Ultrasound-Triggered Release of 5-Fluorouracil from Soy Lecithin Echogenic Liposomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of 5-FU Encapsulated Liposomes and Determination of the Encapsulation Efficiency
2.2.2. Preparation of Echogenic Liposomes
2.2.3. Particle Size and Zeta Potential Characterization
2.2.4. Liposome Morphology
2.2.5. Differential Scanning Calorimetry (DSC)
2.2.6. X-ray Diffraction (XRD)
2.2.7. Fourier Transform Infrared Spectroscopy (FTIR)
2.2.8. In Vitro Release of 5-FU
2.2.9. Ultrasound-Triggered Release
2.2.10. Stability Studies
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. Encapsulation Efficiency (EE)
3.2. Particle Size and Zeta Potential
3.3. Particle Shape
3.4. Differential Scanning Calorimetry (DSC)
3.5. X-ray Diffraction (XRD)
3.6. Fourier Transform Infrared Spectroscopy
3.7. In Vitro Release of 5-FU
3.8. Effects of Ultrasound Amplitude and Exposure Time on 5-FU Release
3.9. Effect of Gas Entrapment on the Sensitivity of Liposomes to Ultrasound
3.10. Stability Studies of Echogenic Liposomes Stored at 4 °C
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vabi, B.W.; Gibbs, J.F.; Parker, G.S. Implications of the growing incidence of global colorectal cancer. J. Gastrointest. Oncol. 2020. [Google Scholar] [CrossRef]
- Ou, J.; Peng, Y.; Yang, W.; Zhang, Y.; Hao, J.; Li, F.; Chen, Y.; Zhao, Y.; Xie, X.; Wu, S.; et al. ABHD5 blunts the sensitivity of colorectal cancer to fluorouracil via promoting autophagic uracil yield. Nat. Commun. 2019, 10, 1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Triest, B.; Pinedo, H.M.; Van Hensbergen, Y.; Smid, K.; Telleman, F.; Schoenmakers, P.S.; Van Der Wilt, C.L.; Van Laar, J.; Noordhuis, P.; Jansen, G.; et al. Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines. Clin. Cancer Res. 1999, 5, 643–654. [Google Scholar] [PubMed]
- Fresta, M.; Villari, A.; Puglisi, G.; Cavallaro, G. 5-Fluorouracil: Various kinds of loaded liposomes: Encapsulation efficiency, storage stability and fusogenic properties. Int. J. Pharm. 1993, 99, 145–156. [Google Scholar] [CrossRef]
- Zhang, N.; Yin, Y.; Xu, S.-J.; Chen, W.-S. 5-Fluorouracil: Mechanisms of Resistance and Reversal Strategies. Molecules 2008, 13, 1551–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, N.T.T.; Du Cao, V.; Nguyen, T.N.Q.; Le, T.T.H.; Tran, T.T.; Thi, T.T.H. Soy Lecithin-Derived Liposomal Delivery Systems: Surface Modification and Current Applications. Int. J. Mol. Sci. 2019, 20, 4706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, D.H.; Lee, J.S.; Choi, J.H.; Park, K.M.; Lee, Y.; Park, K.D. Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery. Acta Biomater. 2016, 35, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Karami, N.; Moghimipour, E.; Salimi, A. Liposomes as a novel drug delivery system: Fundamental and pharmaceutical application. Asian J. Pharm. 2018, 12, S31–S41. [Google Scholar] [CrossRef]
- Goertz, D.E.; de Jong, N.; van der Steen, A.F. Attenuation and Size Distribution Measurements of Definity™ and Manipulated Definity™ Populations. Ultrasound Med. Biol. 2007, 33, 1376–1388. [Google Scholar] [CrossRef]
