Terahertz and Raman Spectroscopic Investigation of Monohydrate Cocrystal of Antitubercular Isoniazid with Protocatechuic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation and the Synthesis of Cocrystal
2.2. THz/Raman Device and Detection
2.3. DFT Theoretical Calculations
3. Results and Discussion
3.1. THz Spectral Characterization and Analysis
3.2. Raman Spectral Characterization and Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neu, J.; Nikonow, H.; Schmuttenmaer, C.A. Terahertz Spectroscopy and Density Functional Theory Calculations of dl -Norleucine and dl -Methionine. J. Phys. Chem. A 2018, 122, 5978–5982. [Google Scholar] [CrossRef]
- Babu, N.J.; Nangia, A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst. Growth Des. 2011, 11, 2662–2679. [Google Scholar] [CrossRef]
- Carvalho, S.A.; da Silva, E.F.; de Souza, M.V.N.; Lourenço, M.C.S.; Vicente, F.R. Synthesis and antimycobacterial evaluation of new trans-cinnamic acid hydrazide derivatives. Bioorganic Med. Chem. Lett. 2008, 18, 538–541. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, H.; Singh, S.; Jindal, K.C. Drug-drug interaction studies on first-line anti-tuberculosis drugs. Pharm. Dev. Technol. 2005, 10, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Iseman, M.D. Tuberculosis therapy: Past, present and future. Eur. Respir. J. Suppl. 2002, 20, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Sasi, P.; Gupta, V.H.; Rai, G.; Amarapurkar, D.N.; Wangikar, P.P. Protective effect of curcumin, silymarin and N -acetylcysteine on antitubercular drug-induced hepatotoxicity assessed in an in vitro model. Hum. Exp. Toxicol. 2012, 31, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xue, J.; Wang, Q.; Jin, S.; Zhang, Z.; Hong, Z.; Yong, D. Structural investigation of a 2:1 co-crystal between diflunisal and isonicotinamide based on terahertz and Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 216, 98–104. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, J.; Qin, J.; Liu, J.; Yong, D. Structure and spectroscopic characterization of pharmaceutical co-crystal formation between acetazolamide and 4-hydroxybenzoic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 419–426. [Google Scholar] [CrossRef]
- Vishweshwar, P.; McMahon, J.A.; Bis, J.A.; Zaworotko, M.J. Pharmaceutical Co-Crystals. J. Pharm. Sci. 2006, 95, 499–516. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, Q.; Xue, J.; Qin, J.; Liu, J.; Du, Y. Co-crystal formation of antibiotic nitrofurantoin drug and melamine co-former based on a vibrational spectroscopic study. Pharmaceutics 2019, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Korotkova, E.I.; Kratochvll, B. Pharmaceutical Cocrystals. Procedia Chem. 2014, 10, 473–476. [Google Scholar] [CrossRef] [Green Version]
- Zhixiong, H.; Xuesong, G.; Huanzhong, C. Study on biosensors based on terahertz time—Domain spectroscopy. Electron. Test. 2019, 20, 24–26. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Yu, M.; Li, Y.; Wu, Z.; Yan, C. A new cocrystal of isoniazid-quercetin with hepatoprotective effect: The design, structure, and in vitro/in vivo performance evaluation. Eur. J. Pharm. Sci. 2020, 144, 105216. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Chen, D. Antioxidant Activity and Mechanism of Protocatechuic Acid in vitro. Funct. Foods Health Dis. 2011, 1, 232–244. [Google Scholar] [CrossRef]
- Wei, J.; Liu, K.; Du, C. A Novel Mannich Derivative of Protocatechuic Acid: Synthesis, Crystal Structure and Antioxidant Activity. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2017, 87, 181–188. [Google Scholar] [CrossRef]
