Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes
Abstract
:1. Introduction
2. Up-Scaling of Nanofiber Production
2.1. Challenges Facing the Scaling-up Process
2.2. Increasing Jet Production from a Single Needle
2.3. Increasing Jet Production through Multi-Needle Electrospinning
2.4. Nozzleless (Free-Surface) Technologies
2.4.1. Electrospinning Method Utilizing Rotating Spinneret
2.4.2. Electrospinning Method Utilizing a Stationary Spinneret
2.5. Other Approaches
3. Impact of Scaling Condition on the Nanofibers’ Functionality-Related Properties
4. Development of Electrospinning Machines from Laboratory to Industrial Scale
5. Electrospun Products for Commercial Purposes
5.1. Non-Medical Device (Non-MD) Products
5.2. Medical Devices (MD) and Drug Delivery Systems (DDS)
5.3. D Cell Culture for Drug Development and Sensitivity Screening
6. Future Perspective of Electrospinning and the Scale-up Production
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pant, B.; Park, M.; Park, S.-J. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 2019, 11, 305. [Google Scholar] [CrossRef] [Green Version]
- Haider, A.; Haider, S.; Kang, I.-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Huang, Y.; Song, J.; Yang, C.; Long, Y.; Wu, H. Scalable manufacturing and applications of nanofibers. Mater. Today 2019, 28, 98–113. [Google Scholar] [CrossRef]
- Zandi, N.; Lotfi, R.; Tamjid, E.; Shokrgozar, M.A.; Simchi, A. Materials Science & Engineering C Core-sheath gelatin based electrospun nanofibers for dual delivery release of biomolecules and therapeutics. Mater. Sci. Eng. C 2020, 108, 110432. [Google Scholar] [CrossRef]
- Ibrahim, Y.S.; Hussein, E.A.; Zagho, M.M.; Abdo, G.G.; Elzatahry, A.A. Melt Electrospinning Designs for Nanofiber Fabrication for Different Applications. Int. J. Mol. Sci. 2019, 20, 2455. [Google Scholar] [CrossRef] [Green Version]
- Zupančič, Š.; Škrlec, K.; Kocbek, P.; Kristl, J.; Berlec, A. Effects of Electrospinning on the Viability of Ten Species of Lactic Acid Bacteria in Poly(Ethylene Oxide) Nanofibers. Pharmaceutics 2019, 11, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Luu, Y.K.; Chang, C.; Fang, D.; Hsiao, B.S.; Chu, B.; Hadjiargyrou, M. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J. Control. Release 2004, 98, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.V.; Laidmäe, I.; Kogermann, K.; Lust, A.; Meos, A.; Ho, D.V.; Raal, A.; Heinämäki, J.; Nguyen, H.T. Preformulation Study of Electrospun Haemanthamine-Loaded Amphiphilic Nanofibers Intended for a Solid Template for Self-Assembled Liposomes. Pharmaceutics 2019, 11, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domokos, A.; Balogh, A.; Dénes, D.; Nyerges, G.; Ződi, L.; Farkas, B.; Marosi, G.; Nagy, Z.K. Continuous manufacturing of orally dissolving webs containing a poorly soluble drug via electrospinning. Eur. J. Pharm. Sci. 2019, 130, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Unalan, I.; Endlein, S.J.; Slavik, B.; Buettner, A.; Goldmann, W.H.; Detsch, R.; Boccaccini, A.R. Evaluation of Electrospun Poly(ε-Caprolactone)/Gelatin Nanofiber Mats Containing Clove Essential Oil for Antibacterial Wound Dressing. Pharmaceutics 2019, 11, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedi, C.; Pandey, H.; Pandey, A.C.; Patil, S.; Ramteke, P.W.; Laux, P.; Luch, A.; Singh, A.V. In Vivo Biocompatibility of Electrospun Biodegradable Dual Carrier (Antibiotic + Growth Factor) in a Mouse Model—Implications for Rapid Wound Healing. Pharmaceutics 2019, 11, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebe, I.; Kállai-Szabó, B.; Nagy, Z.K.; Szabó, D.; Zsidai, L.; Kocsis, B.; Zelkó, R. Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique. Int. J. Pharm. 2013, 458, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Palo, M.; Rönkönharju, S.; Tiirik, K.; Viidik, L.; Sandler, N.; Kogermann, K. Bi-Layered Polymer Carriers with Surface Modification by Electrospinning for Potential Wound Care Applications. Pharmaceutics 2019, 11, 678. [Google Scholar] [CrossRef] [Green Version]
