Ultrasound and Nanomedicine for Cancer-Targeted Drug Delivery: Screening, Cellular Mechanisms and Therapeutic Opportunities
Abstract
:1. Introduction
2. Ultrasound and Nanomedicine Screening
2.1. Ultrasonic Technique
2.2. Ultrasonic Drug Screening
Even | Model | Cancer Types | Delivery Vehicles | Ultrasonic Frequency | Effect | Ref. |
---|---|---|---|---|---|---|
Biopsy | Patients | Breast cancer | Microbubbles | 4.5 to 15 MHz | Enhanced preoperative axillary staging | [31] |
In vitro/in vivo | AsPC1/transgenic pancreatic cancer mouse | Pancreatic ductal adenocarcinoma | Microbubbles | 21 MHz | Increased Thy1 expression in PDAC | [32] |
In vivo | MDA-MB-231, MCF-7, MCF-12A | Breast cancer | Microbubbles | 5 to 7.5 MHz | Enhanced drug response | [33] |
In vitro/in vivo | PC-3 | Prostate cancer | Microbubbles | 1 MHz | Enhanced Efficacy of Photodynamic Therapy | [34] |
In vitro/in vivo | Bel-7402 Bel-7402, SKOV-3, MB-231 | Cervical, ovarian, and breast cancer | Microbubbles | 0.8 to 3.5 MHz | Enhanced and synergistic chemotherapy | [35] |
In vitro/in vivo | MCF-7 | Breast cancer | Microbubbles | 2 to 10 MHz | Enhancing therapeutic efficacy | [36] |
In vitro/in vivo | HT-29 | Colorectal cancer | Microbubbles | 1 to 12 MHz | Overcomes Multidrug Resistance | [37] |
In vivo | PC-3, LNCaP | Prostate cancer | Microbubbles | 5 to 10 MHz | Enhances the detection of tumor cells | [38] |
In vitro/in vivo | Walker-256 BC | Breast cancer | Microbubbles | 1.5 to 7.5 MHz | Inhibiting the tumor growth | [39] |
In vitro | LS174T, CT26 | Colon cancer | Microbubbles | 3.2 MHz | Enhances the monitoring of the therapy | [40] |
In vitro | MDA-MB-231 | Breast cancer | Microbubbles | 9 MHz | Optimization of the target condition | [41] |
In vitro | HUVECs | Endothelial cells | Microbubbles | 0.4 to 8.5 MHz | Enhancing the efficiency of labeling | [42] |
In vitro/in vivo | CT26 | Colon cancer | Microbubbles | 6.5 MHz | Induce photothermal therapy activity | [43] |
In vitro | PC-3, LNCaP | Prostate cancer | Microbubbles | 5 to 12 MHz | Enhancing the efficiency of labeling | [44] |
In vitro/in vivo | MDA-MB-231 | Triple-negative breast cancer | Microbubbles | 1.5 to 12.5 MHz | Enhancing the efficiency of labeling | [45] |
In vivo | MDA-MB-231 | Breast cancer | Microbubbles | 32 MHz | Enhancing the efficiency of radiation therapy | [46] |
In vivo | VX2 | Liver cancer | Microbubbles | 3 to 9 MHz | Improved the antitumor effect | [47] |
In vitro/in vivo | OVCAR-3, 4T1 | Breast cancer, ovarian cancer | Microbubbles | 6 to 10 MHz | Enhancing the delivery of drugs | [48] |
In vitro | MOLM-13 | Leukemia | Microbubbles | 1.108 MHz | Enhanced the therapeutic effectiveness of treatment | [49] |
In vitro/in vivo | Bel-7402 | Liver cancer | Microbubbles | 1 MHz | Improved diagnostic accuracy and synergistic treatment | [50] |
In vitro/in vivo | TRAMP | Prostate cancer | Microbubbles | 7 MHz | Improved the efficiency of diagnosis | [51] |
In vivo | VX2 | Liver cancer | Microbubbles | 1 MHz | Enhanced the response to treatment | [52] |
In vivo | MDA-MB-231 | Breast cancer | Microbubbles | 8 MHz | Enhanced the efficacy of therapy | [53] |
In vitro/in vivo | SVR | Cholangiocarcinoma | Microbubbles | 40 MHz | Enhancing diagnostic and therapeutic capabilities | [54] |
In vitro/in vivo | KHT-C | Fibrosarcoma | Microbubbles | 4 to 5.2 MHz | Improved the efficiency of diagnosis | [55] |
In vitro/in vivo | MDA-MB-231 | Breast cancer | Microbubbles | 7 MHz | Improved the efficiency of diagnosis | [56] |
In vivo | Spontaneous tumor mice | Liver cancer | Microbubbles | 1.6 MHz | Improved the efficiency of diagnosis | [57] |
In vitro/in vivo | MC38 | Colon cancer | Microbubbles | 4 MHz | Enhanced immune response | [58] |
In vitro | PaCa-2 | Pancreatic cancer | Microbubbles | 2 MHz | Enhanced the efficacy of therapy | [59] |
In vivo | MDA-MB-231 | Breast cancer | Microbubbles | 20 MHz | Improve the efficiency of diagnosis | [60] |
In vitro/in vivo | VX2 | Liver cancer | Microbubbles | 3.5 MHz | Enhanced drug delivery and therapeutic effect | [61] |
In vivo | Tumorigenesis induced by diethylnitrosamine | Liver cancer | Microbubbles | 21 MHz | Enhanced the therapeutic effect | [62] |
In vivo | RT112 | Bladder cancer | Microbubbles | 8 MHz | Enhanced the therapeutic effect | [63] |
In vitro/in vivo | U14 | Cervical carcinoma | Microbubbles | 18 MHz | Enhanced the therapeutic effect | [64] |
In vivo | VX2 | Liver cancer | Microbubbles | 9 MHz | Improved the efficiency of diagnosis | [65] |
In vivo | PC-3 | Prostate cancer | Microbubbles | 25 MHz | Enhanced the therapeutic effect | [66] |
In vivo | PANC-1 | Pancreatic cancer | Microbubbles | 4 MHz | Enhanced the therapeutic effect | [67] |
Biopsy | Patients | Breast cancer | Microbubbles | 6 to 15 MHz | Improved the efficiency of diagnosis | [68] |
In vitro/in vivo | SCC-7 | Mouse squamous cell carcinoma | Microbubbles | 1 MHz | Enhanced the therapeutic effect | [69] |
In vivo | MDA-MB-231 | Breast cancer | Microbubbles | 21 MHz | Improved the efficiency of diagnosis | [70] |
In vitro/in vivo | MDA-MB-231 | Breast cancer | Microbubbles | 25 MHz | Enhanced the therapeutic effectiveness of treatment | [71] |
In vivo | PC-3 | Prostate cancer | Micro/nanobubbles | 18 MHz | Improved the efficiency of diagnosis | [72] |
In vitro/in vivo | C6 | Glioma | Micro/nanobubbles | 1 to 10 MHz | Antitumor activity | [73] |
In vitro/in vivo | MDA-MB-468 | Breast cancer | Microbubbles/liposomes | 1 MHz | Improved the delivery of materials | [74] |
In vitro/in vivo | Cal-27, OECM-1 | Oral cancer | Nanobubbles | 7 MHz | Promoted the release of reactive oxygen species (ROS) | [75] |
In vitro | CT26 | Colon cancer | Nanobubbles | 13 to 24 MHz | Enhanced the therapeutic effect | [76] |
In vitro/in vivo | SKBR3 | Breast cancer | Nanobubbles | 22 MHz | Enhanced the targeting precision | [77] |
In vitro/in vivo | MDA-MB-231 | Breast cancer | Nanobubbles | 3 to 9 MHz | Enhanced the precision and accuracy of targeting and diagnosis | [78] |
In vitro/in vivo | 4T1 | Breast cancer | Nanobubbles | 1 MHz | Enhanced drug delivery and therapeutic effect | [79] |
In vitro/in vivo | U87, MDA-MB-231 | Glioblastoma, breast cancer | Nanobubbles | 7.5 MHz | Improved diagnostic accuracy and synergistic treatment | [80] |
In vitro/in vivo | OVCAR-3, 4T1 | Breast cancer, ovarian cancer | Nanobubbles | 12 MHz | Enhancing the delivery of drugs | [48] |
In vitro/in vivo | MCF-7, MDA-MB-468 | Breast cancer | Nanobubbles | 18 to 21 MHz | Enhancing diagnostic and therapeutic capabilities | [81] |
In vitro/in vivo | PC-3 | Prostate cancer | Nanobubbles | 12 MHz | Enhancing the sensitivity of diagnosis | [82] |
In vitro/in vivo | LNCaP, C4-2, and PC-3 | Prostate cancer | Nanobubbles | 13 to 24 MHz | Improved the efficiency of diagnosis | [83] |
In vitro/in vivo | MDA-MB-231, MDA-MB-468 | Breast cancer | Nanobubbles | 13 to 24 MHz | Enhanced drug delivery and therapeutic effect | [84] |
In vivo | PC-3 | Prostate cancer | Nanobubbles | 18 MHz | Improved diagnostic accuracy and synergistic treatment | [85] |
In vitro/in vivo | 4T1 | Breast cancer | Nanobubbles | 7.5 MHz | Enhanced drug delivery and therapeutic effect | [86] |
In vivo | LN-229 | Glioblastoma | Nanobubbles | 12 MHz | Improved the efficiency of diagnosis | [87] |
In vitro/in vivo | MDA-MB-231 | Breast cancer | Nanobubbles | 18 to 38 MHz | Enhanced drug delivery and diagnosis | [88] |
In vitro/in vivo | Mia-Paca2 | Pancreatic cancer | Nanobubbles | 7.5 MHz | Improved diagnostic accuracy and synergistic treatment | [89] |
