2021, 385, 1445–1447. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briki, M.; André, P.; Thoma, Y.; Widmer, N.; Wagner, A.D.; Decosterd, L.A.; Buclin, T.; Guidi, M.; Carrara, S. Precision Oncology by Point-of-Care Therapeutic Drug Monitoring and Dosage Adjustment of Conventional Cytotoxic Chemotherapies: A Perspective. Pharmaceutics 2023, 15, 1283. https://doi.org/10.3390/pharmaceutics15041283
Briki M, André P, Thoma Y, Widmer N, Wagner AD, Decosterd LA, Buclin T, Guidi M, Carrara S. Precision Oncology by Point-of-Care Therapeutic Drug Monitoring and Dosage Adjustment of Conventional Cytotoxic Chemotherapies: A Perspective. Pharmaceutics. 2023; 15(4):1283. https://doi.org/10.3390/pharmaceutics15041283
Chicago/Turabian StyleBriki, Myriam, Pascal André, Yann Thoma, Nicolas Widmer, Anna D. Wagner, Laurent A. Decosterd, Thierry Buclin, Monia Guidi, and Sandro Carrara. 2023. "Precision Oncology by Point-of-Care Therapeutic Drug Monitoring and Dosage Adjustment of Conventional Cytotoxic Chemotherapies: A Perspective" Pharmaceutics 15, no. 4: 1283. https://doi.org/10.3390/pharmaceutics15041283