Dabigatran Acylglucuronide, the Major Metabolite of Dabigatran, Shows a Weaker Anticoagulant Effect than Dabigatran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Sample Collection
2.3. Coagulation Assays (TT, PT, aPTT, and Fibrinogen)
2.4. Thrombin Generation Assay
2.5. Docking Simulation
2.6. Statistical Analysis
3. Results
3.1. Effect of DAB and DABG on Thrombin Generation Assay
3.2. Anticoagulant Effects of DAB and DABG
3.3. Combination Effect of DAB and DABG on Thrombin Generation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stangier, J. Clinical pharmacokinetics and pharmacodynamics of the oral direct thrombin inhibitor dabigatran etexilate. Clin. Pharmacokinet. 2008, 47, 285–295. [Google Scholar] [CrossRef]
- Blommel, M.L.; Blommel, A.L. Dabigatran etexilate: A novel oral direct thrombin inhibitor. Am. J. Health Syst. Pharm. 2011, 68, 1506–1519. [Google Scholar] [CrossRef] [Green Version]
- Cid-Conde, L.; López-Castro, J. New oral anticoagulants in atrial fibrillation. In Atrial Fibrillation—Mechanisms and Treatment; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Wienen, W.; Stassen, J.M.; Priepke, H.; Ries, U.J.; Hauel, N. In-vitro profile and ex-vivo anticoagulant activity of the direct thrombin inhibitor dabigatran and its orally active prodrug, dabigatran etexilate. Thromb. Haemost. 2007, 98, 155–162. [Google Scholar] [PubMed]
- Shi, J.; Wang, X.; Nguyen, J.H.; Bleske, B.E.; Liang, Y.; Liu, L.; Zhu, H.J. Dabigatran etexilate activation is affected by the CES1 genetic polymorphism G143E (rs71647871) and gender. Biochem. Pharmacol. 2016, 119, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Laizure, S.C.; Parker, R.B.; Herring, V.L.; Hu, Z.Y. Identification of carboxylesterase-dependent dabigatran etexilate hydrolysis. Drug Metab. Dispos. 2014, 42, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Garcia, D.; Barrett, Y.C.; Ramacciotti, E.; Weitz, J.I. Laboratory assessment of the anticoagulant effects of the next generation of oral anticoagulants. J. Thromb. Haemost. 2013, 11, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, S.T.; Wiederkehr, T.; Kammerer, T.; Acevedo, A.C.; Feil, K.; Kellert, L.; Görlinger, K.; Hinske, L.C.; Groene, P. Real-time detection and differentiation of direct oral anticoagulants (rivaroxaban and dabigatran) using modified thromboelastometric reagents. Thromb. Res. 2020, 190, 103–111. [Google Scholar] [CrossRef]
- Samuelson, B.T.; Cuker, A.; Siegal, D.M.; Crowther, M.; Garcia, D.A. Laboratory Assessment of the Anticoagulant Activity of Direct Oral Anticoagulants: A Systematic Review. Chest 2017, 151, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, L.; Xu, B.; Xiang, Q.; Li, Y.; Zhang, P.; Wang, Y.; Xie, Q.; Mao, Y.; Cui, Y. Bioequivalence and pharmacodynamics of a generic dabigatran etexilate capsule in healthy Chinese subjects under fasting and fed conditions. Pharmacol. Res. Perspect. 2020, 8, e00593. [Google Scholar] [CrossRef]
- Moj, D.; Maas, H.; Schaeftlein, A.; Hanke, N.; Gómez-Mantilla, J.D.; Lehr, T. A Comprehensive Whole-Body Physiologically Based Pharmacokinetic Model of Dabigatran Etexilate, Dabigatran and Dabigatran Glucuronide in Healthy Adults and Renally Impaired Patients. Clin. Pharmacokinet. 2019, 58, 1577–1593. [Google Scholar] [CrossRef]
- Ebner, T.; Wagner, K.; Wienen, W. Dabigatran acylglucuronide, the major human metabolite of dabigatran: In vitro formation, stability, and pharmacological activity. Drug Metab. Dispos. 2010, 38, 1567–1575. [Google Scholar] [CrossRef] [Green Version]