In vitro/in vivo | 4T1 | Breast cancer | Nanobubbles | 7.5 MHz | Improved the efficiency of diagnosis | [90] |
In vitro | MiaPaCa-2, Panc-1, MDA-MB-231, AW-8507 | Pancreatic cancer, breast cancer, head, and neck cancer | Nanobubbles/liposomes | 1 MHz | Improved the efficiency of diagnosis | [91] |
In vitro/in vivo | MDA-MB-231, B16F10 | Breast cancer, melanoma | Liposomes | 1 to 12 MHz | Improved diagnostic accuracy and synergistic treatment | [92] |
In vitro | SKOV3, A549 | Ovarian cancer, lung cancer | Liposomes | 5 to 12 MHz | Enhanced drug delivery and therapeutic effect | [93] |
In vitro/in vivo | MDA-MB-231 | Breast cancer | Liposomes | 1.3 MHz | Enhanced drug delivery and diagnosis | [94] |
In vitro | NCI-N87 | Gastric cancer | Liposomes | 10 MHz | Enhanced drug delivery and diagnosis | [95] |
In vivo | 4T1 | Breast cancer | Liposomes | 40 MHz | Improved diagnostic accuracy and synergistic treatment | [96] |
In vivo | GL261 | Glioma | Liposomes | 1 to 2 MHz | Enhanced drug delivery and therapeutic effect | [97] |
3. Cellular Mechanisms
3.1. Blood–Brain Barrier Opening
3.1.1. Microbubbles
3.1.2. Nanobubbles
3.2. Ultrasound-Induced Cellular Mechanism
3.2.1. Drug Resistance
3.2.2. Physiochemical Mechanism
3.2.3. Biological Mechanism
4. Ultrasonic Diagnosis
4.1. Liposomes
4.2. Microbubbles
4.3. Nanobubbles
5. Ultrasonic Therapy
5.1. FDA-Approved Drugs
5.1.1. Paclitaxel
5.1.2. Doxorubicin
5.1.3. Temozolomide
FDA-Approved Drugs | Delivery Vehicles | Cancer Types | Model | Ref. |
---|---|---|---|---|
Paclitaxel | Microbubbles | Breast cancer | In vitro/in vivo | [45] |
Paclitaxel | Microbubbles | Cervical cancer | In vitro/in vivo | [124] |
Paclitaxel | Microbubbles | Breast cancer | In vitro | [125] |
Paclitaxel | Microbubbles | Breast cancer | In vivo | [126] |
Paclitaxel | Microbubbles | Pancreatic cancer | In vitro | [127] |
Paclitaxel | Microbubbles | Breast cancer | In vitro | [128] |
Paclitaxel | Microbubbles | Ovarian cancer | In vitro | [129] |
Paclitaxel | Microbubbles | Prostate cancer | In vitro/in vivo | [130] |
Paclitaxel | Microbubbles | Endometrium | In vitro | [131] |
Paclitaxel | Nanobubbles | Lung cancer | In vitro | [132] |
Paclitaxel | Nanobubbles | Lung cancer | In vitro/in vivo | [133] |
Paclitaxel | Nanobubbles | Breast cancer | In vitro | [134] |
Paclitaxel | Nanobubbles | Breast cancer | In vitro/in vivo | [81] |
Paclitaxel | Nanobubbles | Ovarian cancer | In vivo | [106] |
Paclitaxel | Nanobubbles | Lung cancer | In vitro | [105] |
Paclitaxel | Nanobubbles | Prostate cancer | In vivo | [85] |
Paclitaxel/Doxorubicin | Microbubbles | Breast cancer | In vitro/in vivo | [135] |
Paclitaxel | Nanobubbles/liposomes | Pancreatic cancer, breast cancer, head and neck cancer | In vitro | [91] |
Doxorubicin | Microbubbles | Breast cancer | In vivo | [33] |
Doxorubicin | Microbubbles | Glioma | In vitro/in vivo | [73] |
Doxorubicin | Microbubbles | Liver cancer | In vitro/in vivo | [136] |
Doxorubicin | Microbubbles | Pancreatic cancer | In vitro/in vivo | [137] |
Doxorubicin | Microbubbles | Glioblastoma | In vitro/in vivo | [138] |
Doxorubicin | Microbubbles | Breast cancer | In vitro/in vivo | [135] |
Doxorubicin | Microbubbles | Breast cancer | In vitro/in vivo | [139] |
Doxorubicin | Microbubbles | Breast cancer | In vitro/in vivo | [140] |
Doxorubicin | Microbubbles | Breast cancer and lung cancer | In vitro/in vivo | [141] |
Doxorubicin | Microbubbles | Prostate cancer | In vitro/in vivo | [51] |
Doxorubicin | Microbubbles | Breast cancer | In vitro/in vivo | [53] |
Doxorubicin | Microbubbles | Pancreatic cancer | In vitro/in vivo | [142] |
Doxorubicin | Microbubbles | Breast cancer | In vitro/in vivo | [143] |
Doxorubicin | Microbubbles | Colon cancer | In vitro | [144] |
Doxorubicin | Microbubbles | Pancreatic cancer | In vitro/in vivo | [145] |
Doxorubicin | Microbubbles | Breast cancer | In vitro | [146] |
Doxorubicin | Microbubbles | Breast cancer | In vitro | [147] |
Doxorubicin | Microbubbles | Liver cancer | In vitro/in vivo | [148] |
Doxorubicin | Microbubbles | Melanoma | In vitro/in vivo | [149] |
Doxorubicin | Microbubbles | Breast cancer and lung cancer | In vitro | [150] |
Doxorubicin | Microbubbles | Liver cancer | In vivo | [57] |
Doxorubicin | Microbubbles | Liver cancer | In vitro/in vivo | [151] |
Doxorubicin | Microbubbles | Liver cancer | In vitro/in vivo | [61] |
Doxorubicin | Microbubbles | Liver cancer | In vitro/in vivo | [152] |
Doxorubicin | Microbubbles | Breast cancer | In vitro | [153] |
Doxorubicin | Microbubbles | Pancreatic cancer | In vitro/in vivo | [67] |
Doxorubicin | Microbubbles | Breast cancer | In vitro/in vivo | [154] |
Doxorubicin | Microbubbles | Bladder cancer | In vivo | [155] |
Doxorubicin | Microbubbles | Breast cancer | In vitro | [156] |
Doxorubicin | Nanobubbles | Breast cancer | In vitro | [157] |
Doxorubicin | Nanobubbles | Colon cancer | In vitro/in vivo | [158] |
Doxorubicin | Nanobubbles | Breast cancer | In vitro/in vivo | [141] |
Doxorubicin | Nanobubbles | Breast cancer and cervical cancer | In vitro | [159] |
Doxorubicin | Nanobubbles | Ovarian cancer | In vitro/in vivo | [121] |
Doxorubicin | Nanobubbles | Breast cancer | In vitro/in vivo | [86] |
Doxorubicin | Nanobubbles | Breast cancer | In vitro/in vivo | [88] |
Temozolomide | Nanobubbles | Glioblastoma | In vitro/in vivo | [160] |
Temozolomide | Liposomes | Glioblastoma | In vitro/in vivo | [161] |
Temozolomide | Liposomes | Glioblastoma | In vitro/in vivo | [162] |
5.2. Ultrasound-Focused Pain Relief and Local Tumor Control
5.3. Synergistic Treatment of Ultrasound and Nanomaterials
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, X.D.; Gole, J.; Gore, A.; He, Q.Y.; Lu, M.; Min, J.; Yuan, Z.Y.; Yang, X.R.; Jiang, Y.F.; Zhang, T.J.; et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat. Commun. 2020, 11, 3475. [Google Scholar] [CrossRef] [PubMed]
- Leon, R.; Martinez-Vega, B.; Fabelo, H.; Ortega, S.; Melian, V.; Castano, I.; Carretero, G.; Almeida, P.; Garcia, A.; Quevedo, E.; et al. Non-Invasive Skin Cancer Diagnosis Using Hyperspectral Imaging for In-Situ Clinical Support. J. Clin. Med. 2020, 9, 1662. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.C.; Lin, W.C.; Wang, T.H.; Chen, G.F.; Chou, D.Y.; Lin, D.M.; Lin, S.Y.; Chan, M.H.; Wu, J.M.; Tseng, C.D.; et al. Pre-screening for osteoporosis with calcaneus quantitative ultrasound and dual-energy X-ray absorptiometry bone density. Sci. Rep. 2021, 11, 15709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.C.; Lv, F.J.; Fu, B.J.; Li, W.J.; Lin, R.Y.; Chu, Z.G. Clinical and Computed Tomography Characteristics for Early Diagnosis of Peripheral Small-cell Lung Cancer. Cancer Manag. Res. 2022, 14, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Suppiah, S.; Surendrakumar, S.; Bigioni, L.; Lipsman, N. Low-Intensity MR-Guided Focused Ultrasound Mediated Disruption of the Blood-Brain Barrier for Intracranial Metastatic Diseases. Front. Oncol. 2018, 8, 338. [Google Scholar] [CrossRef] [PubMed]
- Raveenthiran, S.; Yaxley, W.J.; Franklin, T.; Coughlin, G.; Roberts, M.; Gianduzzo, T.; Kua, B.; Samaratunga, H.; Delahunt, B.; Egevad, L.; et al. Findings in 1,123 Men with Preoperative Ga-68-Prostate-Specific Membrane Antigen Positron Emission Tomography/Computerized Tomography and Multiparametric Magnetic Resonance Imaging Compared to Totally Embedded Radical Prostatectomy Histopathology: Implications for the Diagnosis and Management of Prostate Cancer. J. Urology 2022, 207, 573–580. [Google Scholar]
