Transdermal Film Loaded with Garlic Oil-Acyclovir Nanoemulsion to Overcome Barriers for Its Use in Alleviating Cold Sore Conditions
Abstract
1. Introduction
2. Materials and Methods
3. Estimation of Acyclovir (ACV) Solubility in Various SNEDDS Components
3.1. Screening of Oils
3.2. Screening of Surfactants and Co-Surfactants
3.3. Pseudo Ternary-Phase Diagram for Preparing ACV SNEDDS
3.4. Optimization of ACV-GO SNEDDS
3.5. Characterization of ACV-GO SNEDDS
3.5.1. Emulsification Ability
3.5.2. Determination of Globule Size of the ACV-GO SNEDDs
3.5.3. Evaluation of Stability of the Optimized ACV-GO SNEDDS
3.5.4. Preparation of ACV-GO SNEDDs Transdermal Films
3.6. Ex Vivo Skin Permeation Study of ACV-GO SNEDDS Transdermal Films
3.7. Pharmacokinetic Evaluation of the Optimized ACV-GO SNEDDs Transdermal Film
3.7.1. Animals
3.7.2. In Vivo Investigation of the Optimized ACV-GO SNEDDs Transdermal Film
3.8. Statistical Analysis
4. Results and Discussion
4.1. Estimation of Acyclovir (ACV) Solubility in Various SNEDDS Components
4.2. Pseudo Ternary-Phase Diagram
4.3. Optimization of ACV-GO SNEDDS
4.4. Effect of Formulation Variables on Particle Size
4.5. Emulsification Ability of ACV-GO SNEDDS
4.6. Evaluation of Stability of Optimized ACV-GO SNEDDS
4.7. Ex Vivo Skin Permeation Study of ACV-GO SNEDDS Transdermal Films
4.8. In Vivo Investigation of the Optimized ACV-GO SNEDDs Transdermal Film
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Looker, K.J.; Johnston, C.; Welton, N.J.; James, C.; Vickerman, P.; Turner, K.; Boily, M.C.; Gottlieb, S.L. The global and regional burden of genital ulcer disease due to herpes simplex virus: A natural history modelling study. BMJ Glob. Health 2020, 5, e001875. [Google Scholar] [CrossRef]
- Looker, K.J.; Welton, N.J.; Sabin, K.M.; Dalal, S.; Vickerman, P.; Turner, K.M.E.; Boily, M.C.; Gottlieb, S.L. Global and regional estimates of the contribution of herpes simplex virus type 2 infection to HIV incidence: A population attributable fraction analysis using published epidemiological data. Lancet Infect. Dis. 2020, 20, 240–249. [Google Scholar] [CrossRef]
- Arduino, P.G.; Porter, S.R. Oral and perioral herpes simplex virus type 1 (HSV-1) infection: Review of its management. Oral Dis. 2006, 12, 254–270. [Google Scholar] [CrossRef]
- Lotufo, M.A.; Tempestini Horliana, A.C.R.; Santana, T.; de Queiroz, A.C.; Gomes, A.O.; Motta, L.J.; Ferrari, R.A.M.; Dos Santos Fernandes, K.P.; Bussadori, S.K. Efficacy of photodynamic therapy on the treatment of herpes labialis: A systematic review. Photodiagn. Photodyn. Ther. 2020, 29, 101536. [Google Scholar] [CrossRef]
- Zupin, L.; Caracciolo, I.; Tricarico, P.M.; Ottaviani, G.; D’Agaro, P.; Crovella, S. Antiviral properties of blue laser in an in vitro model of HSV-1 infection. Microbiol. Immunol. 2018, 62, 477–479. [Google Scholar] [CrossRef]
- Attia, I.A.; El-Gizawy, S.A.; Fouda, M.A.; Donia, A.M. Influence of a niosomal formulation on the oral bioavailability of acyclovir in rabbits. AAPS Pharm. Sci. Tech. 2007, 8, E106. [Google Scholar] [CrossRef]
- Erlich, K.S. Management of herpes simplex and varicella-zoster virus infections. West. J. Med. 1997, 166, 211–215. [Google Scholar]
- Miranda, P.; Krasny, H.C.; Page, D.A.; Elion, C.B. Species differences in the disposition of acyclovir. Am. J. Med. 1982, 73, 31Y35. [Google Scholar] [CrossRef]
- de Miranda, P.; Blum, M.R. Pharmacokinetics of acyclovir after ntravenous and oral administration. J. Antimicrob. Chemother. 1983, 12, 29–37. [Google Scholar] [CrossRef]
