Relationship between Pharmacokinetic/Pharmacodynamic Target Attainment and Microbiological Outcome in Critically Ill COVID-19 Patients with Documented Gram-Negative Superinfections Treated with TDM-Guided Continuous-Infusion Meropenem
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Bardi, T.; Pintado, V.; Gomez-Rojo, M.; Escudero-Sanchez, R.; Azzam Lopez, A.; Diez-Remesal, Y.; Martinez Castro, N.; Ruiz-Garbajosa, P.; Pestaña, D. Nosocomial infections associated to COVID-19 in the intensive care unit: Clinical characteristics and outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Emerick, M.; Cabunoc, M.K.; Williams, M.H.; Preas, M.A.; Schrank, G.; Rabinowitz, R.; Luethy, P.; Johnson, J.K.; Leekha, S. Rapid spread and control of multidrug-resistant gram-negative bacteria in COVID-19 patient care units. Emerg. Infect. Dis. 2021, 27, 1234–1237. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Giordano, C.; Leonildi, A.; Menichini, M.; Vecchione, A.; Pistello, M.; Guarracino, F.; Ghiadoni, L.; Forfori, F.; et al. Predictors of hospital-acquired bacterial and fungal superinfections in COVID-19: A prospective observational study. J. Antimicrob. Chemother. 2021, 76, 1078–1084. [Google Scholar] [CrossRef]
- Ripa, M.; Galli, L.; Poli, A.; Oltolini, C.; Spagnuolo, V.; Mastrangelo, A.; Muccini, C.; Monti, G.; De Luca, G.; Landoni, G.; et al. Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clin. Microbiol. Infect. 2021, 27, 451–457. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Rev. 2018, 31, e00079-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. Effect of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: A randomized clinical trial. JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Gatti, M.; Viaggi, B.; Rossolini, G.M.; Pea, F.; Viale, P. An evidence-based multidisciplinary approach focused at creating algorithms for targeted therapy of infection-related ventilator associated complications (IVACs) caused by Enterobacterales in critically ill adult patients. Expert Rev. Anti-Infect. Ther. 2022, 20, 331–352. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.M.; Kuti, J.L.; Nicolau, D.P. Use of Monte Carlo simulation to assess the pharmacodynamics of beta-lactams against Pseudomonas aeruginosa infections in children: A report from the OPTAMA program. Clin. Ther. 2005, 27, 1820–1830. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A position paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef] [PubMed]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients—guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation—SFAR). Crit. Care 2019, 23, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Gatti, M.; Cojutti, P.G.; Pascale, R.; Tonetti, T.; Laici, C.; Dell’Olio, A.; Siniscalchi, A.; Giannella, M.; Viale, P.; Pea, F. Assessment of a PK/PD target of continuous infusion beta-lactams useful for preventing microbiological failure and/or resistance development in critically ill patients affected by documented gram-negative infections. Antibiotics 2021, 10, 1311. [Google Scholar] [CrossRef]
- Blot, S.I.; Pea, F.; Lipman, J. The effect of pathophysiology on pharmacokinetics in the critically ill patient--concepts appraised by the example of antimicrobial agents. Adv. Drug Deliv. Rev. 2014, 77, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Abdul-Aziz, M.-H.; Davis, J.S.; Dulhunty, J.M.; Cotta, M.O.; Myburgh, J.; Bellomo, R.; Lipman, J. Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. A meta-analysis of individual patient data from randomized trials. Am. J. Respir. Crit. Care Med. 2016, 194, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; Sime, F.B.; Lipman, J.; Roberts, J.A. How do we use therapeutic drug monitoring to improve outcomes from severe infections in critically ill patients? BMC Infect. Dis. 2014, 14, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschi, L.; Cojutti, P.; Baraldo, M.; Pea, F. Stability of generic meropenem solutions for administration by continuous infusion at normal and elevated temperatures. Ther. Drug Monit. 2014, 36, 674–676. [Google Scholar] [CrossRef]
- Fawaz, S.; Barton, S.; Whitney, L.; Swinden, J.; Nabhani-Gebara, S. Stability of meropenem after reconstitution for administration by prolonged infusion. Hosp. Pharm. 2018, 54, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chromsystems Instruments & Chemicals GmbH. MassTox TDM Series, A. 2022. Available online: https://chromsystems.com/en/products/therapeutic-drug-monitoring.html (accessed on 27 May 2022).