- Vass, P.; Szabó, E.; Domokos, A.; Hirsch, E.; Galata, D.; Farkas, B.; Démuth, B.; Andersen, S.K.; Vigh, T.; Verreck, G.; et al. Scale-up of electrospinning technology: Applications in the pharmaceutical industry. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, Y.J.; Kim, W.J.; Yoo, H.S. Therapeutic applications of electrospun nanofibers for drug delivery systems. Arch. Pharmacol. Res. 2014, 37, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, K.; Agatemor, C.; Tucker, N.; Kny, E. Electrical Spinning to Electrospinning: A Brief History: From Basic Research to Commercialization. R. Soc. Chem. 2018, 7, 1–23. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, Z.; Qian, Y.; Zhang, Z.; Lyu, L.; Wang, Y.; Ye, F. Study on the Electrospinning of Gelatin/Pullulan Composite Nanofibers. Polymers 2019, 11, 1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Zhou, W.; Ma, D.; Ma, Q.; Bridges, D.; Ma, Y.; Hu, A. Electrospinning of Nanofibers and Their Applications for Energy Devices. J. Nanomater. 2015, 2015, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Kalra, V.; Lee, J.H.; Park, J.H.; Marquez, M.; Joo, Y.L. Confined Assembly of Asymmetric Block-Copolymer Nanofibers via Multiaxial Jet Electrospinning. Small 2009, 5, 2323–2332. [Google Scholar] [CrossRef] [PubMed]
- Luginina, M.; Schuhladen, K.; Orrú, R.; Cao, G.; Boccaccini, A.R.; Liverani, L. Electrospun PCL/PGS Composite Fibers Incorporating Bioactive Glass Particles for Soft Tissue Engineering Applications. Nanomaterials 2020, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Dodero, A.; Brunengo, E.; Castellano, M.; Vicini, S. Investigation of the Mechanical and Dynamic-Mechanical Properties of Electrospun Polyvinylpyrrolidone Membranes: A Design of Experiment Approach. Polymers 2020, 12, 1524. [Google Scholar] [CrossRef]
- Lukas, D.; Sarkar, A.; Pokorny, P. Self-organization of jets in electrospinning from free liquid surface: A generalized approach. J. Appl. Phys. 2008, 103, 084309. [Google Scholar] [CrossRef]
- Taylor, G.I. Disintegration of water drops in an electric field. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1964, 280, 383–397. [Google Scholar] [CrossRef]
- Rogina, A. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl. Surf. Sci. 2014, 296, 221–230. [Google Scholar] [CrossRef]
- Khalf, A.; Madihally, S.V. Recent advances in multiaxial electrospinning for drug delivery. Eur. J. Pharm. Biopharm. 2017, 112, 1–17. [Google Scholar] [CrossRef]
- Zupančič, Š.; Sinha-Ray, S.; Sinha-Ray, S.; Kristl, J.; Yarin, A.L. Controlled Release of Ciprofloxacin from Core–Shell Nanofibers with Monolithic or Blended Core. Mol. Pharm. 2016, 13, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Kai, D.; Liow, S.S.; Loh, X.J. Biodegradable polymers for electrospinning: Towards biomedical applications. Mater. Sci. Eng. C 2014, 45, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Cáceres, R.; Cabeza, L.; Perazzoli, G.; Díaz, A.; López-Romero, J.M.; Melguizo, C.; Prados, J. Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials 2019, 9, 656. [Google Scholar] [CrossRef] [Green Version]
- Balogh, A.; Drávavölgyi, G.; Faragó, K.; Farkas, A.; Vigh, T.; Sóti, P.L.; Wagner, I.; Madarász, J.; Pataki, H.; Marosi, G.; et al. Plasticized Drug-Loaded Melt Electrospun Polymer Mats: Characterization, Thermal Degradation, and Release Kinetics. J. Pharm. Sci. 2014, 103, 1278–1287. [Google Scholar] [CrossRef]
- Ignatious, F.; Sun, L.; Lee, C.-P.; Baldoni, J. Electrospun Nanofibers in Oral Drug Delivery. Pharm. Res. 2010, 27, 576–588. [Google Scholar] [CrossRef]