- Amidon, G.L.; Lennernas, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of n vitrodrug product dissolution and in vivo bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef]
- Luengo, J.; Aranguiz, T.; Sepulveda, J. Preliminary pharmacokinetic study to different preparations of acyclovir with β-cyclodextrin. J. Pharm. Sci. 2002, 91, 2593–2598. [Google Scholar] [CrossRef]
- Krenitsky, T.A.; Hall, W.W.; de Miranda, P.; Bauchamp, L.M.; Schaeffer, H.J.; Whiteman, P. 6-Deoxyacyclovir: A xanthine oxidase-activated prodrug of acyclovir. Proc. Natl. Acad. Sci. USA 1984, 81, 3209–3213. [Google Scholar] [CrossRef] [PubMed]
- Kubbinga, M.; Nguyen, M.A.; Staubach, P.; Teerenstra, S.; Langguth, L. The influence of chitosan on the oral bioavailability of acyclovir—a comparative bioavailability study in humans. Pharm. Res. 2015, 32, 2241–2249. [Google Scholar]
- Zhang, X.; Li, Y.; Zhou, H.; Fan, S.; Zhang, Z.; Wang, L.; Zhang, Y. Plasma metabolic profiling analysis of nephrotoxicity induced by acyclovir using metabonomics coupled with multivariate data analysis. J. Pharm. Biomed. Anal. C 2014, 97, 151–156. [Google Scholar] [CrossRef]
- Lu, H.; Han, Y.J.; Xu, J.D.; Xing, W.M.; Chen, J. Proteomic characterization of acyclovir-induced nephrotoxicity in a mouse model. PLoS ONE 2014, 9, e103185. [Google Scholar] [CrossRef]
- Kamel, A.O.; Awad, G.A.S.; Geneidi, A.S.; Mortada, N.D. Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time. AAPS Pharm. Sci. Tech. 2009, 10, 1427–1436. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nair, A.B. Quantification of uptake and clearance of acyclovir in skin layers. Antivir. Ther. 2015, 21, 17–25. [Google Scholar] [CrossRef]
- Glaxo Operations UK. ZOVIRAX Labialis, 50 mg/g, Crème Aciclovir (Package Insert); Glaxo Operations: Brentford, UK, 2012. [Google Scholar]
- U.S. Food and Drug Administration. ZOVIRAX (Acyclovir) Cream 5% for Topical Use—Reference ID: 3481551; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2014.
- Ahmed, O.A.A.; Afouna, M.I.; El-Say, K.M.; Abdel-Naim, A.B.; Khedr, A.; Banjar, Z.M. Optimization of self-nanoemulsifying systems for the enhancement of in vivo hypoglycemic efficacy of glimepiride transdermal patches. Expert Opin. Drug Deliv. 2014, 11, 1005–1013. [Google Scholar]
- Date, A.A.; Nagarsenker, M.S. Design and evaluation of selfnanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int. J. Pharm. 2007, 329, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Nazari-Vanani, R.; Azarpira, N.; Heli, H.; Karimian, K.; Sattarahmady, N. A novel self-nanoemulsifying formulation for sunitinib: Evaluation of anticancer efficacy. Colloids Surf. B Biointerfaces 2017, 160, 65–72. [Google Scholar] [CrossRef]
- Altamimi, M.A.; Kaz, M.; Hadi Albgomi, M.; Ahad, A.; Raish, M. Development and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for curcumin transdermal delivery: An anti-inflammatory exposure. Drug Dev. Ind. Pharm. 2019, 45, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Badran, M.M.; Taha, E.I.; Tayel, M.M.; Al-Suwayeh, S. A Ultra-fine self nanoemulsifying drug delivery system for transdermal delivery of meloxicam: Dependency on the type of surfactants. J. Mol. Liq. 2014, 190, 16–22. [Google Scholar] [CrossRef]
- Cho, C.W.; Choi, J.S.; Yang, K.H.; Shin, S.C. Enhanced transdermal controlled delivery of glimepiride from the ethylene-vinyl acetate matrix. Drug Deliv. 2009, 16, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Chavan, R.D.; Shinde, P.; Girkar, K.; Madage, R.; Chowdhary, A. Assessment of anti-influenza activity and hemagglutination inhibition of Plumbago indica and Allium sativum extracts. Pharmacogn. Res. 2016, 8, 105–111. [Google Scholar] [CrossRef]