- Waqar, H.; Riaz, R.; Ahmed, N.M.; Majeed, A.I.; Abbas, S.R. Monodisperse magnetic lecithin-PFP submicron bubbles as dual imaging contrast agents for ultrasound (US) and MRI. RSC Adv. 2022, 12, 10504–10513. [Google Scholar] [CrossRef]
- De Silva, R.A.; Gorin, M.A.; Mease, R.C.; Minn, I.; Lisok, A.; Plyku, D.; Nimmagadda, S.; Allaf, M.E.; Yang, X.; Sgouros, G.; et al. Process validation, current good manufacturing practice production, dosimetry, and toxicity studies of the carbonic anhydrase IX imaging agent [In-111]In-XYIMSR-01 for phase I regulatory approval. J. Labelled Compd. Rad. 2021, 64, 243–250. [Google Scholar] [CrossRef]
- Wang, N.; Yuan, S.; Fang, C.; Hu, X.; Zhang, Y.S.; Zhang, L.L.; Zeng, X.T. Nanomaterials-Based Urinary Extracellular Vesicles Isolation and Detection for Non-invasive Auxiliary Diagnosis of Prostate Cancer. Front. Med. 2022, 8, 800889. [Google Scholar] [CrossRef]
- He, S.L.; Jiang, J.F. High-intensity focused ultrasound therapy for pediatric and adolescent vulvar lichen sclerosus. Int. J. Hyperther. 2022, 39, 579–583. [Google Scholar] [CrossRef]
- Roro, M.A.; Aredo, A.D.; Kebede, T.; Estifanos, A.S. Enablers and barriers to introduction of obstetrics ultrasound service at primary care facilities in a resource-limited setting: A qualitative study in four regions of Ethiopia. BMC Pregnancy Childb. 2022, 22, 278. [Google Scholar] [CrossRef] [PubMed]
- Schilpzand, M.; Neff, C.; van Dillen, J.; van Ginneken, B.; Heskes, T.; de Korte, C.; van den Heuvel, T. Automatic Placenta Localization from Ultrasound Imaging in a Resource-Limited Setting Using a Predefined Ultrasound Acquisition Protocol and Deep Learning. Ultrasound Med. Biol. 2022, 48, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.M.; Geannette, C.; Braun, N.; Wolfe, S.W.; Endo, Y. Diagnostic ultrasound of tendon injuries in the setting of distal radius fractures. Skeletal Radiol. 2022, 51, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Rozycki, G.F. The use of ultrasound in the acute setting: Lessons learned after 30 years. J. Trauma Acute Care 2022, 92, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.; Drinkwater, B.W.; Wilcox, P.D. Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation. NDT&E Int. 2005, 38, 701–711. [Google Scholar]
- De Vargas, V.H.; Flores, S.H.; Mercali, G.D.; Marczak, L.D.F. Effect of OHMIC heating and ultrasound on functional properties of biodegradable gelatin-based films. Polym. Eng. Sci. 2022, 6, 1890–1906. [Google Scholar] [CrossRef]
- Potapkin, A.V.; Moskvichev, D.Y. A Sonic Boom from a Thin Body and Local Heating Regions of an Incoming Supersonic Flow. Tech. Phys. 2021, 66, 648–657. [Google Scholar] [CrossRef]
- Wang, Y.L.; Han, Z.C.; Zhao, Y.P.; Wu, H.; Tan, H.J.; Zhang, Y.X.; Li, Y.X. Establishment of super sonic inlet flow pattern monitoring system: A workflow. Aerosp. Sci. Technol. 2022, 120, 107297. [Google Scholar] [CrossRef]
- Mifsud, J.; Lockerby, D.A.; Chung, Y.M.M.; Jones, G. Numerical simulation of a confined cavitating gas bubble driven by ultrasound. Phys. Fluids 2021, 33, 122114. [Google Scholar] [CrossRef]
- Cao, P.L.; Hao, C.C.; Li, B.B.; Jiang, H.; Liu, Y.F. Effect of ruptured cavitated bubble cluster on the extent of the cell deformation by ultrasound. Ultrason. Sonochem. 2021, 80, 105843. [Google Scholar] [CrossRef]
- Yokoe, I.; Omata, D.; Unga, J.; Suzuki, R.; Maruyama, K.; Okamoto, Y.; Osaki, T. Lipid bubbles combined with low-intensity ultrasound enhance the intratumoral accumulation and antitumor effect of pegylated liposomal doxorubicin in vivo. Drug Deliv. 2021, 28, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K.; Suzuki, R. Enhanced drug delivery to tumor tissue with opening of tumor neovasculature by lipid bubbles and ultrasound. Cancer Sci. 2021, 112, 563. [Google Scholar]
- Yan, Y.R.; Chen, Y.; Liu, Z.X.; Cai, F.Y.; Niu, W.T.; Song, L.M.; Liang, H.F.; Su, Z.W.; Yu, B.; Yan, F. Brain Delivery of Curcumin Through Low-Intensity Ultrasound-Induced Blood-Brain Barrier Opening via Lipid-PLGA Nanobubbles. Int. J. Nanomed. 2021, 16, 7433–7447. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, A.; Okuwaki, K.; Kida, M.; Masutani, H.; Iwai, T.; Yamauchi, H.; Kaneko, T.; Hasegawa, R.; Miyata, E.; Watanabe, M.; et al. Sample Isolation Processing Using Stereomicroscopy as an Alternative to Rapid On-site Evaluation in Endoscopic Ultrasound-guided Fine-needle Aspiration Biopsy for the Diagnosis of Pancreatic Malignant Neoplasms. Pancreas 2019, 48, 1533. [Google Scholar]
- Liu, S.J.; Dung, Y.T. Ultrasonic Vibration Hot Embossing A Novel Technique for Molding Plastic Microstructure. Int. Polym. Proc. 2022, 20, 449–452. [Google Scholar] [CrossRef]
- Sarda, H.; Arora, V.; Sachdeva, T.; Jain, S.K. Systematic Review of Comparison of use of Ultrasonic Scalpel Versus Conventional Haemostatic Techniques in Performing Thyroid Surgery. Indian J. Otolaryngol. 2022. [Google Scholar] [CrossRef]
- Buhling, B.; Kuttenbaum, S.; Maack, S.; Strangfeld, C. Development of an Accurate and Robust Air-Coupled Ultrasonic Time-of-Flight Measurement Technique. Sensors 2022, 22, 2135. [Google Scholar] [CrossRef]
- Le, T.H.; Lockrow, E.G.; Endicott, S.P. A Novel Technique Using Ultrasonic Shears Versus Traditional Methods of Reduction of Bilateral Labia Minora Hypertrophy: A Retrospective Case-Control Study. Mil. Med. 2022. [Google Scholar] [CrossRef]
- Izadifar, Z.; Izadifar, Z.; Chapman, D.; Babyn, P. An Introduction to High Intensity Focused Ultrasound: Systematic Review on Principles, Devices, and Clinical Applications. J. Clin. Med. 2020, 9, 460. [Google Scholar] [CrossRef] [Green Version]
- Averkiou, M.A.; Juang, E.K.; Gallagher, M.K.; Cuevas, M.A.; Wilson, S.R.; Barr, R.G.; Carson, P.L. Evaluation of the Reproducibility of Bolus Transit Quantification with Contrast-Enhanced Ultrasound Across Multiple Scanners and Analysis Software Packages-A Quantitative Imaging Biomarker Alliance Study. Invest. Radiol. 2020, 55, 643–656. [Google Scholar] [CrossRef]
- Cox, K.; Taylor-Phillips, S.; Sharma, N.; Weeks, J.; Mills, P.; Sever, A.; Lim, A.; Haigh, I.; Hashem, M.; de Silva, T.; et al. Enhanced pre-operative axillary staging using intradermal microbubbles and contrast-enhanced ultrasound to detect and biopsy sentinel lymph nodes in breast cancer: A potential replacement for axillary surgery. Br. J. Radiol. 2018, 91, 1082. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elkacem, L.; Wang, H.J.; Chowdhury, S.M.; Kimura, R.H.; Bachawal, S.V.; Gambhir, S.S.; Tian, L.; Willmann, J.K. Thy1-Targeted Microbubbles for Ultrasound Molecular Imaging of Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2018, 24, 1574–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablonowski, L.J.; Conover, D.; Teraphongphom, N.T.; Wheatley, M.A. Manipulating multifaceted microbubble shell composition to target both TRAIL-sensitive and resistant cells. J. Biomed. Mater. Res. A 2018, 106, 1903–1915. [Google Scholar] [CrossRef] [PubMed]
- You, Y.J.; Liang, X.L.; Yin, T.H.; Chen, M.; Qiu, C.; Gao, C.; Wang, X.Y.; Mao, Y.J.; Qu, E.Z.; Dai, Z.F.; et al. Porphyrin-grafted Lipid Microbubbles for the Enhanced Efficacy of Photodynamic Therapy in Prostate Cancer through Ultrasound-controlled In Situ Accumulation. Theranostics 2018, 8, 1665–1677. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.L.; Guo, Y.; Peng, L.; Fang, H.; Wang, Z.G.; Zheng, Y.Y.; Ran, H.T.; Chen, Y. In Vivo Targeted, Responsive, and Synergistic Cancer Nanotheranostics by Magnetic Resonance Imaging-Guided Synergistic High-Intensity Focused Ultrasound Ablation and Chemotherapy. ACS Appl. Mater. Inter. 2018, 10, 15428–15441. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.R.; Liang, X.L.; Zhao, B.; Chen, M.; Liu, R.F.; Sun, S.J.; Yue, X.L.; Wang, S.M. Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer. Biomaterials 2018, 173, 58–70. [Google Scholar] [CrossRef]