- Sipos, E.; Kósa, N.; Kazsoki, A.; Szabó, Z.-I.; Zelkó, R. Formulation and Characterization of Aceclofenac-Loaded Nanofiber Based Orally Dissolving Webs. Pharmaceutics 2019, 11, 417. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Z.K.; Balogh, A.; Démuth, B.; Pataki, H.; Vigh, T.; Szabó, B.; Molnár, K.; Schmidt, B.T.; Horák, P.; Marosi, G.; et al. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int. J. Pharm. 2015, 480, 137–142. [Google Scholar] [CrossRef]
- Kiss, K.; Vass, P.; Farkas, A.; Hirsch, E.; Szabó, E.; Mező, G.; Nagy, Z.K.; Marosi, G. A solid doxycycline HP-β-CD formulation for reconstitution (i.v. bolus) prepared by scaled-up electrospinning. Int. J. Pharm. 2020, 586, 119539. [Google Scholar] [CrossRef]
- Balogh, A.; Horváthová, T.; Fülöp, Z.; Loftsson, T.; Harasztos, A.H.; Marosi, G.; Nagy, Z.K. Electroblowing and electrospinning of fibrous diclofenac sodium-cyclodextrin complex-based reconstitution injection. J. Drug Deliv. Sci. Technol. 2015, 26, 28–34. [Google Scholar] [CrossRef]
- Vass, P.; Démuth, B.; Farkas, A.; Hirsch, E.; Szabó, E.; Nagy, B.; Andersen, S.K.; Vigh, T.; Verreck, G.; Csontos, I.; et al. Continuous alternative to freeze drying: Manufacturing of cyclodextrin-based reconstitution powder from aqueous solution using scaled-up electrospinning. J. Control. Release 2019, 298, 120–127. [Google Scholar] [CrossRef]
- Domján, J.; Vass, P.; Hirsch, E.; Szabó, E.; Pantea, E.; Andersen, S.K.; Vigh, T.; Verreck, G.; Marosi, G.; Nagy, Z.K. Monoclonal antibody formulation manufactured by high-speed electrospinning. Int. J. Pharm. 2020, 591, 120042. [Google Scholar] [CrossRef]
- Li, H.; Sang, Q.; Wu, J.; Williams, G.R.; Wang, H.; Niu, S.; Wu, J.; Zhu, L.-M. Dual-responsive drug delivery systems prepared by blend electrospinning. Int. J. Pharm. 2018, 543, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loscertales, I.G.; Barrero, A.; Guerrero, I.; Cortijo, R.; Marquez, M.; Gañán-Calvo, A.M. Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets. Science 2002, 295, 1695–1698. [Google Scholar] [CrossRef]
- Lv, Y.; Pan, Q.; Bligh, S.A.; Li, H.; Wu, H.; Sang, Q.; Zhu, L.-M. Core-Sheath Nanofibers as Drug Delivery System for Thermoresponsive Controlled Release. J. Pharm. Sci. 2017, 106, 1258–1265. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, L.; Zhu, K. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents. J. Control. Release 2014, 193, 296–303. [Google Scholar] [CrossRef]
- Cherwin, A.; Namen, S.; Rapacz, J.; Kusik, G.; Anderson, A.; Wang, Y.; Kaltchev, M.; Schroeder, R.; O’Connell, K.; Stephens, S.; et al. Design of a Novel Oxygen Therapeutic Using Polymeric Hydrogel Microcapsules Mimicking Red Blood Cells. Pharmaceutics 2019, 11, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, Y.; Zhou, F.; Williams, G.R. Developing and scaling up fast-dissolving electrospun formulations based on poly(vinylpyrrolidone) and ketoprofen. J. Drug Deliv. Sci. Technol. 2021, 61, 102138. [Google Scholar] [CrossRef]
- Bruni, G.; Maggi, L.; Tammaro, L.; Di Lorenzo, R.; Friuli, V.; D’Aniello, S.; Maietta, M.; Berbenni, V.; Milanese, C.; Girella, A.; et al. Electrospun fibers as potential carrier systems for enhanced drug release of perphenazine. Int. J. Pharm. 2016, 511, 190–197. [Google Scholar] [CrossRef]
- Islam, S.; Ang, B.C.; Andriyana, A.; Afifi, A.M. A review on fabrication of nanofibers via electrospinning and their applications. SN Appl. Sci. 2019, 1, 1248. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Z.; Venugopal, J.; Huang, Z.-M.; Lim, C.T.; Ramakrishna, S. Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts. Biomacromolecules 2005, 6, 2583–2589. [Google Scholar] [CrossRef]
- Khalf, A.; Madihally, S.V. Modeling the permeability of multiaxial electrospun poly(ε-caprolactone)-gelatin hybrid fibers for controlled doxycycline release. Mater. Sci. Eng. C 2017, 76, 161–170. [Google Scholar] [CrossRef]