- Grobelny, P.; Mukhrrjee, A.; Deiraju, G.R. Drug-drug co-crystals: Temperature-dependent proton mobility in the molecular complex of isoniazid with 4-aminosalicylic acid. CrystEngComm 2011, 13, 4358–4364. [Google Scholar] [CrossRef]
- Liu, F.; Jiang, F.B.; Li, Y.T.; Liu, R.M.; Wu, Z.Y.; Yan, C.W. Cocrystallization with syringic acid presents a new opportunity for effectively reducing the hepatotoxicity of isoniazid. Drug Dev. Ind. Pharm. 2020, 46, 988–995. [Google Scholar] [CrossRef]
- Mashhadi, S.M.A.; Yunus, U.; Bhatti, M.H.; Tahir, M.N. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids. J. Mol. Struct. 2014, 1076, 446–452. [Google Scholar] [CrossRef]
- Mashhadi, S.M.A.; Yunus, U.; Bhatti, M.H.; Ahmed, I.; Tahir, M.N. Synthesis, characterization, solubility and stability studies of hydrate cocrystal of antitubercular Isoniazid with antioxidant and anti-bacterial Protocatechuic acid. J. Mol. Struct. 2016, 1117, 17–21. [Google Scholar] [CrossRef]
- González-González, J.S.; Martínez-Santiago, A.M.M.; Martínez-Martínez, F.J. Cocrystals of Isoniazid with Polyphenols: Mechanochemical Synthesis and Molecular Structure. Crystals 2020, 10, 569. [Google Scholar] [CrossRef]
- Diniz, L.F.; Souza, M.S.; Carvalho, P.S.; da Silva, C.C.P.; D’Vries, R.F. Novel Isoniazid cocrystals with aromatic carboxylic acids: Crystal engineering, spectroscopy and thermochemical investigations. J. Mol. Struct. 2018, 1153, 58–68. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, J.; Bo, Y.; Xue, J.; Liu, J.; Hong, Z.; Du, Y. Terahertz and Raman Spectroscopic Investigation of Anti-tuberculosis Drug-Drug Cocrystallization Involving 4-aminosalicylic Acid and Pyrazinamide. J. Mol. Struct. 2021, 1227. [Google Scholar] [CrossRef]
- Ayala, A.P.; Caetano, M.W.C.; Honorato, S.B.; Mendes Filho, J.; Siesler, H.W.; Faudone, S.N.; Cuffini, S.L.; Martins, F.T.; Da Silva, C.C.P.; Ellena, J. Conformational polymorphism of the antidiabetic drug chlorpropamide. J. Raman Spectrosc. 2012, 43, 263–272. [Google Scholar] [CrossRef]
- King, M.D.; Buchanan, W.D.; Korter, T.M. Identification and Quantification of Polymorphism in the Pharmaceutical Compound Diclofenac Acid by Terahertz Spectroscopy and Solid-State Density Functional Theory. Anal. Chem. 2011, 83, 3786–3792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.C.; Lin, H.L.; Lin, S.Y. Thermal analysis and FTIR spectral curve-fitting investigation of formation mechanism and stability of indomethacin-saccharin cocrystals via solid-state grinding process. J. Pharm. Biomed. Anal. 2012, 66, 162–169. [Google Scholar] [CrossRef]
- Du, Y.; Fang, H.X.; Zhang, Q.; Zhang, H.L.; Hong, Z. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 153, 580–585. [Google Scholar] [CrossRef]
- Du, Y.; Xia, Y.; Zhang, H.; Hong, Z. Using terahertz time-domain spectroscopical technique to monitor cocrystal formation between piracetam and 2,5-dihydroxybenzoic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 111, 192–195. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Y.; Xue, J.; Liu, J.; Qin, J.; Hong, Z. Structural insights into anhydrous and monohydrated forms of 2,4,6-trihydroxybenzoic acid based on Raman and terahertz spectroscopic characterization. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117436. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, H.; Xue, J.; Tang, W.; Fang, H.; Zhang, Q.; Li, Y.; Hong, Z. Vibrational spectroscopic study of polymorphism and polymorphic transformation of the anti-viral drug lamivudine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 1158–1163. [Google Scholar] [CrossRef]
