Cyclodextrin-Based Nanoplatforms for Tumor Phototherapy: An Update
Abstract
:1. Introduction
2. CD-Based Nanoplatforms for PTT and Its Combined Therapies
2.1. CD-Based Supermolecular Nanostructure as a Functional Nanotemplate for PTA
2.2. CDs as Drug Carriers for Combined PTT and Chemotherapy
2.3. CDs as Connecting Moieties for Sophisticated Surface Modification
3. CD-Based Nanoplatform for PDT and Its Combined Therapies
3.1. CD and Photosensitizer Conjugation
3.2. CD-Based Nanoplatform for Responsive PDT
3.3. CD-Based Nanoplatform for Multifunctional PDT
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kumari, S.; Sharma, N.; Sahi, S.V. Advances in cancer therapeutics: Conventional thermal therapy to nanotechnology-based photothermal therapy. Pharmaceutics 2021, 13, 1174. [Google Scholar] [CrossRef]
- Liang, P.; Mao, L.; Dong, Y.; Zhao, Z.; Sun, Q.; Mazhar, M.; Ma, Y.; Yang, S.; Ren, W. Design and application of near-infrared nanomaterial-liposome hybrid nanocarriers for cancer photothermal therapy. Pharmaceutics 2021, 13, 2070. [Google Scholar] [CrossRef]
- Du, C.; Wu, X.; He, M.; Zhang, Y.; Zhang, R.; Dong, C.-M. Polymeric photothermal agents for cancer therapy: Recent progress and clinical potential. J. Mater. Chem. B 2021, 9, 1478–1490. [Google Scholar] [CrossRef]
- Wu, X.; Gao, Y.; Dong, C.-M. Polymer/gold hybrid nanoparticles: From synthesis to cancer theranostic applications. RSC Adv. 2015, 5, 13787. [Google Scholar] [CrossRef]
- Yang, Y.-L.; Lin, K.; Yang, L. Progress in nanocarriers codelivery system to enhance the anticancer effect of photodynamic therapy. Pharmaceutics 2021, 13, 1951. [Google Scholar] [CrossRef]
- Mihoub, A.B.; Larue, L.; Moussaron, A.; Youssef, Z.; Colombeau, L.; Baros, F.; Frochot, C.; Vanderesse, R.; Acherar, S. Use of Cyclodextrins in Anticancer Photodynamic Therapy Treatment. Molecules 2018, 23, 1936. [Google Scholar] [CrossRef] [Green Version]
- Aghajanzadeh, M.; Zamani, M.; Kouchi, F.R.; Eixenberger, J.; Shirini, D.; Estrada, D.; Shirini, F. Synergic anti-tumor effect of photodynamic therapy and chemotherapy mediated by nano drug delivery systems. Pharmaceutics 2022, 14, 322. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, L.; Su, Y.; Dong, C.-M. Plasmonic, targeted, and dual drugs-loaded polypeptide composite nanoparticles for synergistic cocktail chemotherapy with photothermal therapy. Biomacromolecules 2016, 17, 2489–2501. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, L.; Su, Y.; Dong, C.-M. A polypeptide micelle template method to prepare polydopamine composite nanoparticles for synergistic photothermal-chemotherapy. Polym. Chem. 2016, 7, 5552–5562. [Google Scholar] [CrossRef]
- Saravanakumar, G.; Kim, J.; Kim, W.J. Reactive-oxygen-species-responsive drug delivery systems: Promises and challenges. Adv. Sci. 2017, 4, 1600124. [Google Scholar] [CrossRef]