- Lee, H.; Xu, G.; Kharaghani, D.; Nishino, M.; Song, K.H.; Lee, J.S.; Kim, I.S. Electrospun tri-layered zein/PVP-GO/zein nanofiber mats for providing biphasic drug release profiles. Int. J. Pharm. 2017, 531, 101–107. [Google Scholar] [CrossRef]
- Qian, W.; Yu, D.-G.; Li, Y.; Liao, Y.-Z.; Wang, X.; Wang, L. Dual Drug Release Electrospun Core-Shell Nanofibers with Tunable Dose in the Second Phase. Int. J. Mol. Sci. 2014, 15, 774–786. [Google Scholar] [CrossRef]
- Kostakova, E.K.; Meszaros, L.; Maskova, G.; Blazkova, L.; Turcsan, T.; Lukas, D. Crystallinity of Electrospun and Centrifugal Spun Polycaprolactone Fibers: A Comparative Study. J. Nanomater. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Hsiao, B.S. Electrospun nanofiber membranes. Curr. Opin. Chem. Eng. 2016, 12, 62–81. [Google Scholar] [CrossRef] [Green Version]
- Vass, P.; Hirsch, E.; Kóczián, R.; Démuth, B.; Farkas, A.; Fehér, C.; Szabó, E.; Németh, Á.; Andersen, S.K.; Vigh, T.; et al. Scaled-Up Production and Tableting of Grindable Electrospun Fibers Containing a Protein-Type Drug. Pharmaceutics 2019, 11, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillay, V.; Dott, C.; Choonara, Y.E.; Tyagi, C.; Tomar, L.; Kumar, P.; Du Toit, L.C.; Ndesendo, V.M.K. A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. J. Nanomater. 2013, 2013, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Farokhi, M.; Mottaghitalab, F.; Reis, R.L.; Ramakrishna, S.; Kundu, S.C. Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. J. Control. Release 2020, 321, 324–347. [Google Scholar] [CrossRef] [PubMed]
- Kattamuri, S.B.K.; Potti, L.; Vinukonda, A. Nanofibers in Pharmaceuticals—A Review. Am. J. Pharmtech. Res. 2018, 2, 188–212. [Google Scholar]
- Partheniadis, I.; Nikolakakis, I.; Laidmäe, I.; Heinämäki, J. A Mini-Review: Needleless Electrospinning of Nanofibers for Pharmaceutical and Biomedical Applications. Processes 2020, 8, 673. [Google Scholar] [CrossRef]
- Liu, G.; Gu, Z.; Hong, Y.; Cheng, L.; Li, C. Electrospun starch nanofibers: Recent advances, challenges, and strategies for potential pharmaceutical applications. J. Control. Release 2017, 252, 95–107. [Google Scholar] [CrossRef]
- Ranjbari, E.; Bazgir, S.; Shirazi, M.M.A. Needleless electrospinning of poly(acrylic acid) superabsorbent: Fabrication, characterization and swelling behavior. Polym. Test. 2020, 84, 106403. [Google Scholar] [CrossRef]
- Valipouri, A. Production Scale Up of Nanofibers: A Review. J. Text. Polym. 2017, 5, 8–16. [Google Scholar]
- Wojasiński, M.; Goławski, J.; Ciach, T. Blow-assisted multi-jet electrospinning of poly-L-lactic acid nanofibers. J. Polym. Res. 2017, 24, 975. [Google Scholar] [CrossRef] [Green Version]
- Shamshina, J.L.; Zavgorodnya, O.; Bonner, J.R.; Gurau, G.; Di Nardo, T.; Rogers, R.D. “Practical” Electrospinning of Biopolymers in Ionic Liquids. ChemSusChem 2017, 10, 106–111. [Google Scholar] [CrossRef]
- Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D. Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review. Macromol. Mater. Eng. 2013, 298, 504–520. [Google Scholar] [CrossRef]
- Thakkar, S.; Misra, M. Electrospun polymeric nanofibers: New horizons in drug delivery. Eur. J. Pharm. Sci. 2017, 107, 148–167. [Google Scholar] [CrossRef] [PubMed]
- Asadian, M.; Chan, K.V.; Norouzi, M.; Grande, S.; Cools, P.; Morent, R.; De Geyter, N. Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds. Nanomaterials 2020, 10, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, R.; Padhye, R.; Kyratzis, I.L.; Truong, Y.B.; Arnold, L. Recent advances in nanofibre fabrication techniques. Text. Res. J. 2011, 82, 129–147. [Google Scholar] [CrossRef]
- Paruchuri, S.; Brenner, M.P. Splitting of a Liquid Jet. Phys. Rev. Lett. 2007, 98, 134502. [Google Scholar] [CrossRef]