- Chen, C.H.; Chou, T.W.; Cheng, L.H.; Ho, C.W. In-vitro anti-adenoviral activity of five Allium plants. J. Taiwan Inst. Chem. Eng. 2011, 42, 228–232. [Google Scholar] [CrossRef]
- Choi, H.J. Chemical constituents of essential oils possessing anti-influenza A/ WS/33 virus activity. Osong Public Health Res. Perspect. 2018, 9, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Weber, N.D.; Andersen, D.O.; North, J.A.; Murray, B.K.; Lawson, L.D.; Hughes, B.G. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Med. 1992, 58, 417–423. [Google Scholar] [CrossRef]
- Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Sarker, S.D. Anti-viral potential of garlic (Allium sativum) and it’s organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol. 2020, 104, 219–234. [Google Scholar] [CrossRef]
- AlHakamy, N.; Fahmy, U.A.; Ahmed, O.A.A.; Almohammadi, E.A.; Alotaibi, S.A.; Aljohani, R.A.; Alfaifi, M.Y. Development of an optimized Febuxostat self-nanoemulsified loaded transdermal film: In-vitro, ex-vivo and in-vivo evaluation. Pharm. Dev. Technol. 2019, 25, 326–331. [Google Scholar] [CrossRef]
- Basalious, E.B.; Shawky, N.; Badr-Eldin, S.M. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: Development and optimization. Int. J. Pharm. 2010, 391, 203–211. [Google Scholar] [CrossRef]
- Elnaggar, Y.S.; El-Massik, M.A.; Abdallah, O.Y. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: Design and optimization. Int. J. Pharm. 2009, 380, 133–141. [Google Scholar] [CrossRef]
- Huang, Y.B.; Tsai, Y.H.; Lee, S.H.; Chang, J.S.; Wu, P.C. Optimization of pH-independent release of nicardipine hydrochloride extended-release matrix tablets using response surface methodology. Int. J. Pharm. 2005, 289, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Lia, P.; Ghosha, A.; Wagnera, R.F.; Krillb, S.; Joshia, Y.M.; Serajuddin, A.T.M. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int. J. Pharm. 2005, 288, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Mustafa Kiyani, M.; Sohail, M.F.; Shahnaz, G.; Rehman, H.; Akhtar, M.F.; Nawaz, I.; Mahmood, T.; Manzoor, M.; Bokhari, I.; Ali, S. Evaluation of Turmeric Nanoparticles as Anti-Gout Agent: Modernization of a Traditional Drug. Medicina 2019, 55, 10. [Google Scholar] [CrossRef] [PubMed]
- Sanna, V.; Gavini, E.; Cossu, M.; Rassu, G.; Giunchedi, P. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: In-vitro characterization, ex-vivo and in-vivo studies. J. Pharm. Pharmacol. 2007, 59, 1057–1064. [Google Scholar] [CrossRef]
- Gupta, S.; Chavhan, S.; Sawant, K.K. Self-nanoemulsifying drug delivery system for adefovir dipivoxil: Design, characterization, in vitro and ex vivo evaluation. Colloids Surf. Physicochem. Eng. Asp. 2011, 392, 145–155. [Google Scholar] [CrossRef]
- El-Say, K.M.; Ahmad, T.A.; Badr-Eldin, S.M.; Fahmy, U.; Aldawsari, H.; Ahmed, O.A.A. Enhanced permeation parameters of optimized nanostructured simvastatin transdermal films: Ex vivo and in vivo evaluation. Pharm. Dev. Technol. 2015, 20, 919–926. [Google Scholar] [CrossRef]
- Thacharodi, D.; Panduranga, R.K. Transdermal absorption of nifedipine from microemulsions of lipophilic skin penetration enhancers. Int. J. Pharm. 1994, 111, 235–240. [Google Scholar] [CrossRef]
- Pathan, I.B.; Setty, C.M. Enhancement of transdermal delivery of tamoxifen citrate using nanoemulsion vehicle. Int. J. Pharm. Technol. Res. 2011, 3, 287–297. [Google Scholar]