- Dariva, C.G.; Coelho, J.F.J.; Serra, A.C. Near infrared light-triggered nanoparticles using singlet oxygen photocleavage for drug delivery systems. J. Control. Release 2019, 294, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Waglewska, E.; Pucek-Kaczmarek, A.; Bazylińska, U. Novel surface-modified bilosomes as functional and biocompatible nanocarriers of hybrid compounds. Nanomaterials 2020, 10, 2472. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Bouilloux, J.; Borrego, I.; Cook, S.; Bergh, H.; Lange, N.; Wagnieres, G.; Giraud, M.-N. Cathepsin B-cleavable polymeric photosensitizer prodrug for selective photodynamic therapy: In vitro studies. Pharmaceuticals 2022, 5, 564. [Google Scholar] [CrossRef]
- Osuchowski, M.; Osuchowski, F.; Latos, W.; Kawczyk-Krupka, A. The use of upconversion nanoparticles in prostate cancer photodynamic therapy. Life 2021, 4, 360. [Google Scholar] [CrossRef]
- Liu, Z.; Ye, L.; Xi, J.; Wang, J.; Feng, Z. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog. Polym. Sci. 2021, 118, 101408. [Google Scholar] [CrossRef]
- Bognanni, N.; Viale, M.; Distefano, A.; Tosto, R.; Bertola, N.; Loiacono, F.; Ponassi, M.; Spinelli, D.; Pappalardo, G.; Vecchio, G. Cyclodextrin polymers as delivery systems for targeted anti-cancer chemotherapy. Molecules 2021, 26, 6046. [Google Scholar] [CrossRef]
- Rasheed, A.; Ashok Kumar, C.K.; Sravanthi, V.V.N.S.S. Cyclodextrins as drug carrier molecule: A review. Sci. Pharm. 2008, 4, 567–598. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, Y.; Zhou, X.; Liao, C.; Dai, X.; Liu, J.; Yu, Y.; Zhang, S. Cascade-reaction-based nanodrug for combined chemo/starvation/chemodynamic therapy against multidrug-resistant tumors. ACS Appl. Mater. Interfaces 2019, 11, 46112–46123. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Tan, X.; Dai, Y.; Xia, F.; Zhang, X. Cyclodextrin capped gold nanoparticles (AuNP@CDs): From synthesis to applications. J. Mater. Chem. B 2021, 9, 2584–2593. [Google Scholar] [CrossRef]
- Jahangiri-Manesh, A.; Mousazadeh, M.; Taji, S.; Bahmani, A.; Zarepour, A.; Zarrabi, A.; Sharifi, E.; Azimzadeh, M. Gold nanorods for drug and gene Delivery: An overview of recent advancements. Pharmaceutics 2022, 14, 664. [Google Scholar] [CrossRef]
- Riley, R.S.; Day, E.S. Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. WIREs Nanomed. Nanobiotechnol. 2017, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhou, L.; Su, Y.; Dong, C.-M. An autoreduction method to prepare plasmonic gold-embedded polypeptide micelles for synergistic chemo-photothermal therapy. J. Mater. Chem. B 2016, 4, 2142–2152. [Google Scholar] [CrossRef]
- Liu, S.; Pan, X.; Liu, H. Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. 2020, 59, 5890–5900. [Google Scholar] [CrossRef] [PubMed]
- Lagos, K.J.; Buzzá, H.H.; Bagnato, V.S.; Romero, M.P. Carbon-based materials in photodynamic and photothermal therapies applied to tumor destruction. Int. J. Mol. Sci. 2022, 23, 22. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tian, M. Fabrication of α-cyclodextrin/polypeptide micellar gold nanoshell for synergistic photothermal-chemotherapy. J. Nanopart. Res. 2018, 20, 217. [Google Scholar] [CrossRef]
