In Vivo Safety and Efficacy of Chalcone-Loaded Microparticles with Modified Polymeric Matrix against Cutaneous Leishmaniasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. CH8 and Microparticles
2.2. Animals
2.3. Mouse Ear Swelling Test
2.4. Histopathology
2.5. In Vivo Drug Release
2.6. In Vivo Efficacy against CL
2.7. Statistical Analysis
3. Results
3.1. Spray Drying Allows Higher Drug Entrapment and Narrower Size Distribution
3.2. In Vivo Inflammation and Biodegradation of CH8/PDE and CH8/PDVE
3.3. CH8 Is More Rapidly Released from CH8/PVDE than CH8/PDE in the Ear
3.4. Efficacy of a Single Dose of CH8/PVDE in Two Models of CL
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Leishmaniasis Surveillance: 2019–2020, a Baseline for the 2030 Roadmap. Wkly Epidemiol. Rec. 2021, 35, 401–419. Available online: https://www.who.int/publications/i/item/who-wer9635-401-419 (accessed on 18 August 2022).
- Madusanka, R.K.; Silva, H.; Karunaweera, N.D. Treatment of Cutaneous Leishmaniasis and Insights into Species-Specific Responses: A Narrative Review. Infect. Dis. Ther. 2022, 11, 695–711. [Google Scholar] [CrossRef]
- Bocxlaer, K.V.; McArthur, K.N.; Harris, A.; Alavijeh, M.; Braillard, S.; Mowbray, C.E.; Croft, S.L. Film-Forming Systems for the Delivery of DNDI-0690 to Treat Cutaneous Leishmaniasis. Pharmaceutics 2021, 13, 516. [Google Scholar] [CrossRef]
- Navin, T.R.; Arana, B.A.; Arana, F.E.; de Mérida, A.M.; Castillo, A.L.; Pozuelos, J.L. Placebo controlled clinical trial of meglumine antimonate (glucantime) vs. localized controlled heat in the treatment of cutaneous leishmaniasis in Guatemala. Am. J. Trop. Med. Hyg. 1990, 42, 43–50. [Google Scholar] [CrossRef]
- Ben Salah, A.; Ben Messaoud, N.; Guedri, E.; Zaatour, A.; Ben Alaya, N.; Bettaieb, J.; Gharbi, A.; Hamida, N.B.; Boukthir, A.; Chlif, S.; et al. Topical paromomycin with or without gentamicin for cutaneous leishmaniasis. N. Engl. J. Med. 2013, 368, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Sosa, N.; Capitán, Z.; Nieto, J.; Nieto, M.; Calzada, J.; Paz, H.; Spadafora, C.; Kreishman-Deitrick, M.; Kopydlowski, K.; Ullman, D.; et al. Randomized, double-blinded, phase 2 trial of WR 279,396 (paromomycin and gentamicin) for cutaneous leishmaniasis in Panama. Am. J. Trop. Med. Hyg. 2013, 89, 557–563. [Google Scholar] [CrossRef]
- Oliveira-Neto, M.P.; Schubach, A.; Mattos, M.; da Costa, S.C.; Pirmez, C. Intralesional therapy of American cutaneous leishmaniasis with pentavalent antimony in Rio de Janeiro, Brazil—An area of Leishmania (V.) braziliensis transmission. Int. J. Dermatol. 1997, 36, 463–468. [Google Scholar] [CrossRef]
- Esfandiarpour, I.; Farajzadeh, S.; Rahnama, Z.; Fathabadi, E.A.; Heshmatkhah, A. Adverse effects of intralesional meglumine antimoniate and its influence on clinical laboratory parameters in the treatment of cutaneous leishmaniasis. Int. J. Dermatol. 2012, 51, 1221–1225. [Google Scholar] [CrossRef]
- Mello, T.F.P.; Bitencourt, H.R.; Pedroso, R.B.; Aristides, S.M.A.; Lonardoni, M.V.C.; Silveira, T.G.V. Leishmanicidal activity of synthetic chalcones in Leishmania (Viannia) braziliensis. Exp. Parasitol. 2014, 136, 27–34. [Google Scholar] [CrossRef]
- Ortalli, M.; Ilari, A.; Colotti, G.; De Ionna, I.; Battista, T.; Bisi, A.; Gobbi, S.; Rampa, A.; Di Martino, R.M.C.; Gentilomi, G.A.; et al. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. Eur. J. Med. Chem. 2018, 152, 527–541. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Zhang, B.; Niu, X.; Song, M.; Luo, Z.; Lu, G.; Liu, B.; Zhao, X.; Wang, J.; et al. Inhibition of sortase A by chalcone prevents Listeria monocytogenes infection. Biochem. Pharmacol. 2016, 106, 19–29. [Google Scholar] [CrossRef]