| Formulations | A:Garlic Oil (%w/w) | B:Tween 20/Span 20 Mixture (%w/w) | C:Propylene Glycol % (w/w) | Particle Size nm ± SD |
|---|---|---|---|---|
| 1 | 0.08 | 0.60 | 0.32 | 250 ± 5.54 |
| 2 | 0.08 | 0.66 | 0.26 | 200 ± 11.53 |
| 3 | 0.08 | 0.60 | 0.32 | 248 ± 7.12 |
| 4 | 0.10 | 0.62 | 0.28 | 192 ± 15.79 |
| 5 | 0.08 | 0.72 | 0.20 | 215 ± 12.97 |
| 6 | 0.16 | 0.62 | 0.22 | 200 ± 4.98 |
| 7 | 0.20 | 0.60 | 0.20 | 240 ± 17.43 |
| 8 | 0.20 | 0.60 | 0.20 | 239 ± 6.95 |
| 9 | 0.14 | 0.60 | 0.26 | 180 ± 10.11 |
| 10 | 0.14 | 0.66 | 0.20 | 202 ± 19.38 |
| 11 | 0.14 | 0.66 | 0.20 | 200 ± 18.11 |
| 12 | 0.10 | 0.68 | 0.22 | 177 ± 9.41 |
| 13 | 0.08 | 0.72 | 0.20 | 215 ± 12.09 |
| 14 | 0.12 | 0.64 | 0.24 | 170 ± 11.65 |
| Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
|---|---|---|---|---|---|
| Model | 9095.51 | 8 | 1136.94 | 915.85 | <0.0001 |
| Linear Mixture | 992.28 | 2 | 496.14 | 399.66 | <0.0001 |
| AB | 917.05 | 1 | 917.05 | 738.72 | <0.0001 |
| AC | 3318.03 | 1 | 3318.03 | 2672.82 | <0.0001 |
| BC | 819.49 | 1 | 819.49 | 660.13 | <0.0001 |
| A²BC | 85.02 | 1 | 85.02 | 68.48 | 0.0004 |
| AB²C | 204.01 | 1 | 204.01 | 164.34 | <0.0001 |
| ABC² | 6.86 | 1 | 6.86 | 5.52 | 0.0655 |
| Residual | 6.21 | 5 | 1.24 | - | - |
| Lack of Fit | 1.71 | 1 | 1.71 | 1.52 | 0.2855 |
| Pure Error | 4.5 | 4 | 1.13 | - | - |
| Cor Total | 9101.71 | 13 | - | - | - |
| Parameters of Permeation | F1 | F2 | F3 | Commercial ACV (5%) Cream |
|---|---|---|---|---|
| Cumulative amount permeated (μg/cm2) | 11327 ± 977 | 4811 ± 333 | 8933 ± 741 | 7772 ± 568 |
| Steady state flux, Jss, (μg/cm2/min) | 47.128 ± 6.2 | 17.433 ± 2.4 | 34.167 ± 4.9 | 29.308 ± 3.1 |
| Permeability coefficient, Pc, (cm/min) | (3.9 ± 0.3) × 10−3 | (1.5 ± 0.2) × 10−3 | (2.9 ± 0.4) × 10−3 | (2.1 ± 0.2) × 10−3 |
| Diffusion coefficient, D, (cm2/min) | (12.3 ± 0.9) × 10−3 | (4.6 ± 0.5) × 10−3 | (8.5 ± 0.7) × 10−3 | (5.9 ± 0.6) × 10−3 |
| Relative permeation rate (RPR) | 1.457 ± 0.6 | 0.619 ± 0.3 | 1.149 ± 0.5 | - |
| Enhancement factor (EF) | 2.35 ± 0.4 | - | 1.85 ± 0.3 | 1.61 ± 0.4 |
| PK Parameters | Raw ACV-HPC Film | Optimized ACV-GO SNEDDs Film | Marketed ACV 5% Cream |
|---|---|---|---|
| Cmax (ng/mL) | 305 ± 42 | 993 ± 101 | 410 ± 65 |
| Tmax (min) | 120 ± 30 | 240 ± 30 | 180 ± 30 |
| AUC0–t (ng/mL h) | 4213 ± 509 | 11,234.1 ± 1312.6 | 5718.3 ±811.2 |
| AUC0–inf (ng/mL h) | 4566 ± 619 | 13,711.4 ± 1845.2 | 6218.4 ± 918.6 |
| Kel (h−1) | 0.133 ± 0.041 | 0.086 ± 0.021 | 0.118 ± 0.032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almehmady, A.M.; Ali, S.A. Transdermal Film Loaded with Garlic Oil-Acyclovir Nanoemulsion to Overcome Barriers for Its Use in Alleviating Cold Sore Conditions. Pharmaceutics 2021, 13, 669. https://doi.org/10.3390/pharmaceutics13050669
Almehmady AM, Ali SA. Transdermal Film Loaded with Garlic Oil-Acyclovir Nanoemulsion to Overcome Barriers for Its Use in Alleviating Cold Sore Conditions. Pharmaceutics. 2021; 13(5):669. https://doi.org/10.3390/pharmaceutics13050669
Chicago/Turabian StyleAlmehmady, Alshaimaa M., and Sarah A. Ali. 2021. "Transdermal Film Loaded with Garlic Oil-Acyclovir Nanoemulsion to Overcome Barriers for Its Use in Alleviating Cold Sore Conditions" Pharmaceutics 13, no. 5: 669. https://doi.org/10.3390/pharmaceutics13050669
APA StyleAlmehmady, A. M., & Ali, S. A. (2021). Transdermal Film Loaded with Garlic Oil-Acyclovir Nanoemulsion to Overcome Barriers for Its Use in Alleviating Cold Sore Conditions. Pharmaceutics, 13(5), 669. https://doi.org/10.3390/pharmaceutics13050669