- Nocito, G.; Petralia, S.; Malanga, M.; Beni, S.; Calabrese, G.; Parenti, R.; Conoci, S.; Sortino, S. Biofriendly route to near-infrared-active gold nanotriangles and nanoflowers through nitric oxide photorelease for photothermal applications. ACS Appl. Energy Mater. 2019, 2, 7916–7923. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, M.; Pan, W.; Wang, H.; Li, N.; Tang, B. Tumor microenvironment-triggered fabrication of gold nanomachines for tumor-specific photoacoustic imaging and photothermal therapy. Chem. Sci. 2017, 8, 4896–4903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Yu, Q.; Zhang, Y.-M.; Liu, Y. Two-dimensional supramolecular assemblies based on β-cyclodextrin-grafted graphene oxide for mitochondrial dysfunction and photothermal therapy. Chem. Commun. 2019, 55, 12200–12203. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, Y.-M.; Liu, Y.-H.; Liu, Y. Magnetic supramolecular nanofibers of gold nanorods for photothermal therapy. Adv. Therap. 2019, 2, 1800137. [Google Scholar] [CrossRef]
- Wen, C.; Cheng, R.; Gong, T.; Huang, Y.; Li, D.; Zhao, X.; Yu, B.; Su, D.; Song, Z.; Liang, W. β-Cyclodextrin-cholic acid-hyaluronic acid polymer coated Fe3O4-graphene oxide nanohybrids as local chemo-photothermal synergistic agents for enhanced liver tumor therapy. Colloids Surf. B Biointerfaces 2021, 199, 111510. [Google Scholar] [CrossRef]
- Kim, S.H.; In, I.; Park, S.Y. pH-Responsive NIR-absorbing fluorescent polydopamine with hyaluronic acid for dual targeting and synergistic effects of photothermal and chemotherapy. Biomacromolecules 2017, 18, 1825–1835. [Google Scholar] [CrossRef]
- Zhang, L.; Li, S.; Chen, X.; Wang, T.; Li, L.; Su, Z.; Wang, C. Tailored surfaces on 2D material: UFO-like cyclodextrin-Pd nanosheet/metal organic framework janus nanoparticles for synergistic cancer therapy. Adv. Funct. Mater. 2018, 28, 1803815. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Z.; Yang, H.; Ren, C.; Lv, F.; Gao, S.; Ma, H.; Jin, Y.; Ge, K.; Liu, D.; et al. Mesoporous platinum nanotherapeutics for combined chemo-photothermal cancer Treatment. ACS Appl. Bio Mater. 2019, 2, 3269–3278. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.-L.; Rong, R.-X.; Li, J.-M.; Chen, X.; Wang, S.-S.; Li, X.-L.; Wang, K.-R. Effective renal clearance and photothermal therapy of a cyclodextrin-modified quaterrylene derivative. ACS Appl. Bio Mater. 2020, 3, 3390–3400. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Yang, Z.; Fu, X.; Yung, B.C.; Yang, J.; Mao, Z.; Shao, L.; Hua, B.; Liu, Y.; Zhang, F.; et al. Polyrotaxane-based supramolecular theranostics. Nat. Commun. 2018, 9, 766. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Huang, Z.; Huang, Z.; Zhang, X.; He, S.; Sun, X.; Shen, Y.; Yan, M.; Zhao, C. Injectable, NIR/pH-responsive nanocomposite hydrogel as long acting implant for chemo-photothermal synergistic cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 20361–20375. [Google Scholar] [CrossRef]
- Liu, M.; Huang, P.; Wang, W.; Feng, Z.; Zhang, J.; Deng, L.; Dong, A. Injectable nanocomposite hydrogel co-constructed by gold nanorods and paclitaxel-loaded nanoparticles for local chemo-photothermal synergetic cancer therapy. J. Mater. Chem. B 2019, 7, 2667–2677. [Google Scholar] [CrossRef]