- Chen, M.; Liang, X.L.; Gao, C.; Zhao, R.R.; Zhang, N.S.; Wang, S.M.; Chen, W.; Zhao, B.; Wang, J.R.; Dai, Z.F. Ultrasound Triggered Conversion of Porphyrin/Camptothecin-Fluoroxyuridine Triad Microbubbles into Nanoparticles Overcomes Multidrug Resistance in Colorectal Cancer. ACS Nano 2018, 12, 7312–7326. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Y.; Zhu, X.M.; Hu, J.; Zhao, C.Y.; Jiang, F. Six-Transmembrane Epithelial Antigen of the Prostate-1 (STEAP-1)-Targeted Ultrasound Imaging Microbubble Improves Detection of Prostate Cancer In Vivo. J. Ultras. Med. 2019, 38, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.C.; Yang, Y.J.; Guo, M.; Wang, X.L. Ultrasound-guided intertumoral injection of contrast agents combined with human p53 gene for the treatment of breast cancer. Kaohsiung J. Med. Sci. 2018, 34, 438–446. [Google Scholar] [CrossRef]
- Turco, S.; El Kaffas, A.; Zhou, J.H.; Lutz, A.M.; Wijkstra, H.; Willmann, J.K.; Mischi, M. Pharmacokinetic Modeling of Targeted Ultrasound Contrast Agents for Quantitative Assessment of Anti-Angiogenic Therapy: A Longitudinal Case-Control Study in Colon Cancer. Mol. Imaging Biol. 2019, 21, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Hadinger, K.P.; Marshalek, J.P.; Sheeran, P.S.; Dayton, P.A.; Matsunaga, T.O. Optimization of Phase-Change Contrast Agents for Targeting Mda-Mb-231 Breast Cancer Cells. Ultrasound Med. Biol. 2018, 44, 2728–2738. [Google Scholar] [CrossRef] [PubMed]
- Skachkov, I.; Luan, Y.; van Tiel, S.T.; van der Steen, A.F.W.; de Jong, N.; Bernsen, M.R.; Kooiman, K. SPIO labeling of endothelial cells using ultrasound and targeted microbubbles at diagnostic pressures. PLoS ONE 2018, 13, e0204354. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.Q.; Wang, C.N.; Wu, D.; Wang, W.; Zhang, C.Y.; Liu, J.; Xu, M.; Shuai, X.T.; Wang, Z.; Cao, Z. Cerasome-based gold-nanoshell encapsulating L-menthol for ultrasound contrast imaging and photothermal therapy of cancer. Nanotechnology 2019, 30, 015101. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.I.; Ha, S.W.; Lee, H.J. An ultrasound-responsive dual-modal US/T-1-MRI contrast agent for potential diagnosis of prostate cancer. J. Magn. Reson. Imaging 2018, 48, 1610–1616. [Google Scholar] [CrossRef]
- Bai, M.; Dong, Y.; Huang, H.; Fu, H.; Duan, Y.R.; Wang, Q.; Du, L.F. Tumour targeted contrast enhanced ultrasound imaging dual-modal microbubbles for diagnosis and treatment of triple negative breast cancer. RSC Adv. 2019, 9, 5682–5691. [Google Scholar] [CrossRef] [Green Version]
- Delaney, L.J.; Ciraku, L.; Oeffinger, B.E.; Wessner, C.E.; Liu, J.B.; Li, J.Z.; Nam, K.; Forsberg, F.; Leeper, D.B.; O’Kane, P.; et al. Breast Cancer Brain Metastasis Response to Radiation After Microbubble Oxygen Delivery in a Murine Model. J. Ultras. Med. 2019, 38, 3221–3228. [Google Scholar] [CrossRef]
- Li, S.Y.; Huang, P.T.; Fang, Y.; Wu, Y.; Zhou, L.; Luo, J.L.; Wang, X.C.; Chen, Y.C. Ultrasonic Cavitation Ameliorates Antitumor Efficacy of Residual Cancer After Incomplete Radiofrequency Ablation in Rabbit VX2 Liver Tumor Model. Transl. Oncol. 2019, 12, 1113–1121. [Google Scholar] [CrossRef]
- Wu, H.P.; Abenojar, E.C.; Perera, R.; de Leon, A.; An, T.Z.; Exner, A.A. Time-Intensity-Curve Analysis and Tumor Extravasation of Nanobubble Ultrasound Contrast Agents. Ultrasound Med. Biol. 2019, 45, 2502–2514. [Google Scholar] [CrossRef]
- Haugse, R.; Langer, A.; Gullaksen, S.E.; Sundoy, S.M.; Gjertsen, B.T.; Kotopoulis, S.; McCormack, E. Intracellular Signaling in Key Pathways Is Induced by Treatment with Ultrasound and Microbubbles in a Leukemia Cell Line, but Not in Healthy Peripheral Blood Mononuclear Cells. Pharmaceutics 2019, 11, 319. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lu, H.Q.; Gao, Q.; Yuan, C.Y.; Ding, F.A.; Li, J.; Zhang, D.S.; Ou, X.L. A multifunctional theranostic contrast agent for ultrasound/near infrared fluorescence imaging-based tumor diagnosis and ultrasound-triggered combined photothermal and gene therapy. Acta Biomater. 2019, 99, 373–386. [Google Scholar] [CrossRef]
- Ho, Y.J.; Chu, S.W.; Liao, E.C.; Fan, C.H.; Chan, H.L.; Wei, K.C.; Yeh, C.K. Normalization of Tumor Vasculature by Oxygen Microbubbles with Ultrasound. Theranostics 2019, 9, 7370–7383. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.Y.; Hu, Z.W.; He, Y.; Jin, H.; Yang, Y.W.; Chen, L.P.; Chen, Q.L.; Luo, Q.; Liu, J.H. Enhancement Effect of Microbubble-Enhanced Ultrasound in Microwave Ablation in Rabbit VX2 Liver Tumors. Biomed. Res. Int. 2020, 2020, 3050148. [Google Scholar] [CrossRef] [PubMed]
- Bush, N.; Healey, A.; Shah, A.; Box, G.; Kirkin, V.; Eccles, S.; Sontum, P.C.; Kotopoulis, S.; Kvale, S.; van Wamel, A.; et al. Theranostic Attributes of Acoustic Cluster Therapy and Its Use for Enhancing the Effectiveness of Liposomal Doxorubicin Treatment of Human Triple Negative Breast Cancer in Mice. Front. Pharmacol. 2020, 11, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, A.; Ingram, N.; Verghese, E.T.; Wijetunga, I.; Markham, A.F.; Wyatt, J.; Prasad, K.R.; Coletta, P.L. CD105 is a prognostic marker and valid endothelial target for microbubble platforms in cholangiocarcinoma. Cell Oncol. 2020, 43, 835–845. [Google Scholar] [CrossRef]
- Helfield, B.L.; Yoo, K.; Liu, J.J.; Williams, R.; Sheeran, P.S.; Goertz, D.E.; Burns, P.N. Investigating the Accumulation of Submicron Phase-Change Droplets in Tumors. Ultrasound Med. Biol. 2020, 46, 2861–2870. [Google Scholar] [CrossRef]
- Nie, Z.H.; Luo, N.B.; Liu, J.J.; Zhang, Y.; Zeng, X.Y.; Su, D.K. Dual-Mode Contrast Agents with RGD-Modified Polymer for Tumour-Targeted US/NIRF Imaging. Oncotargets Ther. 2020, 13, 8919–8929. [Google Scholar] [CrossRef]
- Keller, S.B.; Suo, D.J.; Wang, Y.N.; Kenerson, H.; Yeung, R.D.S.; Averkiou, M.A. Image-Guided Treatment of Primary Liver Cancer in Mice Leads to Vascular Disruption and Increased Drug Penetration. Front Pharmacol. 2020, 11, 584344. [Google Scholar] [CrossRef]
- Li, N.S.; Tang, J.W.; Yang, J.; Zhu, B.; Wang, X.X.; Luo, Y.; Yang, H.Y.; Jang, F.J.; Zou, J.Z.; Liu, Z.; et al. Tumor perfusion enhancement by ultrasound stimulated microbubbles potentiates PD-L1 blockade of MC38 colon cancer in mice. Cancer Lett. 2021, 498, 121–129. [Google Scholar] [CrossRef]
- Haugse, R.; Langer, A.; Murvold, E.T.; Costea, D.E.; Gjertsen, B.T.; Gilja, O.H.; Kotopoulis, S.; de Garibay, G.R.; McCormack, E. Low-Intensity Sonoporation-Induced Intracellular Signalling of Pancreatic Cancer Cells, Fibroblasts and Endothelial Cells. Pharmaceutics 2020, 12, 11. [Google Scholar] [CrossRef]