- Amstad, E.; Kohlbrecher, J.; Müller, E.; Schweizer, T.; Textor, M.; Reimhult, E. Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes. Nano Lett. 2011, 11, 1664–1670. [Google Scholar] [CrossRef]
- Trucillo, P.; Campardelli, R.; Reverchon, E. Liposomes: From Bangham to Supercritical Fluids. Processes 2020, 8, 1022. [Google Scholar] [CrossRef]
- Huang, S.L.; Macdonald, R.C. Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim. Biophys. Acta (BBA) Biomembr. 2004, 1665, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-L.; Kee, P.H.; Kim, H.; Moody, M.R.; Chrzanowski, S.M.; Macdonald, R.C.; McPherson, D.D. Nitric Oxide-Loaded Echogenic Liposomes for Nitric Oxide Delivery and Inhibition of Intimal Hyperplasia. J. Am. Coll. Cardiol. 2009, 54, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Frenkel, V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv. Drug Deliv. Rev. 2008, 60, 1193–1208. [Google Scholar] [CrossRef] [Green Version]
- Kooiman, K.; Roovers, S.; Langeveld, S.A.; Kleven, R.T.; Dewitte, H.; O’Reilly, M.A.; Escoffre, J.-M.; Bouakaz, A.; Verweij, M.D.; Hynynen, K.; et al. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. Ultrasound Med. Biol. 2020, 46, 1296–1325. [Google Scholar] [CrossRef] [Green Version]
- Sundaram, J.; Mellein, B.R.; Mitragotri, S. An Experimental and Theoretical Analysis of Ultrasound-Induced Permeabilization of Cell Membranes. Biophys. J. 2003, 84, 3087–3101. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lewis, T.N.; Prausnitz, M.R. Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm. Res. 1998, 15, 918–924. [Google Scholar] [CrossRef]
- Miller, M.W.; Miller, D.L.; Brayman, A.A. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med. Biol. 1996, 22, 1131–1154. [Google Scholar] [CrossRef]
- Evjen, T.J.; Hagtvet, E.; Nilssen, E.A.; Brandl, M.; Fossheim, S.L. Sonosensitive dioleoylphosphatidylethanolamine-containing liposomes with prolonged blood circulation time of doxorubicin. Eur. J. Pharm. Sci. 2011, 43, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Kopechek, J.A.; Chrzanowski, S.M.; Smith, D.A.B.; Gaskins, W.B.; Abruzzo, T.A.; Huang, S.L.; McPherson, D.D.; Holland, C.K. Ultrasound-mediated release of calcein from echogenic liposomes. J. Acoust. Soc. Am. 2007, 122, 3007. [Google Scholar] [CrossRef]
- Rapoport, N. Drug delivery in polymeric micelles: From in vitro to in vivo. J. Control. Release 2003, 91, 85–95. [Google Scholar] [CrossRef]
- Nkanga, C.I.; Krause, R.W.; Noundou, X.S.; Walker, R.B. Preparation and characterization of isoniazid-loaded crude soybean lecithin liposomes. Int. J. Pharm. 2017, 526, 466–473. [Google Scholar] [CrossRef]
- Okafor, N.I.; Nkanga, C.I.; Walker, R.B.; Noundou, X.S.; Krause, R.W.M. Encapsulation and physicochemical evaluation of efavirenz in liposomes. J. Pharm. Investig. 2019, 50, 201–208. [Google Scholar] [CrossRef]
- Bapolisi, A.M.; Nkanga, C.I.; Walker, R.B.; Krause, R.W.M. Simultaneous liposomal encapsulation of antibiotics and proteins: Co-loading and characterization of rifampicin and Human Serum Albumin in soy-liposomes. J. Drug Deliv. Sci. Technol. 2020, 58, 101751. [Google Scholar] [CrossRef]