- Park, I.H.; Park, J.W.; Chung, H.; Kim, J.M.; Lee, S.; Kim, K.A.; Park, J.Y. Development and validation of LC-MS/MS method for simultaneous determination of dabigatran etexilate and its active metabolites in human plasma, and its application in a pharmacokinetic study. J. Pharm. Biomed. Anal. 2021, 203, 114220. [Google Scholar] [CrossRef] [PubMed]
- Nouman, E.G.; Al-Ghobashy, M.A.; Lotfy, H.M. Development and validation of LC-MSMS assay for the determination of the prodrug dabigatran etexilate and its active metabolites in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 989, 37–45. [Google Scholar] [CrossRef]
- Stangier, J.; Eriksson, B.I.; Dahl, O.E.; Ahnfelt, L.; Nehmiz, G.; Stähle, H.; Rathgen, K.; Svärd, R. Pharmacokinetic profile of the oral direct thrombin inhibitor dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. J. Clin. Pharmacol. 2005, 45, 555–563. [Google Scholar] [CrossRef]
- Gerotziafas, G.T.; Depasse, F.; Busson, J.; Leflem, L.; Elalamy, I.; Samama, M.M. Towards a standardization of thrombin generation assessment: The influence of tissue factor, platelets and phospholipids concentration on the normal values of Thrombogram-Thrombinoscope assay. Thromb. J. 2005, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Six, K.R.; Devloo, R.; Compernolle, V.; Feys, H.B. Impact of cold storage on platelets treated with Intercept pathogen inactivation. Transfusion 2019, 59, 2662–2671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigtlaender, M.; Beckmann, L.; Schulenkorf, A.; Sievers, B.; Rolling, C.; Bokemeyer, C.; Langer, F. Effect of myeloperoxidase on the anticoagulant activity of low molecular weight heparin and rivaroxaban in an in vitro tumor model. J. Thromb. Haemost. 2020, 18, 3267–3279. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Stangier, J.; Stähle, H.; Rathgen, K.; Roth, W.; Shakeri-Nejad, K. Pharmacokinetics and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor, are not affected by moderate hepatic impairment. J. Clin. Pharmacol. 2008, 48, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Stangier, J.; Clemens, A. Pharmacology, pharmacokinetics, and pharmacodynamics of dabigatran etexilate, an oral direct thrombin inhibitor. Clin. Appl. Thromb. Hemost. 2009, 15 (Suppl. 1), 9s–16s. [Google Scholar] [CrossRef] [PubMed]
- Stangier, J.; Rathgen, K.; Stähle, H.; Mazur, D. Influence of renal impairment on the pharmacokinetics and pharmacodynamics of oral dabigatran etexilate: An open-label, parallel-group, single-centre study. Clin. Pharmacokinet. 2010, 49, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Stangier, J.; Stähle, H.; Rathgen, K.; Fuhr, R. Pharmacokinetics and pharmacodynamics of the direct oral thrombin inhibitor dabigatran in healthy elderly subjects. Clin. Pharmacokinet. 2008, 47, 47–59. [Google Scholar] [CrossRef]
- Ratzinger, F.; Lang, M.; Belik, S.; Schmetterer, K.G.; Haslacher, H.; Perkmann, T.; Quehenberger, P. The Effect of 3.2% and 3.8% Sodium Citrate on Specialized Coagulation Tests. Arch. Pathol. Lab. Med. 2018, 142, 992–997. [Google Scholar] [CrossRef] [PubMed]
- Adcock, D.M.; Kressin, D.C.; Marlar, R.A. Effect of 3.2% vs 3.8% sodium citrate concentration on routine coagulation testing. Am. J. Clin. Pathol. 1997, 107, 105–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, S.; MacKinnon, K.; Keeney, M.; Morrow, B.; Kovacs, M.J. Effect of 3.2 vs. 3.8% sodium citrate concentration on anti-Xa levels for patients on therapeutic low molecular weight heparin. Clin. Lab. Haematol. 2003, 25, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Morales, F.; Couto, C.G.; Iazbik, M.C. Effects of 2 concentrations of sodium citrate on coagulation test results, von Willebrand factor concentration, and platelet function in dogs. J. Vet. Intern. Med. 2007, 21, 472–475. [Google Scholar] [CrossRef]