- Ruan, C.; Liu, C.; Hu, H.; Guo, X.-L.; Jiang, B.-P.; Liang, H.; Shen, X.-C. NIR-II light-modulated thermosensitive hydrogel for light-triggered cisplatin release and repeatable chemo-photothermal therapy. Chem. Sci. 2019, 10, 4699–4706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, H.; Xu, X.; Chen, Y.; Xin, H.; Wan, T.; Li, B.; Pan, H.; Li, D.; Ping, Y. Reprogramming the tumor microenvironment through second-near-infrared-window photothermal genome editing of PD-L1 mediated by supramolecular gold nanorods for enhanced cancer immunotherapy. Adv. Mater. 2021, 33, 2006003. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Wang, J.; Tao, C.; Zhu, J.-J. Highly monodisperse beta-cyclodextrin-covellite nanoparticles for efficient photothermal and chemotherapy. Nanoscale Horiz. 2018, 3, 538–544. [Google Scholar] [CrossRef]
- Duan, S.; Yang, Y.; Zhang, C.; Zhao, N.; Xu, F.-J. NIR-responsive polycationic gatekeeper-cloaked hetero-nanoparticles for multimodal imaging-guided triple-combination therapy of cancer. Small 2017, 13, 1603133. [Google Scholar] [CrossRef]
- Zhao, N.; Yana, L.; Xue, J.; Zhang, K.; Xu, F.-J. Degradable one-dimensional dextran-iron oxide nanohybrids for MRI-guided synergistic gene/photothermal/magnetolytic therapy. Nano Today 2021, 38, 101118. [Google Scholar] [CrossRef]
- Silva, N.; Riveros, A.; Yutronic, N.; Lang, E.; Chornik, B.; Guerrero, S.; Samitier, J.; Jara, P.; Kogan, M. Photothermally controlled methotrexate release system using β-cyclodextrin and gold nanoparticles. Nanomaterials 2018, 8, 985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Li, X.; Shi, J.; Yao, M.; Zhang, X.; Hou, R.; Shao, N.; Luo, Q.; Gao, Y.; Du, S.; et al. Host-guest polypyrrole nanocomplex for three-stimuli responsive drug delivery and imaging-guided chemo-photothermal synergetic therapy of refractory thyroid cancer. Adv. Healthc. Mater. 2019, 8, 1900661. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Nariya, P.; Joshi, J.; Vohra, A.; Devkar, R.; Seshadri, S.; Thakor, S. Carbon nanotube embedded cyclodextrin polymer derived injectable nanocarrier: A multiple faceted platform for stimulation of multi-drug resistance reversal. Carbohydr. Polym. 2020, 247, 116751. [Google Scholar] [CrossRef]
- Liang, W.; Huang, Y.; Lu, D.; Ma, X.; Gong, T.; Cui, X.; Yu, B.; Yang, C.; Dong, C.; Shuang, S. β-Cyclodextrin–hyaluronic acid polymer functionalized magnetic graphene oxide nanocomposites for targeted photo-chemotherapy of tumor cells. Polymers 2019, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Salazar, S.; Yutronic, N.; Kogan, M.J.; Jara, P. Cyclodextrin Nanosponges Inclusion compounds associated with gold nanoparticles for potential application in the photothermal release of melphalan and cytoxan. Int. J. Mol. Sci. 2021, 22, 6446. [Google Scholar] [CrossRef]
- Lia, S.; Zhang, L.; Liang, X.; Wang, Y.; Chen, X.; Liu, C.; Lib, L.; Wang, C. Tailored synthesis of hollow MOF/polydopamine Janus nanoparticles for synergistic multi-drug chemo-photothermal therapy. Chem. Eng. J. 2019, 78, 122175. [Google Scholar] [CrossRef]
- Guo, X.; Zhu, M.; Yuan, P.; Liu, T.; Tian, R.; Bai, Y.; Zhang, Y.; Chen, X. The facile formation of hierarchical mesoporous silica nanocarriers for tumor-selective multimodal theranostics. Biomater. Sci. 2021, 9, 5237–5246. [Google Scholar] [CrossRef]
