The Anti-Obesity Effect of Porous Silica Is Dependent on Pore Nanostructure, Particle Size, and Surface Chemistry in an In Vitro Digestion Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physicochemical Characterization of Porous Silica Materials
2.2.1. Nitrogen Adsorption/Desorption Isotherms
2.2.2. Scanning Electron Microscopy (SEM)
2.2.3. Particle Sizing
2.3. Gastrointestinal Digestion Studies Using an In Vitro Obesity Model
2.3.1. Preparation of Simulated Gastric and Intestinal Digestion Buffers
2.3.2. Quantifying Lipid Digestion under Simulated Fed Conditions
2.3.3. Quantifying Starch Digestion under Simulated Fed Conditions
2.3.4. Calculating Enzyme Inhibitory Response
2.4. Quantifying Organic Media Adsorption Using Thermogravimetric Analysis (TGA)
2.5. Statistical Analysis
3. Results & Discussion
3.1. Physicochemical Characterization of Porous Silica Particles
3.2. In Vitro Digestion Studies
3.2.1. The Impact of PSM Pore Size on Digestive Enzyme Activity
3.2.2. The Impact of PSM Pore Size on Organic Media Adsorption
3.2.3. The Impact of SBA-15 Pore Size on Digestive Enzyme Activity
3.2.4. The Impact of Particle Size on In Vitro Lipid Digestion
3.2.5. The Impact of Surface Modifications on In Vitro Lipid Digestion
3.3. Enzyme Inhibitory Response to Silica Samples
3.4. Opportunities, Limitations, and Future Directions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization (WHO). W.H.O. Overweight & Obesity. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 1 June 2022).
- Peters, A.; Pellerin, L.; Dallman, M.; Oltmanns, K.; Schweiger, U.; Born, J.; Fehm, H. Causes of obesity: Looking beyond the hypothalamus. Prog. Neurobiol. 2007, 81, 61–88. [Google Scholar] [CrossRef] [PubMed]
- Guerciolini, R. Mode of action of orlistat. Int. J. Obes. Relat. Metab. Disord. 1997, 21 (Suppl. S3), S12–S23. [Google Scholar] [PubMed]
- McClendon, K.S.; Riche, D.M.; Uwaifo, G.I. Orlistat: Current status in clinical therapeutics. Expert Opin. Drug Saf. 2009, 8, 727–744. [Google Scholar] [CrossRef] [PubMed]
- Drent, M.L.; van der Veen, E.A. First clinical studies with orlistat: A short review. Obes. Res. 1995, 3, 623S–625S. [Google Scholar] [CrossRef]
- Drew, B.S.; Dixon, A.F.; Dixon, J.B. Obesity management: Update on orlistat. Vasc. Health Risk Manag. 2007, 3, 817. [Google Scholar] [PubMed]
- Dening, T.J.; Joyce, P.; Kovalainen, M.; Gustafsson, H.; Prestidge, C.A. Spray dried smectite clay particles as a novel treatment against obesity. Pharm. Res. 2019, 36, 21. [Google Scholar] [CrossRef]
- Joyce, P.; Dening, T.J.; Meola, T.R.; Gustafsson, H.; Kovalainen, M.; Prestidge, C.A. Nanostructured clay particles supplement orlistat action in inhibiting lipid digestion: An in vitro evaluation for the treatment of obesity. Eur. J. Pharm. Sci. 2019, 135, 1–11. [Google Scholar] [CrossRef]
- Joyce, P.; Dening, T.J.; Meola, T.R.; Wignall, A.; Ulmefors, H.; Kovalainen, M.; Prestidge, C.A. Contrasting Anti-obesity Effects of Smectite Clays and Mesoporous Silica in Sprague-Dawley Rats. ACS Appl. Bio Mater. 2020, 3, 7779–7788. [Google Scholar] [CrossRef]
- Kupferschmidt, N.; Csikasz, R.I.; Ballell, L.; Bengtsson, T.; Garcia-Bennett, A.E. Large pore mesoporous silica induced weight loss in obese mice. Nanomedicine 2014, 9, 1353–1362. [Google Scholar] [CrossRef]
- Waara, E.R.; Iqbal, M.N.; Robert-Nicoud, G.; Benziane, B.; Vallhov, H.; Wasik, A.M.; Lindgren, M.; Hagman, E.; Rinde, M.; Kupferschmidt, N. Entrapping digestive enzymes with engineered mesoporous silica particles reduces metabolic risk factors in humans. Adv. Healthc. Mater. 2020, 9, 2000057. [Google Scholar] [CrossRef]
- Kulikov, E.V.; Zavalishina, S.Y.; Vatnikov, Y.A.; Strizhakov, A.A.; Drukovsky, S.G.; Lozovoy, D.A.; Voronina, Y.Y.; Popova, I.A.; Bondareva, I.V.; Sambros, N.B.; et al. Optimising the effect of activated carbon on the microrheological properties of erythrocyte in rats with experimentally developed obesity. Bali Med. J. 2019, 8, 827–833. [Google Scholar] [CrossRef]