- Heinen, H.; Seyler, L.; Popp, V.; Hellwig, K.; Bozec, A.; Uder, M.; Ellmann, S.; Bauerle, T. Morphological, functional, and molecular assessment of breast cancer bone metastases by experimental ultrasound techniques compared with magnetic resonance imaging and histological analysis. Bone 2021, 144, 115821. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.H.; Moon, H.; Seo, M.; Han, H.; Yoo, H.; Seo, H.; Lee, J.; Hong, S.; Kim, P.; et al. Development and evaluation of an ultrasound-triggered microbubble combined transarterial chemoembolization (TACE) formulation on rabbit VX2 liver cancer model. Theranostics 2021, 11, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Sultan, L.R.; Karmacharya, M.B.; Hunt, S.J.; Wood, A.K.W.; Sehgal, C.M. Subsequent Ultrasound Vascular Targeting Therapy of Hepatocellular Carcinoma Improves the Treatment Efficacy. Biology 2021, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.L.; Browning, R.J.; Yildiz, Y.O.; Gray, M.; Bau, L.; Kamila, S.; Thompson, J.; Elliott, A.; Smart, S.; McHale, A.P.; et al. Ultrasound-Mediated Gemcitabine Delivery Reduces the Normal-Tissue Toxicity of Chemoradiation Therapy in a Muscle-Invasive Bladder Cancer Model. Int. J. Radiat. Oncol. 2021, 109, 1472–1482. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, J.J.; Liu, C.Q.; Zhao, W.S.; Ma, Y.; Zheng, Z.W.; Zhou, Q.; Zhao, Y. Synergistic anti-tumor effect of anti-PD-L1 antibody cationic microbubbles for delivery of the miR-34a gene combined with ultrasound on cervical carcinoma. Am. J. Transl. Res. 2021, 13, 988–1005. [Google Scholar] [PubMed]
- Zhang, W.; Lowerison, M.R.; Dong, Z.J.; Miller, R.J.; Keller, K.A.; Song, P.F. Super-Resolution Ultrasound Localization Microscopy on a Rabbit Liver Vx2 Tumor Model: An Initial Feasibility Study. Ultrasound Med. Biol. 2021, 47, 2416–2429. [Google Scholar] [CrossRef]
- Sharma, D.; Osapoetra, L.O.; Faltyn, M.; Do, N.N.A.; Giles, A.; Stanisz, M.; Sannachi, L.; Czarnota, G.J. Quantitative ultrasound characterization of therapy response in prostate cancer in vivo. Am. J. Transl. Res. 2021, 13, 4437–4449. [Google Scholar]
- Feng, S.; Qiao, W.; Tang, J.W.; Yu, Y.L.; Gao, S.J.; Liu, Z.; Zhu, X.S. Chemotherapy Augmentation Using Low-Intensity Ultrasound Combined with Microbubbles with Different Mechanical Indexes in a Pancreatic Cancer Model. Ultrasound Med. Biol. 2021, 47, 3221–3230. [Google Scholar] [CrossRef]
- Jung, E.M.; Jung, F.; Stroszczynski, C.; Wiesinger, I. Quantification of dynamic contrast-enhanced ultrasound (CEUS) in non-cystic breast lesions using external perfusion software. Sci. Rep. 2021, 11, 17677. [Google Scholar] [CrossRef]
- Song, L.; Hou, X.D.; Wong, K.F.; Yang, Y.H.; Qiu, Z.H.; Wu, Y.; Hou, S.; Fei, C.L.; Guo, J.H.; Sun, L. Gas-filled protein nanostructures as cavitation nuclei for molecule-specific sonodynamic therapy. Acta Biomater. 2021, 136, 533–545. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Bachawal, S.V.; Li, X.L.; Wang, H.J.; Wilson, K.E.; Li, P.; Paulmurugan, R. Detection and Characterization of Sentinel Lymph Node by Ultrasound Molecular Imaging with B7-H3-Targeted Microbubbles in Orthotopic Breast Cancer Model in Mice. Mol. Imaging Biol. 2022, 24, 333–340. [Google Scholar] [CrossRef]
- Sharma, D.; Cartar, H.; Quiaoit, K.; Law, N.; Giles, A.; Czarnota, G.J. Effect of Ultrasound-Stimulated Microbubbles and Hyperthermia on Tumor Vasculature of Breast Cancer Xenograft. J. Ultras. Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Abenojar, E.C.; Wang, J.; Leon, A.C.; Tavri, S.; Wang, X.N.; Gopalakrishnan, R.; Walker, E.; MacLennan, G.T.; Giles, A.; et al. Development of a novel castration-resistant orthotopic prostate cancer model in New Zealand White rabbit. Prostate 2022, 82, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yin, T.H.; Li, B.; Zheng, R.Q.; Qiu, C.; Lam, K.S.; Zhang, Q.; Shuai, X.T. Size-Modulable Nanoprobe for High-Performance Ultrasound Imaging and Drug Delivery against Cancer. ACS Nano 2018, 12, 3449–3460. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.; Thomas, E.; Menon, J.; Gray, M.; Skaripa-Koukelli, I.; Gill, M.R.; Wallington, S.; Miller, R.L.; Vallis, K.A.; Carlisle, R. Indium-111 labelling of liposomal HEGF for radionuclide delivery via ultrasound-induced cavitation. J. Control Release 2020, 319, 222–233. [Google Scholar] [CrossRef]
- Chan, M.H.; Pan, Y.T.; Chan, Y.C.; Hsiao, M.; Chen, C.H.; Sun, L.D.; Liu, R.S. Nanobubble-embedded inorganic 808 nm excited upconversion nanocomposites for tumor multiple imaging and treatment. Chem. Sci. 2018, 9, 3141–3151. [Google Scholar] [CrossRef] [Green Version]
- Kumar, U.S.; Natarajan, A.; Massoud, T.F.; Paulmurugan, R. FN3 linked nanobubbles as a targeted contrast agent for US imaging of cancer-associated human PD-L1. J. Control Release 2022, 346, 317–327. [Google Scholar] [CrossRef]
- Du, J.; Li, X.Y.; Hu, H.; Xu, L.; Yang, S.P.; Li, F.H. Preparation and Imaging Investigation of Dual-targeted C3F8-filled PLGA Nanobubbles as a Novel Ultrasound Contrast Agent for Breast Cancer. Sci. Rep. 2018, 8, 3887. [Google Scholar] [CrossRef]
- Zhou, T.; Cai, W.B.; Yang, H.L.; Zhang, H.Z.; Hao, M.H.; Yuan, L.J.; Liu, J.; Zhang, L.; Yang, Y.L.; Liu, X.; et al. Annexin V conjugated nanobubbles: A novel ultrasound contrast agent for in vivo assessment of the apoptotic response in cancer therapy. J. Control Release 2018, 276, 113–124. [Google Scholar] [CrossRef]
- Gao, S.; Cheng, X.H.; Li, J.H. Lipid nanobubbles as an ultrasound-triggered artesunate delivery system for imaging-guided, tumor-targeted chemotherapy. Oncotargets Ther. 2019, 12, 1841–1850. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.M.; Lv, W.; Yang, H.L.; Cai, W.B.; Zhao, P.; Zhang, L.; Zhang, J.; Yuan, L.J.; Duan, Y.Y. FA-NBs-IR780: Novel multifunctional nanobubbles as molecule-targeted ultrasound contrast agents for accurate diagnosis and photothermal therapy of cancer. Cancer Lett. 2019, 455, 14–25. [Google Scholar] [CrossRef]
- Peng, Y.L.; Zhu, L.H.; Wang, L.F.; Liu, Y.; Fang, K.J.; Lan, M.M.; Shen, D.J.; Liu, D.; Yu, Z.P.; Guo, Y.L. Preparation of Nanobubbles Modified with A Small-Molecule CXCR4 Antagonist for Targeted Drug Delivery to Tumors and Enhanced Ultrasound Molecular Imaging. Int. J. Nanomed. 2019, 14, 9139–9157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, R.H.; Leon, A.d.; Wang, X.N.; Wang, Y.; Ramamurthy, G.; Peiris, P.; Abenojar, E.; Basilion, J.P.; Exner, A.A. Real time ultrasound molecular imaging of prostate cancer with PSMA-targeted nanobubbles. Nanotechnol. Biol. Med. 2020, 28, 102213. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Lan, M.M.; Shen, D.J.; Fang, K.J.; Zhu, L.H.; Liu, Y.; Hao, L.; Li, P. Targeted Nanobubbles Carrying Indocyanine Green for Ultrasound, Photoacoustic and Fluorescence Imaging of Prostate Cancer. Int. J. Nanomed. 2020, 15, 4289–4309. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.J.; Wang, L.F.; Huang, H.Y.; Lan, M.M.; Shen, D.J.; Dong, S.W.; Guo, Y.L. Construction of Nucleolin-Targeted Lipid Nanobubbles and Contrast-Enhanced Ultrasound Molecular Imaging in Triple-Negative Breast Cancer. Pharm. Res. 2020, 37, 145. [Google Scholar] [CrossRef]
- Lan, M.M.; Zhu, L.H.; Wang, Y.X.; Shen, D.J.; Fang, K.J.; Liu, Y.; Peng, Y.L.; Qiao, B.; Guo, Y.L. Multifunctional nanobubbles carrying indocyanine green and paclitaxel for molecular imaging and the treatment of prostate cancer. J. Nanobiotechnol. 2020, 18, 121. [Google Scholar] [CrossRef]
- Jin, Z.; Chang, J.L.; Dou, P.P.; Jin, S.; Jiao, M.; Tang, H.Y.; Jiang, W.S.; Ren, W.; Zheng, S.H. Tumor Targeted Multifunctional Magnetic Nanobubbles for MR/US Dual Imaging and Focused Ultrasound Triggered Drug Delivery. Front. Bioeng. Biotech. 2020, 8, 586874. [Google Scholar] [CrossRef]
- Johansen, M.L.; Perera, R.; Abenojar, E.; Wang, X.N.; Vincent, J.; Exner, A.A.; Brady-Kalnay, S.M. Ultrasound-Based Molecular Imaging of Tumors with PTPmu Biomarker-Targeted Nanobubble Contrast Agents. Int. J. Mol. Sci. 2021, 22, 1983. [Google Scholar] [CrossRef]