- Kunthalert, D.; Baothong, S.; Khetkam, P.; Chokchaisiri, S.; Suksamrarn, A. A chalcone with potent inhibiting activity against biofilm formation by nontypeable Haemophilus influenzae. Microbiol. Immunol. 2014, 58, 581–589. [Google Scholar] [CrossRef]
- Łacka, I.; Konieczny, M.T.; Bulłakowska, A.; Rzymowski, T.; Milewski, S. Antifungal action of the oxathiolone-fused chalcone derivative. Mycoses 2011, 54, 407–414. [Google Scholar] [CrossRef]
- Tiwari, B.; Pratapwar, A.; Tapas, A.; Butle, S.; Vatkar, B. Synthesis and antimicrobial activity of some chalcone derivatives and their copper complexes. Int. J. Chem. Tech. Res. 2010, 2, 499–503. [Google Scholar] [CrossRef] [Green Version]
- De Castro, C.C.B.; Costa, P.S.; Laktin, G.T.; De Carvalho, P.H.D.; Geraldo, R.B.; De Moraes, J.; Pinto, P.L.S.; Couri, M.R.C.; Pinto, P.F.; Da Silva Filho, A.A. Cardamonin, a schistosomicidal chalcone from Piper aduncum L. (Piperaceae) that inhibits Schistosoma mansoni ATP diphosphohydrolase. Phytomedicine 2015, 22, 921–928. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Song, R.; Li, Y.; Zhang, S.; Liu, Z.-J.; Fu, J.; Zhu, H.-L. Design, synthesis, and biological evaluation of chalcone oxime derivatives as potential immunosuppressive agents. Bioorg. Med. Chem. Lett. 2012, 22, 3039–3043. [Google Scholar] [CrossRef]
- Escrivani, D.; Charlton, R.; Caruso, M.; Burle-Caldas, G.; Borsodi, M.P.; Zingali, R.; Mello, M.V.; Jesus, J.B.; Souza, A.; Abrahim-Viera, B.; et al. Chalcones identify cTXNPx as a potential antileishmanial drug target. PLoS Negl. Trop. Dis. 2021, 15, e0009951. [Google Scholar] [CrossRef]
- Boeck, P.; Falcão, C.A.B.; Leal, P.C.; Yunes, R.A.; Filho, V.C.; Torres-Santos, E.C.; Rossi-Bergmann, B. Synthesis of chalcone analogues with increased antileishmanial activity. Bioorg. Med. Chem. 2006, 14, 1538–1545. [Google Scholar] [CrossRef]
- Sousa-Batista, A.J.; Escrivani-Oliveira, D.; Falcão, C.A.B.; Da Silva, C.I.M.P.; Rossi-Bergmann, B. Broad spectrum and safety of oral treatment with a promising nitrosylated chalcone in murine leishmaniasis. Antimicrob. Agents Chemother. 2018, 62, e00792-18. [Google Scholar] [CrossRef] [Green Version]
- Sousa-Batista, A.J.; Rossi-Bergmann, B. Nanomedicines for Cutaneous Leishmaniasis. In Leishmaniases as Re-Emerging Diseases, 1st ed.; Afrin, F., Hemeg, H., Eds.; IntechOpen: London, UK, 2018; Volume 2, pp. 181–197. ISBN 978-1-78984-102-2. [Google Scholar] [CrossRef] [Green Version]
- Blasi, P. Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: An overview. J. Pharm. Investig. 2019, 49, 337–346. [Google Scholar] [CrossRef]
- Torres-Santos, E.C.; Rodrigues, J.M.J.; Moreira, D.L.; Kaplan, M.A.C.; Rossi-Bergmann, B. Improvement of in vitro and in vivo antileishmanial activities of 2’,6’-Dihydroxy-4’-methoxychalcone by entrapment in poly (D,L-lactide) nanoparticles. Antimicrob. Agents Chemother. 1999, 43, 1776–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu Ammar, A.; Nasereddin, A.; Ereqat, S.; Dan-Goor, M.; Jaffe, C.L.; Zussman, E.; Abdeen, Z. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv. Transl. Res. 2019, 9, 76–84. [Google Scholar] [CrossRef]