- Li, Q.-L.; Wang, D.; Cui, Y.; Fan, Z.; Ren, L.; Li, D.; Yu, J. AIEgen-functionalized mesoporous silica gated by cyclodextrin modified CuS for cell imaging and chemo-photothermal cancer therapy. ACS Appl. Mater. Interfaces 2018, 10, 12155–12163. [Google Scholar] [CrossRef]
- Chen, M.; Perez, R.L.; Du, P.; Bhattarai, N.; McDonough, K.C.; Ravula, S.; Kumar, R.; Mathis, J.M.; Warner, I.M. Tumor-targeting NIRF nanoGUMBOS with cyclodextrin-enhanced chemo/photothermal anti-tumor activities. ACS Appl. Mater. Interfaces 2019, 11, 27548–27557. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Liang, J.; Yang, A.; Qian, Z.; Kong, D.; Lv, F. Fluorescence imaging guided CpG nanoparticles-loaded IR820-hydrogel for synergistic photothermal immunotherapy. Biomaterials 2019, 209, 111–125. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, D.; Chen, H.; Lim, W.Q.; Phua, F.S.Z.; An, G.; Yang, P.; Zhao, Y. Reduction-sensitive fluorescence enhanced polymeric prodrug nanoparticles for combinational photothermal-chemotherapy. Biomaterials 2018, 163, 14–24. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Y.; Choi, W.; Jangili, P.; Ge, Y.; Xu, Y.; Kang, J.; Liu, L.; Zhang, B.; Xie, Z.; et al. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem. Soc. Rev. 2021, 50, 9152–9201. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, S.; Wu, J.; Yu, L.; Singh, N.; Yang, K.; Lan, M.; Wang, P.; Kim, J.S. Photodynamic therapy for hypoxic tumors: Advances and perspectives. Coord. Chem. Rev. 2021, 438, 213888. [Google Scholar] [CrossRef]
- Semeraro, P.; Chimienti, G.; Altamura, E.; Fini, P.; Rizzi, V.; Cosma, P. Chlorophyll a in cyclodextrin supramolecular complexes as a natural photosensitizer for photodynamic therapy (PDT) applications. Mater. Sci. Eng. C 2018, 85, 47–56. [Google Scholar] [CrossRef]
- Tian, J.; Xia, L.; Wu, J.; Huang, B.; Cao, H.; Zhang, W. Linear alternating supramolecular photosensitizer for enhanced photodynamic therapy. ACS Appl. Mater. Interfaces 2020, 12, 32352–32359. [Google Scholar] [CrossRef]
- Xia, L.; Wu, J.; Huang, B.; Gao, Y.; Tian, J.; Zhang, W. Enhanced photodynamic therapy through supramolecular photosensitizers with adamantyl-functionalized porphyrin and cyclodextrin-dimer. Chem. Commun. 2020, 56, 11134–11137. [Google Scholar] [CrossRef]
- Yoon, S.; Noh, G.J.; Youn, Y.S.; Oh, K.T.; Lee, E.S. Development of pH-responsive cyclodextrin nanoparticles for tumor-specific photodynamic therapy. Polym. Adv. Technol. 2020, 31, 3228–3237. [Google Scholar] [CrossRef]
- Koo, M.; Oh, K.T.; Noh, G.; Lee, E.S. Gold nanoparticles bearing a tumor pH-sensitive cyclodextrin cap. ACS Appl. Mater. Interfaces 2018, 10, 24450–24458. [Google Scholar] [CrossRef]
- Hu, H.; Dai, W.; Zhang, Y.; Huang, Y.; Qian, J.; Jin, Q.; Ji, J.; Tang, Z. Fabrication of programmed photosensitizer-conjugated nanoassemblies by dual supramolecular self-assembly for photodynamic therapy of orthotopic hepatoma. Chem. Eng. J. 2022, 435, 134930. [Google Scholar] [CrossRef]
- Liu, J.; Liang, H.; Li, M.; Luo, Z.; Zhang, J.; Guo, X.; Cai, K. Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy. Biomaterials 2018, 157, 107–124. [Google Scholar] [CrossRef]