- Chastre, J.; Fagon, J.-Y. Ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2002, 165, 867–903. [Google Scholar] [CrossRef]
- Miller, J.M.; Binnicker, M.J.; Campbell, S.; Carroll, K.C.; Chapin, K.C.; Gilligan, P.H.; Gonzalez, M.D.; Jerris, R.C.; Kehl, S.C.; Patel, R.; et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin. Infect. Dis. 2018, 67, e1–e94. [Google Scholar] [CrossRef]
- Sumi, C.D.; Heffernan, A.J.; Lipman, J.; Roberts, J.A.; Sime, F.B. What antibiotic exposures are required to suppress the emergence of resistance for Gram-negative bacteria? A systematic review. Clin. Pharmacokinet. 2019, 58, 1407–1443. [Google Scholar] [CrossRef]
- Shields, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J. Pneumonia and renal replacement therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistant Enterobacteriaceae infections. Antimicrob. Agents Chemother. 2018, 62, e02497-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatti, M.; Viaggi, B.; Rossolini, G.M.; Pea, F.; Viale, P. An evidence-based multidisciplinary approach focused on creating algorithms for targeted therapy of Infection-Related Ventilator-Associated Complications (IVACs) caused by Pseudomonas aeruginosa and Acinetobacter baumannii in critically ill adult patients. Antibiotics 2021, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Bartoletti, M.; Cojutti, P.G.; Gaibani, P.; Conti, M.; Giannella, M.; Viale, P.; Pea, F. A descriptive case series of PK/PD target attainment and microbiological outcome in critically ill patients with documented severe XDR Acinetobacter baumannii BSI and/or VAP treated with cefiderocol. J. Glob. Antimicrob. Resist. 2021, 27, 294–298. [Google Scholar] [CrossRef]
- Paul, M.; Lador, A.; Grozinsky-Glasberg, S.; Leibovici, L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst. Rev. 2014, 1, CD003344. [Google Scholar] [CrossRef] [PubMed]
- Heyland, D.K.; Dodek, P.; Muscedere, J.; Day, A.; Cook, D. Canadian Critical Care Trials Group Randomized trial of combination versus monotherapy for the empiric treatment of suspected ventilator-associated pneumonia. Crit. Care Med. 2008, 36, 737–744. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Voulgaris, G.L.; Maliaros, A.; Samonis, G.; Falagas, M.E. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: A systematic review and meta-analysis of randomised trials. Lancet Infect. Dis. 2018, 18, 108–120. [Google Scholar] [CrossRef]
- Drusano, G.L.; Neely, M.N.; Yamada, W.M.; Duncanson, B.; Brown, D.; Maynard, M.; Vicchiarelli, M.; Louie, A. The combination of fosfomycin plus meropenem is synergistic for Pseudomonas aeruginosa PAO1 in a hollow-fiber infection model. Antimicrob. Agents Chemother. 2018, 62, e01682-18. [Google Scholar] [CrossRef] [Green Version]
- Albiero, J.; Mazucheli, J.; Barros, J.P.D.R.; Szczerepa, M.M.D.A.; Nishiyama, S.A.B.; Carrara-Marroni, F.E.; Sy, S.; Fidler, M.; Sy, S.K.B.; Tognim, M.C.B. Pharmacodynamic attainment of the synergism of meropenem and fosfomycin combination against Pseudomonas aeruginosa producing metallo-β-lactamase. Antimicrob. Agents Chemother. 2019, 63, e00126-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef] [Green Version]
- Paal, M.; Scharf, C.; Denninger, A.K.; Ilia, L.; Kloft, C.; Kneidinger, N.; Liebchen, U.; Michel, S.; Schneider, C.; Schröpf, S.; et al. Target site pharmacokinetics of meropenem: Measurement in human explanted lung tissue by bronchoalveolar lavage, microdialysis, and homogenized lung tissue. Antimicrob. Agents Chemother. 2021, 65, e01564-21. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Cano, A.; Luque, S.; Sorlí, L.; Carazo, J.; Ramos, I.; Campillo, N.; Curull, V.; Sánchez-Font, A.; Vilaplana, C.; Horcajada, J.P.; et al. Intrapulmonary concentrations of meropenem administered by continuous infusion in critically ill patients with nosocomial pneumonia: A randomized pharmacokinetic trial. Crit Care 2020, 24, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz Codina, M.; Zeitlinger, M. Biomarkers predicting tissue pharmacokinetics of antimicrobials in sepsis: A review. Clin. Pharmacokinet. 2022, 61, 593–617. [Google Scholar] [CrossRef] [PubMed]