- Sousa-Batista, A.J.; Pacienza-Lima, W.; Arruda-Costa, N.; Falcão, C.A.B.; Ré, M.I.; Rossi-Bergmann, B. Depot subcutaneous injection with chalcone CH8-loaded poly(lactic-co-glycolic acid) microspheres as a single-dose treatment of cutaneous leishmaniasis. Antimicrob. Agents Chemother. 2018, 62, e01822-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa-Batista, A.J.; Arruda-Costa, N.; Rossi-Bergmann, B.; Ré, M.I. Improved drug loading via spray drying of a chalcone implant for local treatment of cutaneous leishmaniasis. Drug Dev. Ind. Pharm. 2018, 44, 1473–1480. [Google Scholar] [CrossRef]
- Gad, S.C. The mouse ear swelling test (MEST) in the 1990s. Toxicology 1994, 93, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.S.; de Assis, G.M.; Rossi-Bergmann, B.; Costa, F.T.M.; Giorgio, S. Use of In Vivo and In Vitro Systems to Select Leishmania amazonensis Expressing Green Fluorescent Protein. Korean J. Parasitol. 2011, 49, 357–364. [Google Scholar] [CrossRef]
- Demicheli, C.; Ochoa, R.; da Silva, J.B.B.; Falcão, C.A.B.; Rossi-Bergmann, B.; de Melo, A.L.; Sinisterra, R.D.; Frézard, F. Oral delivery of meglumine antimoniate-beta-cyclodextrin complex for treatment of leishmaniasis. Antimicrob. Agents Chemother. 2004, 48, 100–103. [Google Scholar] [CrossRef] [Green Version]
- Lima, H.C.; Bleyenberg, J.A.; Titus, R.G. A simple method for quantifying Leishmania in tissues of infected animals. Parasitol. Today 1997, 13, 80–82. [Google Scholar] [CrossRef]
- Xie, X.; Lin, W.; Xing, C.; Yang, Y.; Chi, Q.; Zhang, H.; Li, Y.; Li, Z.; Yang, Y.; Yang, Z.; et al. In vitro and in vivo evaluations of PLGA microspheres containing nalmefene. PLoS ONE 2015, 10, e0125953. [Google Scholar] [CrossRef]
- Barsoum, I.S.; Kopydlowski, K.M.; Cuenin, P.; Setterstrom, J.A. Evaluation of hypersensitivity to microencapsulated ampicillin in guinea pigs. J. Antimicrob. Chemother. 1997, 39, 63–69. [Google Scholar] [CrossRef]
- Boltnarova, B.; Kubackova, J.; Skoda, J.; Stefela, A.; Smekalova, M.; Svacinova, P.; Pavkova, I.; Dittrich, M.; Scherman, D.; Zbytovska, J.; et al. PLGA Based Nanospheres as a Potent Macrophage-Specific Drug Delivery System. Nanomaterials 2021, 11, 749. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, C.M.S.; Sandoval, G.V.; Araujo, F.; Gonzalez, K.; Gomes, C.M.C.; Passero, L.F.D.; Tomokane, T.Y.; Sosa-Ochoa, W.; Zúniga, C.; Calzada, J.; et al. Macrophage polarization in the skin lesion caused by neotropical species of Leishmania sp. J. Immunol. Res. 2021, 2021, 5596876. [Google Scholar] [CrossRef]
- Ma, S.; Feng, X.; Liu, F.; Wang, B.; Zhang, H.; Niu, X. The pro-inflammatory response of macrophages regulated by acid degradation products of poly(lactide-co-glycolide) nanoparticles. Eng. Life Sci. 2021, 21, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Makadia, H.K.; Steve, S. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 2011, 3, 1377–1397. [Google Scholar] [CrossRef]
- Shakeri, S.; Roghanian, R.; Emtiazi, G.; Errico, C.; Chiellini, F.; Chiellini, E. Preparation of protein-loaded PLGA-PVP blend nanoparticles by nanoprecipitation method: Entrapment, Initial burst and drug release kinetic studies. Nanomed. J. 2015, 2, 175–186. [Google Scholar] [CrossRef]
- Camargo, J.A.; Sapin, A.; Daloz, D.; Maincent, P. Ivermectin-loaded microparticles for parenteral sustained release: In vitro characterization and effect of some formulation variables. J. Microencapsul. 2010, 27, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Meeus, J.; Scurr, D.J.; Amssoms, K.; Davies, M.C.; Roberts, C.J.; van Den Mooter, G. Surface characteristics of spray-dried microspheres consisting of PLGA and PVP: Relating the influence of heat and humidity to the thermal characteristics of these polymers. Mol. Pharm. 2013, 10, 3213–3224. [Google Scholar] [CrossRef]