- Jia, D.; Ma, X.; Lu, Y.; Li, X.; Hou, S.; Gao, Y.; Xue, P.; Kang, Y.; Xu, Z. ROS-responsive cyclodextrin nanoplatform for combined photodynamic therapy and chemotherapy of cancer. Chin. Chem. Lett. 2021, 32, 162–167. [Google Scholar] [CrossRef]
- Tian, J.; Huang, B.; Cui, Z.; Wang, P.; Chen, S.; Yang, G.; Zhang, W. Mitochondria-targeting and ROS-sensitive smart nanoscale supramolecular organic framework for combinational amplified photodynamic therapy and chemotherapy. Acta Biomater. 2021, 130, 447–459. [Google Scholar] [CrossRef]
- Dai, X.; Dong, X.; Liu, Z.; Liu, G.; Liu, Y. Controllable singlet oxygen generation in water based on cyclodextrin secondary assembly for targeted photodynamic therapy. Biomacromolecules 2020, 21, 5369–5379. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.; Han, Y.; Liu, H.; Ren, F.; Zeng, J.; Sun, Q.; Li, Z.; Gao, M. Light-enhanced O2-evolving nanoparticles boost photodynamic therapy to elicit anti-tumor immunity. ACS Appl. Mater. Interfaces 2019, 11, 16367–16379. [Google Scholar] [CrossRef]
- Qin, Y.; Tong, F.; Zhang, W.; Zhou, Y.; He, S.; Xie, R.; Lei, T.; Wang, Y.; Peng, S.; Li, Z.; et al. Self-delivered supramolecular nanomedicine with transformable shape for ferrocene-amplified photodynamic therapy of breast cancer and bone metastases. Adv. Funct. Mater. 2021, 31, 2104645. [Google Scholar] [CrossRef]
- Deng, Y.; Jia, F.; Chen, S.; Shen, Z.; Jin, Q.; Fu, G.; Ji, J. Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation. Biomaterials 2018, 187, 55–65. [Google Scholar] [CrossRef]
- Yao, X.; Li, M.; Li, B.; Xue, C.; Cai, K.; Zhao, Y.; Luo, Z. Tumor-targeted upconverting nanoplatform constructed by host-guest interaction for near-infrared-light-actuated synergistic photodynamic-/chemotherapy. Chem. Eng. J. 2020, 390, 124516. [Google Scholar] [CrossRef]
- Ikeda, A.; Satake, S.; Mae, T.; Ueda, M.; Sugikawa, K.; Shigeto, H.; Funabashi, H.; Kuroda, A. Photodynamic activities of porphyrin derivative-cyclodextrin complexes by photoirradiation. ACS Med. Chem. Lett. 2017, 8, 555–559. [Google Scholar] [CrossRef] [Green Version]
- Aslanoglu, B.; Yakavets, I.; Zorin, V.; Lassalle, H.-P.; Ingrosso, F.; Monari, A.; Catak, S. Optical properties of photodynamic therapy drugs in different environments: The paradigmatic case of temoporfin. Phys. Chem. Chem. Phys. 2020, 22, 16956–16964. [Google Scholar] [CrossRef]
- Lim, W.Q.; Yang, G.; Phua, S.Z.F.; Chen, H.; Zhao, Y. Self-assembled oxaliplatin(IV) prodrug-porphyrin conjugate for combinational photodynamic therapy and chemotherapy. ACS Appl. Mater. Interfaces 2019, 11, 16391–16401. [Google Scholar] [CrossRef]
- Fu, H.-G.; Chen, Y.; Yu, Q.; Liu, Y. A Tumor-targeting Ru/polysaccharide/protein supramolecular assembly with high photodynamic therapy ability. Chem. Commun. 2019, 55, 3148–3151. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, B.; Zhou, W.; Liu, Y. High-efficiency synergistic effect of supramolecular nanoparticles based on cyclodextrin-prodrug on cancer therapy. Biomacromolecules 2020, 21, 4998–5007. [Google Scholar] [CrossRef]