- Sureeporn, K.; Wenxia, L.; Darrell, R. Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci. Part B Polym. Phys. 2001, 39, 2598–2606. [Google Scholar] [CrossRef]
- Theron, S.; Yarin, A.; Zussman, E.; Kroll, E. Multiple jets in electrospinning: Experiment and modeling. Polymer 2005, 46, 2889–2899. [Google Scholar] [CrossRef]
- Niu, H.; Lin, T. Fiber Generators in Needleless Electrospinning. J. Nanomater. 2012, 2012, 1–13. [Google Scholar] [CrossRef]
- Mingjun, C.; Youchen, Z.; Haoyi, L.; Xiangnan, L.; Yumei, D.; Bubakir, M.M.; Weimin, Y. An example of industrialization of melt electrospinning: Polymer melt differential electrospinning. Adv. Ind. Eng. Polym. Res. 2019, 2, 110–115. [Google Scholar] [CrossRef]
- Kurečič, M.; Smole, M.S. Electrospinning: Nanofibre Production Method. Tekstilec 2013, 56, 4–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Z.; Han, Z.; Zhao, S.; Zhao, X.; Kang, L. Stable multi-jet electrospinning with high throughput using the bead structure nozzle. RSC Adv. 2018, 8, 6069–6074. [Google Scholar] [CrossRef] [Green Version]
- Jao, P.F.; Fang, S.-P.; David, E.; Kim, K.T.; Yoon, Y.-K. Nanomanufacturing of Large Area Carbon Nanofibers Using Tube Nozzle Electrospinning (TNE), Lithography and Carbonization Processes. In Proceedings of the 2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, 29 May–1 June 2012; IEEE: New York, NY, USA, 2012; pp. 2075–2081. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, Z.; Li, Q.; Hou, L.; Liu, J.; Wang, L.; Guan, Z.; Zahn, M. A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1592–1601. [Google Scholar] [CrossRef]
- Jiang, J.; Zheng, G.; Wang, X.; Li, W.; Kang, G.; Chen, H.; Guo, S.; Liu, J. Arced Multi-Nozzle Electrospinning Spinneret for High-Throughput Production of Nanofibers. Micromachines 2019, 11, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.-K.; Wang, L.; Fan, J.; Shou, W.; Zhou, B.-M.; Liu, Y. Multi-Jet Electrospinning with Auxiliary Electrode: The Influence of Solution Properties. Polymers 2018, 10, 572. [Google Scholar] [CrossRef] [Green Version]
- Holopainen, J.; Penttinen, T.; Santala, E.; Ritala, M. Needleless electrospinning with twisted wire spinneret. Nanotechnology 2015, 26, 025301. [Google Scholar] [CrossRef] [PubMed]
- Jirsak, O.; Sanetrnik, F.; Lukas, D.; Kotek, V.; Martinova, L.; Chaloupek, J. A Method of Nanofibres Production from a Polymer Solution Using Electrostatic Spinning and a Device for Carrying Out the Method. U.S. Patent WO2005024101A1, 8 September 2003. [Google Scholar]
- Bazbouz, M.B.; Liang, H.; Tronci, G. A UV-cured nanofibrous membrane of vinylbenzylated gelatin-poly(ɛ-caprolactone) dimethacrylate co-network by scalable free surface electrospinning. Mater. Sci. Eng. C 2018, 91, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Krogstad, E.A.; Woodrow, K.A. Manufacturing scale-up of electrospun poly(vinyl alcohol) fibers containing tenofovir for vaginal drug delivery. Int. J. Pharm. 2014, 475, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Yarin, A.; Zussman, E. Upward needleless electrospinning of multiple nanofibers. Polymers 2004, 45, 2977–2980. [Google Scholar] [CrossRef]
- He, J.; Qi, K.; Wang, L.; Zhou, Y.; Liu, R.; Cui, S. Combined application of multinozzle air-jet electrospinning and airflow twisting for the efficient preparation of continuous twisted nanofiber yarn. Fibers Polym. 2015, 16, 1319–1326. [Google Scholar] [CrossRef]
- Cengiz-Çallıoğlu, F. Dextran nanofiber production by needleless electrospinning process. e-Polymers 2014, 14, 5–13. [Google Scholar] [CrossRef]
- Manikandan, S.; Divyabharathi, M.; Tomas, K.; Pavel, P.; David, L. Production of poly (ε-caprolactone) Antimicrobial Nanofibers by Needleless Alternating Current Electrospinning. Mater. Today Proc. 2019, 17, 1100–1104. [Google Scholar] [CrossRef]