- Potron, A.; Poirel, L.; Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int. J. Antimicrob. Agents 2015, 45, 568–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeRyke, C.A.; Banevicius, M.A.; Fan, H.W.; Nicolau, D.P. Bactericidal activities of meropenem and ertapenem against extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a neutropenic mouse thigh model. Antimicrob. Agents Chemother. 2007, 51, 1481–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macvane, S.H.; Crandon, J.L.; Nicolau, D.P. Characterizing in vivo pharmacodynamics of carbapenems against Acinetobacter baumannii in a murine thigh infection model to support breakpoint determinations. Antimicrob. Agents Chemother. 2014, 58, 599–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Overall (n = 43) | Monotherapy (n = 17) | Combination Therapy (n = 26) | |
---|---|---|---|
Demographics | |||
Age | 59.0 ± 13.8 | 63.1 ± 12.6 | 56.3 ± 13.7 |
Gender (m/f) | 26/17 (60.5%/39.5%) | 10/7 (58.8%/41.2%) | 16/10 (61.5%/38.5%) |
BMI | 30.7 ± 14.9 | 29.8 ± 7.8 | 31.2 ± 17.8 |
Baseline eGFR | 84.4 ± 39.3 | 72.6 ± 42.8 | 92.6 ± 36.7 |
Severity of infection | |||
SOFA score | 9 (7–11) | 8 (6–11) | 9.5 (7–11.75) |
Mechanical ventilation | 43 (100.0%) | 17 (100.0%) | 26 (100.0%) |
Vasopressors | 35 (81.4%) | 12 (70.5%) | 23 (88.5%) |
Continuous renal replacement therapy | 17 (39.5%) | 6 (35.3%) | 11 (42.3%) |
Extracorporeal membrane oxygenation | 8 (18.6%) | 2 (11.8%) | 6 (23.1%) |
Site of infection | |||
VAP | 38 (88.4%) | 15 (88.2%) | 23 (88.5%) |
BSI | 13 (30.2%) | 7 (41.2%) | 6 (23.1%) |
UTI | 4 (23.5%) | 4 (23.5%) | 0 (0.0%) |
Isolates (resistant) | 47 (28) | 21 (7) | 26 (21) |
E. coli * | 4 (0) | 4 (0) | 0 (0) |
K. pneumoniae * | 7 (3) | 5 (1) | 2 (2) |
P. aeruginosa ** | 14 (9) | 5 (2) | 9 (7) |
A. baumannii *** | 10 (9) | 2 (1) | 8 (8) |
P. mirabilis * | 2 (1) | 2 (1) | 0 (0) |
C. freundii * | 1 (0) | 0 (0) | 1 (0) |
S. marcensens * | 3 (1) | 0 (0) | 3 (1) |
E. cloacae * | 2 (1) | 2 (1) | 0 (0) |
M. morgannii * | 1 (1) | 1 (1) | 0 (0) |
E. aerogenes * | 3 (3) | 0 (0) | 3 (3) |
Outcome | |||
Microbiological cure | 22 (51.2%) | 10 (58.8%) | 12 (46.2%) |
ICU mortality | 20 (46.5%) | 8 (47.1%) | 12 (46.2%) |
30-day mortality | 20 (46.5%) | 8 (47.1%) | 12 (46.2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz Codina, M.; Gatti, M.; Troisi, C.; Fornaro, G.; Pasquini, Z.; Trapani, F.; Zanoni, A.; Caramelli, F.; Viale, P.; Pea, F. Relationship between Pharmacokinetic/Pharmacodynamic Target Attainment and Microbiological Outcome in Critically Ill COVID-19 Patients with Documented Gram-Negative Superinfections Treated with TDM-Guided Continuous-Infusion Meropenem. Pharmaceutics 2022, 14, 1585. https://doi.org/10.3390/pharmaceutics14081585
Sanz Codina M, Gatti M, Troisi C, Fornaro G, Pasquini Z, Trapani F, Zanoni A, Caramelli F, Viale P, Pea F. Relationship between Pharmacokinetic/Pharmacodynamic Target Attainment and Microbiological Outcome in Critically Ill COVID-19 Patients with Documented Gram-Negative Superinfections Treated with TDM-Guided Continuous-Infusion Meropenem. Pharmaceutics. 2022; 14(8):1585. https://doi.org/10.3390/pharmaceutics14081585
Chicago/Turabian StyleSanz Codina, Maria, Milo Gatti, Carla Troisi, Giacomo Fornaro, Zeno Pasquini, Filippo Trapani, Andrea Zanoni, Fabio Caramelli, Pierluigi Viale, and Federico Pea. 2022. "Relationship between Pharmacokinetic/Pharmacodynamic Target Attainment and Microbiological Outcome in Critically Ill COVID-19 Patients with Documented Gram-Negative Superinfections Treated with TDM-Guided Continuous-Infusion Meropenem" Pharmaceutics 14, no. 8: 1585. https://doi.org/10.3390/pharmaceutics14081585
APA StyleSanz Codina, M., Gatti, M., Troisi, C., Fornaro, G., Pasquini, Z., Trapani, F., Zanoni, A., Caramelli, F., Viale, P., & Pea, F. (2022). Relationship between Pharmacokinetic/Pharmacodynamic Target Attainment and Microbiological Outcome in Critically Ill COVID-19 Patients with Documented Gram-Negative Superinfections Treated with TDM-Guided Continuous-Infusion Meropenem. Pharmaceutics, 14(8), 1585. https://doi.org/10.3390/pharmaceutics14081585