- Nkanga, C.I.; Krause, R.W.M. Encapsulation of Isoniazid-conjugated Phthalocyanine-In-Cyclodextrin-In-Liposomes Using Heating Method. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef]
- Nkanga, C.I.; Walker, R.B.; Krause, R.W. pH-Dependent release of isoniazid from isonicotinic acid (4-hydroxy-benzylidene)-hydrazide loaded liposomes. J. Drug Deliv. Sci. Technol. 2018, 45, 264–271. [Google Scholar] [CrossRef]
- Tezel, A.; Sens, A.; Tuchscherer, J.; Mitragotri, S. Frequency dependence of sonophoresis. Pharm. Res. 2001, 18, 1694–1700. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.P.; Xu, X.; Burgess, D.J. Freeze-Anneal-Thaw Cycling of Unilamellar Liposomes: Effect on Encapsulation Efficiency. Pharm. Res. 2013, 31, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-L.; McPherson, D.D.; Macdonald, R.C. A Method to Co-Encapsulate Gas and Drugs in Liposomes for Ultrasound-Controlled Drug Delivery. Ultrasound Med. Biol. 2008, 34, 1272–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nkanga, C.I.; Noundou, X.S.; Walker, R.B.; Krause, R.W. Co-encapsulation of Rifampicin and Isoniazid in Crude Soybean Lecithin Liposomes. S. Afr. J. Chem. 2019, 72, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Hosokawa, T.; Sami, M.; Kato, Y.; Hayakawa, E. Alteration in the Temperature-Dependent Content Release Property of Thermosensitive Liposomes in Plasma. Chem. Pharm. Bull. 2003, 51, 1227–1232. [Google Scholar] [CrossRef] [Green Version]
- Abed, Z.; Khoei, S.; Ghalandari, B.; Beik, J.; Shakeri-Zadeh, A.; Ghaznavi, H.; Shiran, M.B. The Measurement and Mathematical Analysis of 5-Fu Release from Magnetic Polymeric Nanocapsules, following the Application of Ultrasound. Anti-Cancer Agents Med. Chem. 2018, 18, 438–449. [Google Scholar] [CrossRef]
- Fan, Y.-L.; Fan, B.-Y.; Li, Q.; Di, H.-X.; Meng, X.-Y.; Ling, N. Preparation of 5-fluorouracil-loaded Nanoparticles and Study of Interaction with Gastric Cancer Cells. Asian Pac. J. Cancer Prev. 2014, 15, 7611–7615. [Google Scholar] [CrossRef] [Green Version]
- Yassin, A.E.B.; Anwer, K.; Mowafy, H.A.; El-Bagory, I.M.; Bayomi, M.A.; Alsarra, I.A. Optimization of 5-fluorouracil solid-lipid nanoparticles: A preliminary study to treat colon cancer. Int. J. Med. Sci. 2010, 7, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Lopes, S.; Simeonova, M.; Gameiro, P.; Rangel, M.; Ivanova, G. Interaction of 5-Fluorouracil Loaded Nanoparticles with 1,2-Dimyristoyl-sn-glycero-3-phosphocholine Liposomes Used as a Cellular Membrane Model. J. Phys. Chem. B 2012, 116, 667–675. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Nguyen, D.H. Development and In Vitro Evaluation of Liposomes Using Soy Lecithin to Encapsulate Paclitaxel. Int. J. Biomater. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Shashidhar, G.M.; Manohar, B. Nanocharacterization of liposomes for the encapsulation of water soluble compounds from Cordyceps sinensis CS1197 by a supercritical gas anti-solvent technique. RSC Adv. 2018, 8, 34634–34649. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Wang, Y.; Peng, Z.; She, M.F.; Kong, L. Physichemical property and morphology of 5-fluorouracil loaded chitosan nanoparticles. Int. Conf. Nanosci. Nanotechnol. 2010, 248–250. [Google Scholar] [CrossRef]