- Zhou, F.-L.; Gong, R.-H.; Porat, I. Mass production of nanofibre assemblies by electrostatic spinning. Polym. Int. 2009, 58, 331–342. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, Y.; Li, A.; Wei, L.; Wang, L.; Qin, X.; Yu, J. Mass production of high-quality nanofibers via constructing pre-Taylor cones with high curvature on needleless electrospinning. Mater. Des. 2021, 197, 109247. [Google Scholar] [CrossRef]
- Chen, R.; Wu, Y.; Fan, J.; Wang, L.; Su, Z.; Qin, L.; Liang, L.; Li, Y.; Cheng, J.; Liu, Y. Numerical approach to controlling a moving jet’s vibration in an electrospinning system: An auxiliary electrode and uniform electric field. J. Low Freq. Noise Vib. Act. Control. 2019, 38, 1687–1698. [Google Scholar] [CrossRef] [Green Version]
- Molnar, K.; Nagy, Z.K. Corona-electrospinning: Needleless method for high-throughput continuous nanofiber production. Eur. Polym. J. 2016, 74, 279–286. [Google Scholar] [CrossRef]
- Valipouri, A.; Hosseini, S.A. Fabrication of Biodegradable PCL Particles as well as PA66 Nanofibers via Air-Sealed Centrifuge Electrospinning. J. Text. Polym. 2016, 4, 15–19. [Google Scholar]
- Balogh, A.; Cselkó, R.; Démuth, B.; Verreck, G.; Mensch, J.; Marosi, G.; Nagy, Z.K. Alternating current electrospinning for preparation of fibrous drug delivery systems. Int. J. Pharm. 2015, 495, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Vysloužilová, L.; Buzgo, M.; Pokorný, P.; Chvojka, J.; Míčková, A.; Rampichová, M.; Kula, J.; Pejchar, K.; Bílek, M.; Lukáš, D.; et al. Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers. Int. J. Pharm. 2017, 516, 293–300. [Google Scholar] [CrossRef]
- Hakkarainen, E.; Kõrkjas, A.; Laidmäe, I.; Lust, A.; Semjonov, K.; Kogermann, K.; Nieminen, H.J.; Salmi, A.; Korhonen, O.; Haeggström, E.; et al. Comparison of Traditional and Ultrasound-Enhanced Electrospinning in Fabricating Nanofibrous Drug Delivery Systems. Pharmaceutics 2019, 11, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkas, B.; Balogh, A.; Cselkó, R.; Molnár, K.; Farkas, A.; Borbás, E.; Marosi, G.; Nagy, Z.K. Corona alternating current electrospinning: A combined approach for increasing the productivity of electrospinning. Int. J. Pharm. 2019, 561, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Valipouri, A.; Ravandi, S.A.H.; Pishevar, A.R. A novel method for manufacturing nanofibers. Fibers Polym. 2013, 14, 941–949. [Google Scholar] [CrossRef]
- Shao, Z.; Yu, L.; Xu, L.; Wang, M. High-Throughput Fabrication of Quality Nanofibers Using a Modified Free Surface Electrospinning. Nanoscale Res. Lett. 2017, 12, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Kim, M.; Lee, H. Recent Advances on Nanofiber Fabrications: Unconventional State-of-the-Art Spinning Techniques. Polymers 2020, 12, 1386. [Google Scholar] [CrossRef]
- Alfaro De Prá, M.A.; Ribeiro-do-Valle, R.M.; Maraschin, M.; Veleirinho, B. Effect of Collector Design on the Morphological Properties of Polycaprolactone Electrospun Fibers. Mater. Lett. 2017, 193, 154–157. [Google Scholar] [CrossRef]
- Electrospinning Device 4SPIN. Available online: https://www.4spin.info/portfolio/4spin-c4s-lab (accessed on 16 January 2021).
- Electrospinning-Erich Huber GmbH. Available online: https://www.ehuber.de/electrospinning.html (accessed on 16 January 2021).
- Holmarc. Nano Fiber Electrospinning Unit. Available online: https://www.holmarc.com/nano_fiber_electrospinning_station.php (accessed on 16 January 2021).
- NaBond Nanofiber Electrospinning Unit. Available online: https://english.keskato.co.jp/archives/products/neu (accessed on 16 January 2021).
- Nadetech Innovations. ND-ES Lab Electrospinning. Available online: https://nadetech.com/dip-coating-3/ (accessed on 16 January 2021).
- Physics Eqipment. Available online: http://www.phyeqpt.in/index.html (accessed on 16 January 2021).