- Joyce, P.; Meola, T.R.; Schultz, H.B.; Prestidge, C.A. Biomaterials that regulate fat digestion for the treatment of obesity. Trends Food Sci. Technol. 2020, 100, 235–245. [Google Scholar] [CrossRef]
- Rinde, M.; Kupferschmidt, N.; Iqbal, M.N.; Robert-Nicoud, G.; Johnston, E.V.; Lindgren, M.; Bengtsson, T. Mesoporous silica with precisely controlled pores reduces food efficiency and suppresses weight gain in mice. Nanomedicine 2020, 15, 131–144. [Google Scholar] [CrossRef]
- May, K.L.; Pham, A.C.; Ramirez, G.; Herrera-Hidalgo, C.; Iqbal, M.N.; Robert-Nicoud, G.; Clulow, A.J.; Bengtsson, T.; Boyd, B.J. Towards mesoporous silica as a pharmaceutical treatment for obesity-impact on lipid digestion and absorption. Eur. J. Pharm. Biopharm. 2022, 173, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Robert-Nicoud, G.; Herrera Hidalgo, C.; Borg, M.L.; Iqbal, M.N.; Berlin, R.; Lindgren, M.; Waara, E.; Uddén, A.; Pietiläinen, K.; et al. Engineered mesoporous silica reduces long-term blood glucose, HbA1c, and improves metabolic parameters in prediabetics. Nanomedicine 2022, 17, 9–22. [Google Scholar] [CrossRef]
- Hagman, E.; Elimam, A.; Kupferschmidt, N.; Ekbom, K.; Rössner, S.; Iqbal, M.N.; Johnston, E.; Lindgren, M.; Bengtsson, T.; Danielsson, P. Oral intake of mesoporous silica is safe and well tolerated in male humans. PLoS ONE 2020, 15, e0240030. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic− inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Jantratid, E.; Janssen, N.; Reppas, C.; Dressman, J.B. Dissolution media simulating conditions in the proximal human gastrointestinal tract: An update. Pharm. Res. 2008, 25, 1663. [Google Scholar] [CrossRef]
- Joyce, P.; Gustafsson, H.; Prestidge, C.A. Enhancing the lipase-mediated bioaccessibility of omega-3 fatty acids by microencapsulation of fish oil droplets within porous silica particles. J. Funct. Foods 2018, 47, 491–502. [Google Scholar] [CrossRef]
- Almasri, R.; Joyce, P.; Schultz, H.B.; Thomas, N.; Bremmell, K.E.; Prestidge, C.A. Porous Nanostructure, Lipid Composition, and Degree of Drug Supersaturation Modulate In Vitro Fenofibrate Solubilization in Silica-Lipid Hybrids. Pharmaceutics 2020, 12, 687. [Google Scholar] [CrossRef]
- Dening, T.J.; Joyce, P.; Webber, J.L.; Beattie, D.A.; Prestidge, C.A. Inorganic surface chemistry and nanostructure controls lipolytic product speciation and partitioning during the digestion of inorganic-lipid hybrid particles. J. Colloid Interface Sci. 2018, 532, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Almasri, R.; Schultz, H.B.; Møller, A.; Bremmell, K.E.; Garcia-Bennett, A.; Joyce, P.; Prestidge, C.A. Role of Silica Intrawall Microporosity on Abiraterone Acetate Solubilization and In Vivo Oral Absorption. Mol. Pharm. 2022, 19, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Joyce, P.; Ulmefors, H.; Garcia-Bennett, A.; Prestidge, C.A. Microporosity, Pore Size, and Diffusional Path Length Modulate Lipolysis Kinetics of Triglycerides Adsorbed onto SBA-15 Mesoporous Silica Particles. Langmuir 2020, 36, 3367–3376. [Google Scholar] [CrossRef] [PubMed]
- Dening, T.J.; Joyce, P.; Rao, S.; Thomas, N.; Prestidge, C.A. Nanostructured Montmorillonite Clay for Controlling the Lipase-Mediated Digestion of Medium Chain Triglycerides. ACS Appl. Mater. Interfaces 2016, 8, 32732–32742. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.; Holmberg, K.; Watzke, H.; Leser, M.; Miller, R. Lipases at interfaces: A review. Adv. Colloid Interface Sci. 2009, 147, 237–250. [Google Scholar] [CrossRef]
- Reis, P.; Miller, R.; Kragel, J.; Leser, M.; Fainerman, V.; Watzke, H.; Holmberg, K. Lipases at interfaces: Unique interfacial properties as globular proteins. Langmuir 2008, 24, 6812–6819. [Google Scholar] [CrossRef]