- Bawuah, P.; Zeitler, J.A. Advances in terahertz time-domain spectroscopy of pharmaceutical solids: A review. TrAC Trends Anal. Chem. 2021, 139, 116272. [Google Scholar] [CrossRef]
- Ruggiero, M.T. Invited Review: Modern Methods for Accurately Simulating the Terahertz Spectra of Solids. J. Infrared Millim. Terahertz Waves 2020, 41, 491–528. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Bond, A.D.; Zeitler, J.A. Studying mechanical properties and phase transitions of aspirin polymorphs with terahertz spectroscopy and ab initio simulations. Int. Conf. Infrared Millim. Terahertz Waves IRMMW-THz 2019. [Google Scholar] [CrossRef]
- Aljohani, M.; Pallipurath, A.R.; McArdle, P.; Erxleben, A. A comprehensive cocrystal screening study of chlorothiazide. Cryst. Growth Des. 2017, 17, 5223–5232. [Google Scholar] [CrossRef]
- Chamorro-Posada, P. A Study of the Terahertz Spectra of Crystalline Materials (Polyethylene, Poly(Vinylidene Fluoride) form II, and α-D-Glucose) Using NDDO Semiempirical Methods. J. Appl. Spectrosc. 2018, 85, 552–559. [Google Scholar] [CrossRef]
- Shahab, S.; Almodarresiyeh, H.A.; Filippovich, L. Geometry optimization and excited state properties of the new symmetric (E)-Stilbene derivative for application in thermostable polarizing PVA-films: A combined experimental and DFT approach. J. Mol. Struct. 2016, 1119, 423–430. [Google Scholar] [CrossRef]
- Aree, T.; Jongrungruangchok, S. Enhancement of antioxidant activity of green tea epicatechins in β-cyclodextrin cavity: Single-crystal X-ray analysis, DFT calculation and DPPH assay. Carbohydr. Polym. 2016, 151, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Li, S.; Liu, H.; Li, S.; Zhang, J.; Zhao, H. Low-frequency vibrations of indole derivatives by terahertz time-domain spectroscopy. J. Electron. Sci. Technol. 2016, 14, 329–336. [Google Scholar] [CrossRef]
- Hakey, P.M.; Hudson, M.R.; Allis, D.G. Examination of phencyclidine hydrochloride via cryogenic terahertz spectroscopy, solid-state density functional theory, and x-ray diffraction. J. Phys. Chem. A 2009, 113, 13013–13022. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Xue, J.; Wang, Q. Solid-state cocrystal formation between acyclovir and fumaric acid: Terahertz and Raman vibrational spectroscopic studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 186, 29–36. [Google Scholar] [CrossRef]
- Strachan, C.J.; Rades, T.; Gordon, K.C. Raman spectroscopy for quantitative analysis of pharmaceutical solids. J. Pharm. Pharmacol. 2007, 59, 179–192. [Google Scholar] [CrossRef]
- Du, Y.; Cai, Q.; Xue, J. Structural investigation of the cocrystal formed between 5-fluorocytosine and fumaric acid based on vibrational spectroscopic technique. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 178, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Zhang, H.; Xue, J.; Fang, H.; Zhang, Q.; Xia, Y.; Li, Y.; Hong, Z. Raman and terahertz spectroscopical investigation of cocrystal formation process of piracetam and 3-hydroxybenzoic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 139, 488–494. [Google Scholar] [CrossRef] [PubMed]
Experimental Results f/THz | Theoretical Results f/THz | Mode Assignment |
---|---|---|
0.88 | 0.86 | Out of plane rocking vibration of INH and PA |
1.20 | 1.16 | Out of plane rocking vibration of INH and in-plane rocking vibration of PA |
1.46 | - | |
1.53 | 1.53 | Out of plane rocking vibration of the ring of INH, torsional vibration of O11-C12-N13-H17 and H30-O29-C27-O28 |