- Spinbox Electrospinning by Bioinicia. Available online: https://www.spinboxsystems.com/electrospinning/ (accessed on 16 January 2021).
- Bionicia Electrospinning-Electrospraying. Available online: https://bioinicia.com/electrospinning-electrospraying-lab-equipment/ (accessed on 16 January 2021).
- Spraybase® Kits for Electrospinning and Electrospraying. Available online: https://www.spraybase.com/kits (accessed on 16 January 2021).
- Teo, W.-E.; Inai, R.; RamaKrishnaan, S. Technological advances in electrospinning of nanofibers. Sci. Technol. Adv. Mater. 2011, 12, 013002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanospider Electrospinning Equipment. Available online: https://www.elmarco.com/%0D%0A (accessed on 16 January 2021).
- Products Fnm Co. Available online: https://fnm.ir/Product (accessed on 16 January 2021).
- Electrospinning Tong Li Tech. Available online: https://www.electro-spinning.com/ (accessed on 16 January 2021).
- Inovenso Products. Available online: https://www.inovenso.com/?gclid=EAIaIQobChMImtvekO7i5gIVx-N3Ch2NCgQwEAAYAiAAEgKt2fD_BwE (accessed on 16 January 2021).
- Electrospinning Equipments-Linari Nanotech. Available online: https://www.linarinanotech.com/pages/electrospinning-equipments%0D%0A (accessed on 16 January 2021).
- Nanoflux-Electrospinning Equipments. Available online: http://www.nanoflux.com.sg/en/ (accessed on 16 January 2021).
- Electrospinning/Electrospray Machines-NC. Available online: http://nanonc.co.kr/wordpress/ (accessed on 16 January 2021).
- Electrospinning Equipments-Progene Link Sdn Bhd. Available online: http://www.progenelink.com/category/electrospinning-unit/ (accessed on 16 January 2021).
- Electrospinning System-SKE. Available online: http://www.ske.it/index.php/product-category/electrospinning-systems/%0D%0A (accessed on 16 January 2021).
- Yflow® Electrospinning Machine. Available online: http://www.yflow.com/electrospinning-machine/ (accessed on 16 January 2021).
- ANSTCO Electrospinning Machinery. Available online: http://www.anstco.co/anstco/english/p1.html (accessed on 16 January 2021).
- Pokorny, M.; Řebíček, J.; Novák, J.; Kotzianová, A.; Klemes, J.; Ruzickova, J.; Velebný, V. Produced Nanofibers and Technological Possibilities of Laboratory Apparatus 4SPIN®. In Proceedings of the Fiber Society Spring 2014 Technical Conference: Fibers for Progress, Liberec, Czech Republic, 21–23 May 2014. [Google Scholar] [CrossRef]
- Petras, D.; Maly, M.; Kovac, M.; Stromsky, V.; Pozner, J.; Trdlicka, J.; Jakubek, F. Method for spinning a liquid matrix for production of nanofibres through electrostatic spinning of liquid matrix. U.S. Patent 8,231,822, 31 July 2012. [Google Scholar]
- Petras, D.; Mares, L.; Stranska, D. Method and device for production of nanofibres from the polymeric solution through electrostatic spinning. U.S. Patent WO 2006131081, 2006. [Google Scholar]
- Fotticchia, A.; Demirci, E.; Lenardi, C.; Liu, Y. Cellular Response to Cyclic Compression of Tissue Engineered Intervertebral Disk Constructs Composed of Electrospun Polycaprolactone. J. Biomech. Eng. 2018, 140, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Meng, Y.; Xiao, M.; Liu, X.; Zhu, F.; Zhang, Y. The surface capacitance behavior and its contribution to the excellent performance of cobalt ferrite/carbon anode in lithium storage. J. Mater. Sci. Mater. Electron. 2019, 30, 12659–12668. [Google Scholar] [CrossRef]
- O’Leary, C.; Soriano, L.; Fagan-Murphy, A.; Ivankovic, I.; Cavanagh, B.; O’Brien, F.J.; Cryan, S.-A. The Fabrication and in vitro Evaluation of Retinoic Acid-Loaded Electrospun Composite Biomaterials for Tracheal Tissue Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, A.; Elumalai, N.K.; Pal, B.; Jose, R.; Upama, M.B.; Wang, D.; Gonçales, V.R.; Xu, C.; Haque, F.; Uddin, A. Electrospun 3D composite nano-flowers for high performance triple-cation perovskite solar cells. Electrochim. Acta 2018, 289, 459–473. [Google Scholar] [CrossRef]
- Electrospinning Unit-Super ES-1& Super ES-2. Available online: https://www.espinnanotech.com/ (accessed on 16 January 2021).