- Meeus, J.; Chen, X.; Scurr, D.J.; Ciarnelli, V.; Amssoms, K.; Roberts, C.J.; Davies, M.C.; van Den Mooter, G. Nanoscale surface characterization and miscibility study of a spray-dried injectable polymeric matrix consisting of poly(lactic-co-glycolic acid) and polyvinylpyrrolidone. J. Pharm. Sci. 2012, 101, 3473–3485. [Google Scholar] [CrossRef]
- Meeus, J.; Lenaerts, M.; Scurr, D.J.; Amssoms, K.; Davies, M.C.; Roberts, C.J.; van Den Mooter, G. The Influence of Spray-Drying Parameters on Phase Behavior, Drug Distribution, and in vitro Release of Injectable Microspheres for Sustained Release. J. Pharm. Sci. 2015, 104, 1451–1460. [Google Scholar] [CrossRef]
- Caridha, D.; Parriot, S.; Hudson, T.H.; Lang, T.; Ngundam, F.; Leed, S.; Sena, J.; Harris, M.; O'Neil, M.; Sciotti, R.; et al. Use of Optical Imaging Technology in the Validation of a New, Rapid, Cost Effective Drug Screen as Part of a Tiered In vivo Screening Paradigm for Development of Drugs to Treat Cutaneous Leishmaniasis. Antimicrob. Agents Chemother. 2017, 61, e02048-16. [Google Scholar] [CrossRef]
- Gomes-Silva, A.; Valverde, J.G.; Ribeiro-Romão, R.P.; Plácido-Pereira, R.M.; Da-Cruz, A.M. Golden hamster (Mesocricetus auratus) as an experimental model for Leishmania (Viannia) braziliensis infection. Parasitology 2013, 140, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Mears, E.R.; Modabber, F.; Don, R.; Johnson, G.E. A Review: The current in vivo models for the discovery and utility of new anti-leishmanial drugs targeting cutaneous leishmaniasis. PLoS Negl. Trop. Dis. 2015, 9, e0003889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa-Batista, A.J.; Pacienza-Lima, W.; Ré, M.I.; Rossi-Bergmann, B. Novel and safe single-dose treatment of cutaneous leishmaniasis with implantable amphotericin B-loaded microspheres. Int. J. Parasitol. Drugs Drug Resist. 2019, 11, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, M.G.; de Brito, M.E.; Rodrigues, E.H.; Bandeira, V.; Jardim, M.L.; Abath, F.G. Persistence of Leishmania parasites in scars after clinical cure of American cutaneous leishmaniasis: Is there a sterile cure? J. Infect. Dis. 2004, 189, 1018–1023. [Google Scholar] [CrossRef]
Microparticle | Method | Polymer | Solvent | % CH8 | Size (μm) D (4,3) | Span |
---|---|---|---|---|---|---|
CH8/PLGA | SPE | PLGA | DCM | 7.8 ± 1.5 | 6.2 | 2.4 |
CH8/PDE | Spray drying | PLGA | DCM:EA | 18.1 ± 0.0 | 6.4 | 1.8 |
CH8/PVDE | Spray drying | PLGA:PVP | DCM:EA | 18.1 ± 0.1 | 7.9 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa-Batista, A.d.J.; Arruda-Costa, N.; Pacienza-Lima, W.; Carvalho-Gondim, F.; Santos, R.F.; Da-Silva, S.A.G.; Ré, M.I.; Rossi-Bergmann, B. In Vivo Safety and Efficacy of Chalcone-Loaded Microparticles with Modified Polymeric Matrix against Cutaneous Leishmaniasis. Pharmaceutics 2023, 15, 51. https://doi.org/10.3390/pharmaceutics15010051
Sousa-Batista AdJ, Arruda-Costa N, Pacienza-Lima W, Carvalho-Gondim F, Santos RF, Da-Silva SAG, Ré MI, Rossi-Bergmann B. In Vivo Safety and Efficacy of Chalcone-Loaded Microparticles with Modified Polymeric Matrix against Cutaneous Leishmaniasis. Pharmaceutics. 2023; 15(1):51. https://doi.org/10.3390/pharmaceutics15010051
Chicago/Turabian StyleSousa-Batista, Ariane de J., Natalia Arruda-Costa, Wallace Pacienza-Lima, Felipe Carvalho-Gondim, Rosiane F. Santos, Silvia A. G. Da-Silva, Maria Inês Ré, and Bartira Rossi-Bergmann. 2023. "In Vivo Safety and Efficacy of Chalcone-Loaded Microparticles with Modified Polymeric Matrix against Cutaneous Leishmaniasis" Pharmaceutics 15, no. 1: 51. https://doi.org/10.3390/pharmaceutics15010051