- Fang, K.J.; Wang, L.F.; Huang, H.Y.; Dong, S.W.; Guo, Y.L. Therapeutic efficacy and cardioprotection of nucleolin-targeted doxorubicin-loaded ultrasound nanobubbles in treating triple-negative breast cancer. Nanotechnology 2021, 32, 24. [Google Scholar] [CrossRef]
- Yang, H.L.; Zhao, P.; Zhou, Y.G.; Li, Q.Y.; Cai, W.B.; Zhao, Z.X.; Shen, J.; Yao, K.C.; Duan, Y.Y. Preparation of multifunctional nanobubbles and their application in bimodal imaging and targeted combination therapy of early pancreatic cancer. Sci. Rep. 2021, 11, 6254. [Google Scholar] [CrossRef]
- Mi, X.; Guo, X.M.; Du, H.Q.; Han, M.; Liu, H.; Luo, Y.K.; Wang, D.K.; Xiang, R.; Yue, S.J.; Zhang, Y.Y.; et al. Combined legumain- and integrin-targeted nanobubbles for molecular ultrasound imaging of breast cancer. Nanotechnol. Biol. Med. 2022, 42, 102533. [Google Scholar] [CrossRef]
- Prabhakar, A.; Banerjee, R. Nanobubble Liposome Complexes for Diagnostic Imaging and Ultrasound-Triggered Drug Delivery in Cancers: A Theranostic Approach. ACS Omega 2019, 4, 15567–15580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandan, R.; Banerjee, R. Pro-apoptotic liposomes-nanobubble conjugate synergistic with paclitaxel: A platform for ultrasound responsive image-guided drug delivery. Sci. Rep. 2018, 8, 2624. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Sun, J.C.; Chen, S.N.; Liu, Y.J.; Zhu, S.Y.; Wang, Z.G.; Chang, S.F. A multifunctional-targeted nanoagent for dual-mode image-guided therapeutic effects on ovarian cancer cells. Int. J. Nanomed. 2019, 14, 753–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cressey, P.; Amrahli, M.; So, P.W.; Gedroyc, W.; Wright, M.; Thanou, M. Image-guided thermosensitive liposomes for focused ultrasound enhanced co-delivery of carboplatin and SN-38 against triple negative breast cancer in mice. Biomaterials 2021, 271, 120758. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.R.; Liu, H.; Zhang, Y.; Xin, Y.; Huang, C.; Li, M.Z.; Zhao, X.Y.; Ding, P.T.; Liu, Z.J. PFH/AGM-CBA/HSV-TK/LIPOSOME-Affibody: Novel Targeted Nano Ultrasound Contrast Agents for Ultrasound Imaging and Inhibited the Growth of ErbB2-Overexpressing Gastric Cancer Cells. J. Appl. Anim. Res. 2022, 50, 1515–1530. [Google Scholar] [CrossRef]
- Helbert, A.; von Wronski, M.; Mestas, J.L.; Tardy, I.; Bettinger, T.; Lafon, C.; Hyvelin, J.M.; Padilla, F. Ultrasound Molecular Imaging for the Guidance of Ultrasound-Triggered Release of Liposomal Doxorubicin and Its Treatment Monitoring in an Orthotopic Prostatic Tumor Model in Rat. Ultrasound Med. Biol. 2021, 47, 3420–3434. [Google Scholar] [CrossRef]
- Kim, C.; Guo, Y.T.; Velalopolou, A.; Leisen, J.; Motamarry, A.; Ramajayam, K.; Aryal, M.; Haemmerich, D.; Arvanitis, C.D. Closed-loop trans-skull ultrasound hyperthermia leads to improved drug delivery from thermosensitive drugs and promotes changes in vascular transport dynamics in brain tumors. Theranostics 2021, 11, 7276–7293. [Google Scholar] [CrossRef]
- Endo-Takahashi, Y.; Negishi, Y. Microbubbles and Nanobubbles with Ultrasound for Systemic Gene Delivery. Pharmaceutics 2020, 12, 964. [Google Scholar] [CrossRef]
- McDannold, N.; Arvanitis, C.D.; Vykhodtseva, N.; Livingstone, M.S. Temporary Disruption of the Blood-Brain Barrier by Use of Ultrasound and Microbubbles: Safety and Efficacy Evaluation in Rhesus Macaques. Cancer Res. 2012, 72, 3652–3663. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, Z.I.; Kim, S.; Jikaria, N.; Qureshi, F.; Milo, B.; Lewis, B.K.; Bresler, M.; Burks, S.R.; Frank, J.A. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc. Natl. Acad. Sci. USA 2017, 114, E75–E84. [Google Scholar] [CrossRef] [Green Version]
- Negishi, Y.; Yamane, M.; Kurihara, N.; Endo-Takahashi, Y.; Sashida, S.; Takagi, N.; Suzuki, R.; Maruyama, K. Enhancement of Blood-Brain Barrier Permeability and Delivery of Antisense Oligonucleotides or Plasmid DNA to the Brain by the Combination of Bubble Liposomes and High-Intensity Focused Ultrasound. Pharmaceutics 2015, 7, 344–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, L.E.; Chan, M.H.; Liu, R.S. Nano-lipospheres as acoustically active ultrasound contrast agents: Evolving tumor imaging and therapy technique. Nanotechnology 2019, 30, 182001. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Xi, A.N.; Qiao, H.H.; Liu, Z. Ultrasound-mediated diagnostic imaging and advanced treatment with multifunctional micro/nanobubbles. Cancer Lett. 2020, 475, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Liu, H.L.; Hsu, P.H.; Chiang, C.S.; Tsai, C.H.; Chi, H.S.; Chen, S.Y.; Chen, Y.Y. A Multitheragnostic Nanobubble System to Induce Blood-Brain Barrier Disruption with Magnetically Guided Focused Ultrasound. Adv. Mater. 2015, 27, 655–661. [Google Scholar] [CrossRef]
- Akbaba, H.; Erel-Akbaba, G.; Kotmakci, M.; Baspinar, Y. Enhanced Cellular Uptake and Gene Silencing Activity of Survivin-siRNA via Ultrasound-Mediated Nanobubbles in Lung Cancer Cells. Pharm. Res. 2020, 37, 8. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, G.N.; Li, M.Y.; Ma, L.; Huang, J.M.; Qiu, L. Ultrasound-Augmented Phase Transition Nanobubbles for Targeted Treatment of Paclitaxel-Resistant Cancer. Bioconjugate Chem. 2020, 31, 2008–2020. [Google Scholar] [CrossRef]
- Hassan, M.A.; Furusawa, Y.; Minemura, M.; Rapoport, N.; Sugiyama, T.; Kondo, T. Ultrasound-Induced New Cellular Mechanism Involved in Drug Resistance. PLoS ONE 2012, 7, e48291. [Google Scholar]
- Zhang, K.; Xu, H.X.; Chen, H.R.; Jia, X.Q.; Zheng, S.G.; Cai, X.J.; Wang, R.H.; Mou, J.; Zheng, Y.Y.; Shi, J.L. CO2 bubbling-based Nanobomb System for Targetedly Suppressing Panc-1 Pancreatic Tumor via Low Intensity Ultrasound-activated Inertial Cavitation. Theranostics 2015, 5, 1291–1302. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.T.; Zhang, R.H.; Xu, Z.; Wang, Z.C. Advances in Nanoliposomes for the Diagnosis and Treatment of Liver Cancer. Int. J. Nanomed. 2022, 17, 909–925. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, J.E.; Luo, T.S.; Wang, J.; Kang, L.Q.; Wang, Y.Y.; Luo, S.G.; Wang, Z.H.; Zhou, Z.Y.; Zhu, J.X.; et al. Nanoengineered Neutrophils as a Cellular Sonosensitizer for Visual Sonodynamic Therapy of Malignant Tumors. Adv. Mater. 2022, 15, 2109969. [Google Scholar] [CrossRef]
- Liu, T.Y.; Huang, H.H.; Chen, Y.J.; Chen, Y.J. Study of a novel ultrasonically triggered drug vehicle with magnetic resonance properties. Acta Biomater. 2011, 7, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.Z.; Jiang, Z.Q.; Song, S.; Dai, T.T.; Wang, X.Y.; Sun, K.; Zhou, G.D.; Dou, H.J. Structural regulation of self-assembled iron oxide/polymer microbubbles towards performance-tunable magnetic resonance/ultrasonic dual imaging agents. J. Colloid Interf. Sci. 2016, 482, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; De Leon, A.; Perera, R.; Abenojar, E.; Gopalakrishnan, R.; Basilion, J.P.; Wang, X.N.; Exner, A.A. Molecular imaging of orthotopic prostate cancer with nanobubble ultrasound contrast agents targeted to PSMA. Sci. Rep. 2021, 11, 4726. [Google Scholar] [CrossRef]
- Chan, M.H.; Chan, Y.C.; Liu, R.S.; Hsiao, M.C. A selective drug delivery system based on phospholipid-type nanobubbles for lung cancer therapy. Nanomedicine 2020, 15, 2689–2705. [Google Scholar] [CrossRef]
- Yin, T.H.; Wang, P.; Li, J.G.; Wang, Y.R.; Zheng, B.W.; Zheng, R.Q.; Cheng, D.; Shuai, X.T. Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials 2014, 35, 5932–5943. [Google Scholar] [CrossRef]