- Thomas, A.M.; Kapanen, A.I.; I Hare, J.; Ramsay, E.; Edwards, K.; Karlsson, G.; Bally, M.B. Development of a liposomal nanoparticle formulation of 5-Fluorouracil for parenteral administration: Formulation design, pharmacokinetics and efficacy. J. Control. Release 2011, 150, 212–219. [Google Scholar] [CrossRef]
- Schroeder, A.; Avnir, Y.; Weisman, S.; Najajreh, Y.; Gabizon, A.; Talmon, Y.; Kost, J.; Barenholz, Y. Controlling Liposomal Drug Release with Low Frequency Ultrasound: Mechanism and Feasibility. Langmuir 2007, 23, 4019–4025. [Google Scholar] [CrossRef]
- Abed, M.B.; Beik, Z.; Khoee, J.; Khoei, S.; Shakeri-Zadeh, S.; Shiran, A. Effects of Ultrasound Irradiation on the Release Profile of 5-fluorouracil from Magnetic Polylactic co-glycolic Acid Nanocapsules. J. Biol. Chem. 2016, 6, 183–194. [Google Scholar] [CrossRef]
- Huang, S.-L.; Hamilton, A.J.; Pozharski, E.; Nagaraj, A.; E Klegerman, M.; McPherson, D.D.; Macdonald, R.C. Physical correlates of the ultrasonic reflectivity of lipid dispersions suitable as diagnostic contrast agents. Ultrasound Med. Biol. 2002, 28, 339–348. [Google Scholar] [CrossRef]
- Puttipipatkhachorn, S.; Nunthanid, J.; Yamamoto, K.; Peck, G. Drug physical state and drug–polymer interaction on drug release from chitosan matrix films. J. Control. Release 2001, 75, 143–153. [Google Scholar] [CrossRef]
- Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems—A Review (Part 2). Trop. J. Pharm. Res. 2013, 12, 265–273. [Google Scholar] [CrossRef]
- Evjen, T.J.; Nilssen, E.A.; Barnert, S.; Schubert, R.; Brandl, M.; Fossheim, S.L. Ultrasound-mediated destabilization and drug release from liposomes comprising dioleoylphosphatidylethanolamine. Eur. J. Pharm. Sci. 2011, 42, 380–386. [Google Scholar] [CrossRef] [Green Version]
Formulations | ZP ± SD (mV) | EE ± SD (%) |
---|---|---|
*FE 1 | −54 ± 1 | 52 ± 1 |
FE 2 | −56 ± 1 | 62 ± 2 |
FE 3 | −58 ± 1 | 51 ± 1 |
*Elip 1 | −62 ± 1 | 58 ± 1 |
Elip 2 | −63 ± 2 | 51 ± 7 |
Elip 3 | −59 ± 3 | 44 ± 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezekiel, C.I.; Bapolisi, A.M.; Walker, R.B.; Krause, R.W.M. Ultrasound-Triggered Release of 5-Fluorouracil from Soy Lecithin Echogenic Liposomes. Pharmaceutics 2021, 13, 821. https://doi.org/10.3390/pharmaceutics13060821
Ezekiel CI, Bapolisi AM, Walker RB, Krause RWM. Ultrasound-Triggered Release of 5-Fluorouracil from Soy Lecithin Echogenic Liposomes. Pharmaceutics. 2021; 13(6):821. https://doi.org/10.3390/pharmaceutics13060821
Chicago/Turabian StyleEzekiel, Charles Izuchukwu, Alain Murhimalika Bapolisi, Roderick Bryan Walker, and Rui Werner Maçedo Krause. 2021. "Ultrasound-Triggered Release of 5-Fluorouracil from Soy Lecithin Echogenic Liposomes" Pharmaceutics 13, no. 6: 821. https://doi.org/10.3390/pharmaceutics13060821
APA StyleEzekiel, C. I., Bapolisi, A. M., Walker, R. B., & Krause, R. W. M. (2021). Ultrasound-Triggered Release of 5-Fluorouracil from Soy Lecithin Echogenic Liposomes. Pharmaceutics, 13(6), 821. https://doi.org/10.3390/pharmaceutics13060821