- Yuan, G.; Wang, Q.; You, Z.; Chen, X.; Xue, J.; Jia, X.; Chen, J. A novel hierarchical targeting and controllable smart nanoparticles for enhanced in situ nuclear photodynamic therapy. Nano Res. 2022, 5, 4212–4223. [Google Scholar] [CrossRef]
Guest Molecule | PTA Type | Combined Therapy | Cell or Tumor Type | References |
---|---|---|---|---|
PEG | Gold nanoshells | Chemotherapy | HeLa cell | [25] |
None | Gold nanotriangles, gold nanoflowers | None | A673 cell | [26] |
Pyridine-2-imine | AuNP aggregation | None | MCF-7 tumor. | [27] |
Azobenzene | GO | Mitochondrial physical disruption | S180 tumor | [28] |
Cyclohexylalanine | AuNR | Mitochondrial physical disruption | A549 tumor | [29] |
Camptothecin | GO | Chemotherapy | BEL-7402 tumor | [30] |
Paclitaxel | Polydopamine | Chemotherapy | MDA-MB-231 cell | [31] |
10-hydroxy camptothecin | Palladium nanosheet | Chemotherapy | H-22 tumor | [32] |
AD | Mesoporous platinum nanoparticle | Chemotherapy | MCF-7 tumor | [33] |
None | Quaterrylene bisimide derivative | None | HepG2 tumor | [34] |
PEG | Perylene diimide | Chemotherapy | HeLa tumor, A549 tumor | [35] |
AD | AuNR | Chemotherapy | S180 tumor | [36] |
PEG | AuNR | Chemotherapy | 4T1 tumor | [37] |
PEG | AuNR | Chemotherapy | MDA-MB-231 tumor | [38] |
AD | AuNR | Immunotherapy, genetherapy | B16-F10 tumor | [39] |
AD | Copper sulfide nanoparticles | Chemotherapy | HeLa cell | [40] |
AD | AuNR | Chemotherapy, genetherapy | C-6 tumor | [41] |
AD | Fe3O4 nanoparticle | Genetherapy, magnetolytic therapy | 4T1 tumor | [42] |
Guest Molecule | PS Type | Combined Therapy | Cell or Tumor Type | References |
---|---|---|---|---|
Chlorophyll a | Chlorophyll a | None | HT-29 cell | [56] |
AD | Porphyrin | None | 4T1 tumor | [57] |
AD | Porphyrin | None | 4T1 tumor | [58] |
Ce6 | Ce6 | None | MDA-MB-231 cell | [59] |
Ce6 | Ce6 | PTT | MDA-MB-231 tumor | [60] |
PEG | Ce6 | None | LM3 tumor | [61] |
AD | Indocyanine green | PTT | MCF-7 tumor | [62] |
None | Purpurin 18 | Chemotherapy | 4T1 tumor | [63] |
AD | Porphyrin | Chemotherapy | 4T1 tumor | [64] |
AD | Polypyridyl ruthenium | None | A549 cell | [65] |
Ce6 | Ce6 | Immunotherapy | 4T1 tumor | [66] |
ferrocence | Ce6 | None | 4T1 tumor | [67] |
PEG | Ce6 | None | MCF-7 tumor | [68] |
Camptothecin | Ce6 | Chemotherapy | HepG2 tumor | [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Chen, Y.; Guo, Q.; Tao, L.; Ding, Y.; Ding, X.; Shen, X. Cyclodextrin-Based Nanoplatforms for Tumor Phototherapy: An Update. Pharmaceutics 2022, 14, 1375. https://doi.org/10.3390/pharmaceutics14071375
Wu X, Chen Y, Guo Q, Tao L, Ding Y, Ding X, Shen X. Cyclodextrin-Based Nanoplatforms for Tumor Phototherapy: An Update. Pharmaceutics. 2022; 14(7):1375. https://doi.org/10.3390/pharmaceutics14071375
Chicago/Turabian StyleWu, Xingjie, Ying Chen, Qianqian Guo, Ling Tao, Yang Ding, Xianguang Ding, and Xiangchun Shen. 2022. "Cyclodextrin-Based Nanoplatforms for Tumor Phototherapy: An Update" Pharmaceutics 14, no. 7: 1375. https://doi.org/10.3390/pharmaceutics14071375
APA StyleWu, X., Chen, Y., Guo, Q., Tao, L., Ding, Y., Ding, X., & Shen, X. (2022). Cyclodextrin-Based Nanoplatforms for Tumor Phototherapy: An Update. Pharmaceutics, 14(7), 1375. https://doi.org/10.3390/pharmaceutics14071375