- Liu, C.F.; Zhou, J.; Chen, X.R.; Yu, J. Drug-Loaded Nanobubbles for Ultrasound-Mediated Antitumor Treatment. J. Biol. Reg. Homeos. Ag 2018, 32, 923–929. [Google Scholar]
- Zhang, N.; Li, J.; Hou, R.R.; Zhang, J.N.; Wang, P.; Liu, X.Y.; Zhang, Z.Z. Bubble-generating nano-lipid carriers for ultrasound/CT imaging-guided efficient tumor therapy. Int. J. Pharmaceut. 2017, 534, 251–262. [Google Scholar] [CrossRef]
- Cheng, C.L.; Chan, M.H.; Feng, S.J.; Hsiao, M.; Liu, R.S. Long-Term Near-Infrared Signal Tracking of the Therapeutic Changes of Glioblastoma Cells in Brain Tissue with Ultrasound-Guided Persistent Luminescent Nanocomposites. ACS Appl. Mater. Inter. 2021, 13, 6099–6108. [Google Scholar] [CrossRef]
- Mittelstein, D.R.; Ye, J.; Schibber, E.F.; Roychoudhury, A.; Martinez, L.T.; Fekrazad, M.H.; Ortiz, M.; Lee, P.P.; Shapiro, M.G.; Gharib, M. Selective ablation of cancer cells with low intensity pulsed ultrasound. Appl. Phys. Lett. 2020, 116, 013701. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.J.; Wu, C.H.; Jin, Q.F.; Lin, C.Y.; Chiang, P.H.; Wu, N.; Fan, C.H.; Yang, C.M.; Yeh, C.K. Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with beta-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy. Biomaterials 2020, 232, 119723. [Google Scholar] [CrossRef]
- Nittayacharn, P.; Abenojar, E.; Leon, A.; Wegierak, D.; Exner, A.A. Increasing Doxorubicin Loading in Lipid-Shelled Perfluoropropane Nanobubbles via a Simple Deprotonation Strategy. Front. Pharmacol. 2020, 11, 644. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Shi, D.D.; Meng, D.; Shang, M.M.; Sun, X.; Zhou, X.Y.; Liu, X.X.; Zhao, Y.D.; Li, J. New FH peptide-modified ultrasonic nanobubbles for delivery of doxorubicin to cancer-associated fibroblasts. Nanomedicine 2019, 14, 2957–2971. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Nai, J.X.; Zhang, J.B.; Li, Z.P.; Xu, F.H.; Gao, C.S. Co-delivery of CPP decorated doxorubicin and CPP decorated siRNA by NGR-modified nanobubbles for improving anticancer therapy. Pharm. Dev. Technol. 2021, 26, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhao, Y.; Liu, C.; Hu, B.; Zhao, M.; Ma, Y.; Jiang, J. Synergistic anti-tumor effect of paclitaxel and miR-34a combined with ultrasound microbubbles on cervical cancer in vivo and in vitro. Clin. Transl. Oncol. 2020, 22, 60–69. [Google Scholar] [CrossRef]
- Su, J.L.; Wang, J.M.; Luo, J.M.; Li, H.L. Ultrasound-mediated destruction of vascular endothelial growth factor (VEGF) targeted and paclitaxel loaded microbubbles for inhibition of human breast cancer cell MCF-7 proliferation. Mol. Cell Probe 2019, 46, 101415. [Google Scholar] [CrossRef]
- Zandi, A.; Khayamian, M.A.; Saghafi, M.; Shalileh, S.; Katebi, P.; Assadi, S.; Gilani, A.; Parizi, M.S.; Vanaei, S.; Esmailinejad, M.R.; et al. Microneedle-Based Generation of Microbubbles in Cancer Tumors to Improve Ultrasound-Assisted Drug Delivery. Adv. Healthc. Mater. 2019, 8, 1900613. [Google Scholar] [CrossRef]
- Bressand, D.; Novell, A.; Girault, A.; Raoul, W.; Fromont-Hankard, G.; Escoffre, J.M.; Lecomte, T.; Bouakaz, A. Enhancing Nab-Paclitaxel Delivery Using Microbubble-Assisted Ultrasound in a Pancreatic Cancer Model. Mol. Pharmaceut. 2019, 16, 3814–3822. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.M.; Zhou, S.J.; Hu, M.; Jiao, Y.F.; Teng, Y.; Wang, Y.; Zhang, X.Y. Enhanced ultrasound imaging and anti-tumor in vivo properties of Span-polyethylene glycol with folic acid-carbon nanotube-paclitaxel multifunctional microbubbles. RSC Adv. 2019, 9, 35345–35355. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Fu, J.; Fu, Q.H.; Feng, Y.J.; Hong, R.X.; Li, P.; Wang, Z.G.; Huang, X.L.; Li, F. Biotin-streptavidin-guided two-step pretargeting approach using PLGA for molecular ultrasound imaging and chemotherapy for ovarian cancer. PeerJ 2021, 9, e11486. [Google Scholar] [CrossRef]
- Xia, H.Z.; Yang, D.C.; He, W.; Zhu, X.H.; Yan, Y.; Liu, Z.N.; Liu, T.; Yang, J.L.; Tan, S.; Jiang, J.; et al. Ultrasound-mediated microbubbles cavitation enhanced chemotherapy of advanced prostate cancer by increasing the permeability of blood-prostate barrier. Transl. Oncol. 2021, 14, 101177. [Google Scholar] [CrossRef]
- Peng, S.Y.; Cai, J.H.; Bao, S. CMBs carrying PTX and CRISPR/Cas9 targeting C-erbB-2 plasmids interfere with endometrial cancer cells. Mol. Med. Rep. 2021, 24, 830. [Google Scholar] [CrossRef] [PubMed]
- Baspinar, Y.; Erel-Akbaba, G.; Kotmakci, M.; Akbaba, H. Development and characterization of nanobubbles containing paclitaxel and survivin inhibitor YM155 against lung cancer. Int. J. Pharmaceut. 2019, 566, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.P.; Yan, J.P.; Xu, J.; Yin, T.H.; Zheng, R.Q.; Wang, W. Paclitaxel-loaded nanobubble targeted to pro-gastrin-releasing peptide inhibits the growth of small cell lung cancer. Cancer Manag. Res. 2019, 11, 6637–6649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, S.G.; Ling, Z.Y.; Zhou, Z.Y.; He, J.; Ran, H.T.; Wang, Z.G.; Zhang, Q.X.; Song, W.X.; Zhang, Y.; Luo, J. Herceptin-decorated paclitaxel-loaded poly(lactide-co-glycolide) nanobubbles: Ultrasound-facilitated release and targeted accumulation in breast cancers. Pharm. Dev. Technol. 2020, 25, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Logan, K.; Foglietta, F.; Nesbitt, H.; Sheng, Y.J.; McKaig, T.; Kamila, S.; Gao, J.H.; Nomikou, N.; Callan, B.; McHale, A.P.; et al. Targeted chemo-sonodynamic therapy treatment of breast tumours using ultrasound responsive microbubbles loaded with paclitaxel, doxorubicin and Rose Bengal. Eur. J. Pharm. Biopharm. 2019, 139, 224–231. [Google Scholar] [CrossRef]
- Chowdhury, S.M.; Lee, T.; Bachawal, S.V.; Devulapally, R.; Abou-Elkacem, L.; Yeung, T.A.; Wischhusen, J.; Tian, L.; Dahl, J.; Paulmurugan, R.; et al. Longitudinal assessment of ultrasound-guided complementary microRNA therapy of hepatocellular carcinoma. J. Control Release 2018, 281, 19–28. [Google Scholar] [CrossRef]
- Lee, H.; Han, J.; Shin, H.; Han, H.; Na, K.; Kim, H. Combination of chemotherapy and photodynamic therapy for cancer treatment with sonoporation effects. J. Control Release 2018, 283, 190–199. [Google Scholar] [CrossRef]
- Arvanitis, C.D.; Askoxylakis, V.; Guo, Y.T.; Detta, M.; Kloepper, J.; Ferraro, G.B.; Bernabeu, M.O.; Fukumura, D.; McDannold, N.; Jain, R.K. Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood-tumor barrier disruption. Proc. Natl. Acad. Sci. USA 2018, 115, E8717–E8726. [Google Scholar]
- Zhang, J.; Song, L.M.; Zhang, H.M.; Zhou, S.J.; Jiao, Y.F.; Zhang, X.Y.; Zhao, Y.; Wang, Y. New Polylactic Acid Multifunctional Ultrasound Contrast Agent Based on Graphene Oxide as the Carrier of Targeted Factor and Drug Delivery. ACS Omega 2019, 4, 4691–4696. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.; Menon, J.U.; Owen, J.; Skaripa-Koukelli, I.; Wallington, S.; Gray, M.; Mannaris, C.; Kersemans, V.; Allen, D.; Kinchesh, P.; et al. Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy. Theranostics 2019, 9, 5595–5609. [Google Scholar]
- Xu, C.S.; Gao, F.; Wu, J.R.; Niu, S.W.; Li, F.; Jin, L.F.; Shi, Q.S.; Du, L.F. Biodegradable nanotheranostics with hyperthermia-induced bubble ability for ultrasound imaging-guided chemo-photothermal therapy. Int. J. Nanomed. 2019, 14, 7141–7153. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, P.; Kiran, S.; Han, S.Y.; Dwivedi, M.; Khatik, R.; Fan, R.; Mangrio, F.A.; Du, K.; Zhu, Z.Q.; Yang, C.Y.; et al. Magnetic Targeting and Ultrasound Activation of Liposome-Microbubble Conjugate for Enhanced Delivery of Anticancer Therapies. ACS Appl. Mater. Inter. 2020, 12, 23737–23751. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.C.; Wang, Y.J.; Xu, Y.F.; Ma, L.; Xue, N.Y.; Jiang, Z.Q.; Cao, Y.; Akakuru, O.U.; Li, J.; Zhang, S.M.; et al. Active targeting nano-scale bubbles enhanced ultrasound cavitation chemotherapy in Y-1 receptor-overexpressed breast cancer. J. Mater. Chem. B 2020, 8, 6837–6844. [Google Scholar] [CrossRef]