Mode | Theoretical Wavenumber/cm−1 | Experimental Wavenumber/cm−1 | Mode Assignment |
---|---|---|---|
ν1 | 212 | 225 (w) | ω(H32-O31-C23-C22-O33-H34), Def(R2) |
ν2 | 238 | 244 (w) | τ(H32-O31-C23-C18-H24, O33-C22-C21-H26) |
ν3 | 316 | 343 (w) | δ(H34-O33-C22-C23-O31-H32), ω(H36-O35-H37) |
ν4 | 354 | 387 (w) | ω(H16-N14-H15), ρ(H36-O35-H37), δ(C2-C3-C4) |
ν5 | 416 | 433 (vw) | ω(H34-O33-C22), ρ(H36-O35-H37, H15- N14-H16) |
ν6 | 456 | 483 (vw) | Def(R2), ρ(H36-O35-H37) |
ν7 | 513 | 516 (vw) | ω(H17-N13-C12), ρ(H36-O35-H37, H15-N14-H16) |
ν8 | 538 | 537 (w) | τ(H38-O29-C27, H25- C19-C18-H24) |
ν9 | 558 | 557 (vw) | ω(H36-O35-H37, H34-O33-C22) |
ν10 | 595 | 595 (w) | Def(R2), τ(36-O35-H37) |
ν11 | 682 | 663 (m) | Def(R1) |
ν12 | 728 | 700 (vw) | δ(H30-O29-C27-O28), Def(R2) |
ν13 | 798 | 775 (s) | δ(O33-C22-C21-H26), Def(R2), ω(H36-O35) |
ν14 | 857 | 859 (vw) | ω(H7-C1-C2-H8, H9-C4-C5-H10) |
ν15 | 903 | 895 (m) | δ(O11-C12-N13), ω(H15-N14-H16), ρ(H36-O35-H37) |
ν16 | 950 | 950 (m) | δ(C19-C20-C21, H24-C18-C19-H25) |
ν17 | 1012 | 1023 (m) | Def(R1), ω(H15-N14-H16) |
ν18 | 1092 | 1093 (w) | ρ(H26-C21-C20), Def(R2) |
ν19 | 1116 | 1115 (w) | δ(H25-C19-C18-H24, H32-O31-C23-C18-H24) |
ν20 | 1183 | 1184 (m) | ρ(H30-O29-C27), δ(H25-C19-C18-H24, H26-C21-C20-C27) |
ν21 | 1219 | 1213 (m) | ρ(H8-C2-C3), ω(H15-N14-H16) |
ν22 | 1244 | 1245 (w) | δ(H7-C1-C2-H8, H10-C4-C5-H9), ω(H15-N14-H16) |
ν23 | 1270 | 1292 (w) | ρ(H26-C21-C22, H25-C19-C18-H24) |
ν24 | 1307 | 1319 (m) | ρ(H24-C18-C19-H25), Def(R2) |
ν25 | 1318 | 1336 (s) | ρ(H17-N13-C12), ω(H15-N14-H16), θ(N14-N13) |
ν26 | 1366 | 1390 (vw) | δ(H30-O29-C27), ρ(H25-C19-C18-H24) |
ν27 | 1386 | 1409 (vw) | δ(H34-O33-C22, H32-O31-C23) |
ν28 | 1440 | 1440 (vw) | δ(H7-C1-C2-H8, H10-C4-C5-H9) |
ν29 | 1512 | 1524 (vw) | ρ(H17-N13-C12, H7-C1-C2-H8, H10-C4-C5-H9) |
ν30 ν31 ν32 | 1530 1632 1655 | 1542 (vw) 1610 (s) 1656 (m) | δ(H17-N13-C12), ρ(H7-C1-C2-H8, H10-C4-C5-H9) Def(R1), δ(H36-O35-H37) Def(R2), δ(H34-O33-C22, H36-O35-H37) |
Chemical Bond | Bond Length/Å | ||
---|---|---|---|
INH | PA | Cocrystal | |
O11-C12 C12-C3 | 1.478 1.588 | - | 1.227 1.506 |
C12-N13 | 1.470 | - | 1.359 |
N13-N14 | 1.477 | - | 1.406 |
N14-H15 | 1.000 | - | 1.016 |
N14-H16 | 1.000 | - | 1.022 |
H34-O33 | 0.96 | 0.967 | |
O33-C22 | - | 1.43 | 1.369 |
C22-C21 C21-H26 | - | 1.394 1.100 | 1.384 1.081 |
C22-C23 | - | 1.395 | 1.402 |
C23-O31 | - | 1.430 | 1.370 |
O31-H32 | - | 0.960 | 0.962 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bo, Y.; Fang, J.; Zhang, Z.; Xue, J.; Liu, J.; Hong, Z.; Du, Y. Terahertz and Raman Spectroscopic Investigation of Monohydrate Cocrystal of Antitubercular Isoniazid with Protocatechuic Acid. Pharmaceutics 2021, 13, 1303. https://doi.org/10.3390/pharmaceutics13081303
Bo Y, Fang J, Zhang Z, Xue J, Liu J, Hong Z, Du Y. Terahertz and Raman Spectroscopic Investigation of Monohydrate Cocrystal of Antitubercular Isoniazid with Protocatechuic Acid. Pharmaceutics. 2021; 13(8):1303. https://doi.org/10.3390/pharmaceutics13081303
Chicago/Turabian StyleBo, Yanhua, Jiyuan Fang, Ziming Zhang, Jiadan Xue, Jianjun Liu, Zhi Hong, and Yong Du. 2021. "Terahertz and Raman Spectroscopic Investigation of Monohydrate Cocrystal of Antitubercular Isoniazid with Protocatechuic Acid" Pharmaceutics 13, no. 8: 1303. https://doi.org/10.3390/pharmaceutics13081303
APA StyleBo, Y., Fang, J., Zhang, Z., Xue, J., Liu, J., Hong, Z., & Du, Y. (2021). Terahertz and Raman Spectroscopic Investigation of Monohydrate Cocrystal of Antitubercular Isoniazid with Protocatechuic Acid. Pharmaceutics, 13(8), 1303. https://doi.org/10.3390/pharmaceutics13081303