- Reis, P.; Holmberg, K.; Miller, R.; Leser, M.E.; Raab, T.; Watzke, H.J. Lipase reaction at interfaces as self-limiting processes. Comptes Rendus. Chim. 2009, 12, 163–170. [Google Scholar] [CrossRef]
- Bibi, H.A.; Holm, R.; Bauer-Brandl, A. Simultaneous lipolysis/permeation in vitro model, for the estimation of bioavailability of lipid based drug delivery systems. Eur. J. Pharm. Biopharm. 2017, 117, 300–307. [Google Scholar] [CrossRef]
- Bortolin, R.; Vargas, A.; Gasparotto, J.; Chaves, P.; Schnorr, C.E.; Martinello, K.B.; Silveira, A.; Rabelo, T.K.; Gelain, D.; Moreira, J. A new animal diet based on human Western diet is a robust diet-induced obesity model: Comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. Int. J. Obes. 2018, 42, 525–534. [Google Scholar] [CrossRef]
- Moreno-Fernández, S.; Garcés-Rimón, M.; Vera, G.; Astier, J.; Landrier, J.F.; Miguel, M. High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients 2018, 10, 1502. [Google Scholar] [CrossRef] [Green Version]
Silica Sample | Silica Type | Particle Shape | Surface Modification | Mean Pore width * (nm) | Total Surface Area ** (m2/g) | Micropore Area *** (m2/g) | Pore Volume (cm3/g) | Particle Size (µm) |
---|---|---|---|---|---|---|---|---|
PSM-1 | Porous | Spherical | None | 2.30 | 776 | 105 | 0.07 | 2.16 |
PSM-2 | Porous | Spherical | None | 6.71 | 366 | 61.2 | 0.63 | 2.03 |
PSM-3 | Porous | Spherical | None | 10.2 | 288 | 15.8 | 0.75 | 1.98 |
PSM-4 | Porous | Spherical | None | 23.6 | 29.2 | 1.27 | 0.61 | 1.93 |
PSM-5 | Porous | Spherical | None | 10.1 | 222 | 11.7 | 0.55 | 12.6 |
NPSM-1 | Non-porous | Spherical | None | - | 1.70 | - | - | 2.24 |
NPSM-2 | Non-porous | Spherical | None | - | 1.60 | - | - | 0.56 |
SBA-15(1) | Porous | Irregular | None | 3.55 | 451 | 196 | 0.28 | 23.6 |
SBA-15(2) | Porous | Irregular | None | 5.99 | 689 | 158 | 0.69 | 18.4 |
SBA-15(3) | Porous | Irregular | None | 8.74 | 496 | 1.45 | 1.11 | 22.2 |
SBA-15(4) | Porous | Irregular | Dehydroxylated | 8.74 | 496 | 1.45 | 1.11 | 19.9 |
MCM-41(1) | Porous | Irregular | None | 2.47 | 1070 | - | 0.60 | 8.67 |
MCM-41(2) | Porous | Irregular | Al-doped | 3.72 | 934 | - | 0.96 | 14.5 |
Silica Sample | Lipase Activity (%) | Amylase Activity (%) | Inhibitory Response, IR |
---|---|---|---|
PSM-2 | 66.0 ± 16 | 81.1 ± 6.9 | 0.265 |
SBA-15(3) | 67.5 ± 13 | 79.8 ± 1.8 | 0.264 |
PSM-3 | 79.4 ± 2.9 | 71.6 ± 2.2 | 0.245 |
SBA-2 | 81.7 ± 12 | 74.9 ± 4.2 | 0.217 |
SBA-15(4) | 82.7 ± 1.3 | 82.5 ± 6.7 | 0.174 |
NPSM-2 | 65.1 ± 4.7 | 101.8 ± 3.4 | 0.165 |
SBA-15(1) | 79.5 ± 5.9 | 93.9 ± 2.9 | 0.133 |
PSM-1 | 99.6 ± 5.6 | 92.0 ± 4.8 | 0.042 |
NPSM-1 | 90.1 ± 12 | 102 ± 4.2 | 0.038 |
PSM-4 | 97.3 ± 3.2 | 112 ± 7.2 | −0.044 |
PSM-5 | 123 ± 15 | 98.6 ± 3.8 | −0.107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Hanrahan, J.P.; McGrath, J.; Courtney, M.A.; Prestidge, C.A.; Joyce, P. The Anti-Obesity Effect of Porous Silica Is Dependent on Pore Nanostructure, Particle Size, and Surface Chemistry in an In Vitro Digestion Model. Pharmaceutics 2022, 14, 1813. https://doi.org/10.3390/pharmaceutics14091813
Chen J, Hanrahan JP, McGrath J, Courtney MA, Prestidge CA, Joyce P. The Anti-Obesity Effect of Porous Silica Is Dependent on Pore Nanostructure, Particle Size, and Surface Chemistry in an In Vitro Digestion Model. Pharmaceutics. 2022; 14(9):1813. https://doi.org/10.3390/pharmaceutics14091813
Chicago/Turabian StyleChen, JingYi, John P. Hanrahan, Joe McGrath, Melissa A. Courtney, Clive A. Prestidge, and Paul Joyce. 2022. "The Anti-Obesity Effect of Porous Silica Is Dependent on Pore Nanostructure, Particle Size, and Surface Chemistry in an In Vitro Digestion Model" Pharmaceutics 14, no. 9: 1813. https://doi.org/10.3390/pharmaceutics14091813