- Bourn, M.D.; Batchelor, D.V.B.; Ingram, N.; McLaughlan, J.R.; Coletta, P.L.; Evans, S.D.; Peyman, S.A. High-throughput microfluidics for evaluating microbubble enhanced delivery of cancer therapeutics in spheroid cultures. J. Control Release 2020, 326, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Lee, J.Y.; Park, E.J.; Lee, H.J.; Ha, S.W.; Ahn, Y.D.; Cheon, Y.; Han, J.K. Synergistic Effects of Pulsed Focused Ultrasound and a Doxorubicin-Loaded Microparticle-Microbubble Complex in a Pancreatic Cancer Xenograft Mouse Model. Ultrasound Med. Biol. 2020, 46, 3046–3058. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Park, S.; Yoo, H.; Park, S.; Kim, J.; Yum, K.; Kim, K.; Kim, H. Overcoming anticancer resistance by photodynamic therapy-related efflux pump deactivation and ultrasound-mediated improved drug delivery efficiency. Nano Converg. 2020, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.H.; Jiang, X.Y.; Surwase, S.; Gultekinoglu, M.; Bayram, C.; Sathisaran, I.; Bhatia, D.; Ahmed, J.; Wu, B.J.; Ulubayram, K.; et al. Effectiveness of Oil-Layered Albumin Microbubbles Produced Using Microfluidic T-Junctions in Series for In Vitro Inhibition of Tumor Cells. Langmuir 2020, 36, 11429–11441. [Google Scholar] [CrossRef]
- Harmon, J.S.; Kabinejadian, F.; Bull, J.L. Combined gas embolization and chemotherapy can result in complete tumor regression in a murine hepatocellular carcinoma model. APL Bioeng. 2020, 4, 036106. [Google Scholar] [CrossRef]
- Hu, Y.X.; Xue, S.; Long, T.; Lyu, P.; Zhang, X.Y.; Chen, J.Q.; Chen, S.P.; Liu, C.B.; Chen, X. Opto-acoustic synergistic irradiation for vaporization of natural melanin-cored nanodroplets at safe energy levels and efficient sono-chemo-photothermal cancer therapy. Theranostics 2020, 10, 10448–10465. [Google Scholar] [CrossRef]
- Paskeviciute, M.; Januskeviciene, I.; Sakalauskiene, K.; Raisutis, R.; Petrikaite, V. Evaluation of low-intensity pulsed ultrasound on doxorubicin delivery in 2D and 3D cancer cell cultures. Sci. Rep. 2020, 10, 16161. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.T.; Zhou, S.J.; Teng, Y.; Zhang, X.Y.; Li, J.J. Novel Span-PEG Multifunctional Ultrasound Contrast Agent Based on CNTs as a Magnetic Targeting Factor and a Drug Carrier. ACS Omega 2020, 5, 31525–31534. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jeon, H.; Shim, S.; Im, M.; Kim, J.; Kim, J.H.; Lee, B.C. Preclinical study to improve microbubble-mediated drug delivery in cancer using an ultrasonic probe with an interchangeable acoustic lens. Sci. Rep. 2021, 11, 12654. [Google Scholar] [CrossRef] [PubMed]
- Aydin, M.; Ozdemir, E.; Altun, Z.; Kilic, S.; Aktas, S. Evaluation of Liposomal and Microbubbles Mediated Delivery of Doxorubicin in Two-Dimensional (2D) and Three-Dimensional (3D) Models for Breast Cancer. Eur. J. Breast Health 2021, 17, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, R.Y.; Zhou, B.N.; Chen, J.; Lan, K.; Zhan, W.H.; Chen, D.; Zhang, T.; Li, X.P. Cascade Release Nanocarriers for the Triple-Negative Breast Cancer Near-Infrared Imaging and Photothermal-Chemo Synergistic Therapy. Front. Oncol. 2021, 11, 747608. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, N.; Ikenaka, Y.; Aoshima, K.; Aoyagi, T.; Kudo, N.; Nakamura, K.; Takiguchi, M. Safety Assessment of Ultrasound-Assisted Intravesical Chemotherapy in Normal Dogs: A Pilot Study. Front. Pharmacol. 2022, 13, 837754. [Google Scholar] [CrossRef]
- Gao, B.Q.; Feng, Y.; Chen, X.M.; Zhang, J. A new PLA-Tween composited drug-carrying C60-Fe3O4 multifunctional ultrasound contrast agent based on three kinds of lesions. RSC Adv. 2021, 11, 31015–31029. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Guo, L.; Shi, D.D.; Duan, S.J.; Li, J. Biocompatible Chitosan Nanobubbles for Ultrasound-Mediated Targeted Delivery of Doxorubicin. Nanoscale Res. Lett. 2019, 14, 24. [Google Scholar] [CrossRef]
- Nittayacharn, P.; Yuan, H.X.; Hernandez, C.; Bielecki, P.; Zhou, H.Y.; Exner, A.A. Enhancing Tumor Drug Distribution with Ultrasound-Triggered Nanobubbles. J. Pharm. Sci. 2019, 108, 3091–3098. [Google Scholar] [CrossRef]
- Khan, M.S.; Hwang, J.; Lee, K.; Choi, Y.; Seo, Y.; Jeon, H.; Hong, J.W.; Choi, J. Anti-Tumor Drug-Loaded Oxygen Nanobubbles for the Degradation of HIF-1 alpha and the Upregulation of Reactive Oxygen Species in Tumor Cells. Cancers 2019, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.H.; Chen, W.; Li, C.H.; Fang, C.Y.; Chang, Y.C.; Wei, D.H.; Liu, R.S.; Hsiao, M. An Advanced In Situ Magnetic Resonance Imaging and Ultrasonic Theranostics Nanocomposite Platform: Crossing the Blood-Brain Barrier and Improving the Suppression of Glioblastoma Using Iron-Platinum Nanoparticles in Nanobubbles. ACS Appl. Mater. Inter. 2021, 13, 26759–26769. [Google Scholar] [CrossRef]
- Gabay, M.; Weizman, A.; Zeineh, N.; Kahana, M.; Obeid, F.; Allon, N.; Gavish, M. Liposomal Carrier Conjugated to APP-Derived Peptide for Brain Cancer Treatment. Cell Mol. Neurobiol. 2021, 41, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Raj, D.; Agrawal, P.; Gaitsch, H.; Wicks, E.; Tyler, B. Pharmacological strategies for improving the prognosis of glioblastoma. Expert Opin. Pharmaco. 2021, 22, 2019–2031. [Google Scholar] [CrossRef] [PubMed]
- Kurashina, Y.; Asano, R.; Matsui, M.; Nomoto, T.; Ando, K.; Nakamura, K.; Nishiyama, N.; Kitamoto, Y. Quantitative Analysis of Acoustic Pressure for Sonophoresis and Its Effect on Transdermal Penetration. Ultrasound Med. Biol. 2022, 48, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wang, X.; Bu, X.; Wang, M.; An, B.; Shao, H.; Ni, C.; Peng, Y.; Xie, G. A novel flotation technique combining carrier flotation and cavitation bubbles to enhance separation efficiency of ultra-fine particles. Ultrason. Sonochem. 2020, 64, 105005. [Google Scholar] [CrossRef]
- Huang, W.T.; Chan, M.H.; Chen, X.; Hsiao, M.; Liu, R.S. Theranostic nanobubble encapsulating a plasmon-enhanced upconversion hybrid nanosystem for cancer therapy. Theranostics 2020, 10, 782–796. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-H.; Chang, Y.-C.; Hsiao, M.; Chan, M.-H. Ultrasound and Nanomedicine for Cancer-Targeted Drug Delivery: Screening, Cellular Mechanisms and Therapeutic Opportunities. Pharmaceutics 2022, 14, 1282. https://doi.org/10.3390/pharmaceutics14061282
Li C-H, Chang Y-C, Hsiao M, Chan M-H. Ultrasound and Nanomedicine for Cancer-Targeted Drug Delivery: Screening, Cellular Mechanisms and Therapeutic Opportunities. Pharmaceutics. 2022; 14(6):1282. https://doi.org/10.3390/pharmaceutics14061282
Chicago/Turabian StyleLi, Chien-Hsiu, Yu-Chan Chang, Michael Hsiao, and Ming-Hsien Chan. 2022. "Ultrasound and Nanomedicine for Cancer-Targeted Drug Delivery: Screening, Cellular Mechanisms and Therapeutic Opportunities" Pharmaceutics 14, no. 6: 1282. https://doi.org/10.3390/pharmaceutics14061282
APA StyleLi, C.-H., Chang, Y.-C., Hsiao, M., & Chan, M.-H. (2022). Ultrasound and Nanomedicine for Cancer-Targeted Drug Delivery: Screening, Cellular Mechanisms and Therapeutic Opportunities. Pharmaceutics, 14(6), 1282. https://doi.org/10.3390/pharmaceutics14061282