- Shnayder, N.A.; Petrova, M.M.; Shesternya, P.A.; Savinova, A.V.; Bochanova, E.N.; Zimnitskaya, O.V.; Pozhilenkova, E.A.; Nasyrova, R.F. Using Pharmacogenetics of Direct Oral Anticoagulants to Predict Changes in Their Pharmacokinetics and the Risk of Adverse Drug Reactions. Biomedicines 2021, 9, 451. [Google Scholar] [CrossRef]
- Court, M.H.; Hao, Q.; Krishnaswamy, S.; Bekaii-Saab, T.; Al-Rohaimi, A.; von Moltke, L.L.; Greenblatt, D.J. UDP-glucuronosyltransferase (UGT) 2B15 pharmacogenetics: UGT2B15 D85Y genotype and gender are major determinants of oxazepam glucuronidation by human liver. J. Pharmacol. Exp. Ther. 2004, 310, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.Y.; Cho, J.Y.; Yu, K.S.; Kim, J.R.; Jung, H.R.; Lim, K.S.; Jang, I.J.; Shin, S.G. Effect of the UGT2B15 genotype on the pharmacokinetics, pharmacodynamics, and drug interactions of intravenous lorazepam in healthy volunteers. Clin. Pharmacol. Ther. 2005, 77, 486–494. [Google Scholar] [CrossRef]
- Testa, S.; Legnani, C.; Tripodi, A.; Paoletti, O.; Pengo, V.; Abbate, R.; Bassi, L.; Carraro, P.; Cini, M.; Paniccia, R.; et al. Poor comparability of coagulation screening test with specific measurement in patients receiving direct oral anticoagulants: Results from a multicenter/multiplatform study. J. Thromb. Haemost. 2016, 14, 2194–2201. [Google Scholar] [CrossRef] [Green Version]
Compound | Cmax (ng/mL) | Tmax (h) | Half Life (h) | AUCinf (ng × h/mL) | Reference |
---|---|---|---|---|---|
Total DAB | 145 | 2.0 | 8.9 | 1261 | [10] |
DAB | 122 | 2.0 | 8.7 | 1079 | |
DABG * | 23 | - | 182 | ||
DAB + DABG | 111 | 2.0 | 8.7 | 904 | [15] |
DAB | 87 | 2.0 | 6.3 | 690 | [13] |
DABG | 267 | 2.0 | 6.4 | 1642 |
Parameter | DAB | DABG | Ratio (Molar Ratio *) |
---|---|---|---|
IC50 for Cmax | 185.9 ± 40.3 ng/mL (393.9 nM) | 470.3 ± 87.8 ng/mL (726.2 nM) | 2.53 (1.84) |
IC50 for AUC | 134.1 ± 31.5 ng/mL (284.1 nM) | 281.9 ± 48.2 ng/mL (435.3 nM) | 2.10 (1.52) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-M.; Noh, J.; Park, J.-W.; Chung, H.; Kim, K.-A.; Park, S.B.; Lee, J.-S.; Park, J.-Y. Dabigatran Acylglucuronide, the Major Metabolite of Dabigatran, Shows a Weaker Anticoagulant Effect than Dabigatran. Pharmaceutics 2022, 14, 257. https://doi.org/10.3390/pharmaceutics14020257
Kim J-M, Noh J, Park J-W, Chung H, Kim K-A, Park SB, Lee J-S, Park J-Y. Dabigatran Acylglucuronide, the Major Metabolite of Dabigatran, Shows a Weaker Anticoagulant Effect than Dabigatran. Pharmaceutics. 2022; 14(2):257. https://doi.org/10.3390/pharmaceutics14020257
Chicago/Turabian StyleKim, Jong-Min, Jihyeon Noh, Jin-Woo Park, Hyewon Chung, Kyoung-Ah Kim, Seung Bin Park, Jun-Seok Lee, and Ji-Young Park. 2022. "Dabigatran Acylglucuronide, the Major Metabolite of Dabigatran, Shows a Weaker Anticoagulant Effect than Dabigatran" Pharmaceutics 14, no. 2: 257. https://doi.org/10.3390/pharmaceutics14020257
APA StyleKim, J.-M., Noh, J., Park, J.-W., Chung, H., Kim, K.-A., Park, S. B., Lee, J.-S., & Park, J.-Y. (2022). Dabigatran Acylglucuronide, the Major Metabolite of Dabigatran, Shows a Weaker Anticoagulant Effect than Dabigatran. Pharmaceutics, 14(2), 257. https://doi.org/10.3390/pharmaceutics14020257