- Malik, A.; Magisetty, R.; Kumar, V.; Shukla, A.; Kandasubramanian, B. Dielectric and conductivity investigation of polycarbonate-copper phthalocyanine electrospun nonwoven fibres for electrical and electronic application. Polym. Technol. Mater. 2019, 59, 154–168. [Google Scholar] [CrossRef]
- Gläser, S.; Mede, R.; Görls, H.; Seupel, S.; Bohlender, C.; Wyrwa, R.; Schirmer, S.; Dochow, S.; Reddy, G.U.; Popp, J.; et al. Remote-controlled delivery of CO via photoactive CO-releasing materials on a fiber optical device. Dalton Trans. 2016, 45, 13222–13233. [Google Scholar] [CrossRef]
- Bayat, S.; Amiri, N.; Pishavar, E.; Kalalinia, F.; Movaffagh, J.; Hashemi, M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci. 2019, 229, 57–66. [Google Scholar] [CrossRef]
- Ghosal, K.; Manakhov, A.; Zajíčková, L.; Thomas, S. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone) (PCL) Composites for Skin Tissue Engineering. AAPS PharmSciTech 2017, 18, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Okutan, N.; Terzi, P.; Altay, F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll. 2014, 39, 19–26. [Google Scholar] [CrossRef]
- Modafferi, V.; Panzera, G.; Donato, A.; Antonucci, P.; Cannilla, C.; Donato, N.; Spadaro, D.; Neri, G. Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers. Sens. Actuat. B Chem. 2012, 163, 61–68. [Google Scholar] [CrossRef]
- MECC CO., LTD. Nanofiber Division. Available online: https://www.mecc-nano.com (accessed on 16 January 2021).
- Yano, T.; Higaki, Y.; Tao, D.; Murakami, D.; Kobayashi, M.; Ohta, N.; Koike, J.-I.; Horigome, M.; Masunaga, H.; Ogawa, H.; et al. Orientation of poly(vinyl alcohol) nanofiber and crystallites in non-woven electrospun nanofiber mats under uniaxial stretching. Polymers 2012, 53, 4702–4708. [Google Scholar] [CrossRef]
- Corres, J.M.; Arregui, F.J.; Matias, I.R.; Rodriguez, Y. High Sensitivity Optical Fiber pH Sensor Using Poly(acrylic acid) Nanofibers. In Proceedings of the 2013 IEEE SENSORS, Baltimore, MD, USA, 3–6 November 2013; IEEE: New York, NY, USA, 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Ang, H.Y.; Irvine, S.A.; Avrahami, R.; Sarig, U.; Bronshtein, T.; Zussman, E.; Boey, F.Y.C.; Machluf, M.; Venkatraman, S.S. Characterization of a bioactive fiber scaffold with entrapped HUVECs in coaxial electrospun core-shell fiber. Biomatter 2014, 4, e28238. [Google Scholar] [CrossRef] [Green Version]
- Heo, Y.-J.; Lee, H.I.; Lee, J.W.; Park, M.; Rhee, K.Y.; Park, S.-J. Optimization of the pore structure of PAN-based carbon fibers for enhanced supercapacitor performances via electrospinning. Compos. Part B Eng. 2019, 161, 10–17. [Google Scholar] [CrossRef]
- Kolathodi, M.S.; Palei, M. MnO 2 Encapsulated Electrospun TiO 2 Nano Fi Bers as Electrodes for Asymmetric Supercapacitors. Nanotechnology 2020, 31, 125401. [Google Scholar] [CrossRef] [PubMed]
- Mani, M.P.; Jaganathan, S.K.; Supriyanto, E. Enriched Mechanical Strength and Bone Mineralisation of Electrospun Biomimetic Scaffold Laden with Ylang Ylang Oil and Zinc Nitrate for Bone Tissue Engineering. Polymers 2019, 11, 1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Products-SPINBOW. Available online: http://www.spinbow.it/en/product-en/ (accessed on 16 January 2021).
- Sensini, A.; Gotti, C.; Belcari, J.; Zucchelli, A.; Focarete, M.L.; Gualandi, C.; Todaro, I.; Kao, A.P.; Tozzi, G.; Cristofolini, L. Morphologically bioinspired hierarchical nylon 6,6 electrospun assembly recreating the structure and performance of tendons and ligaments. Med. Eng. Phys. 2019, 71, 79–90. [Google Scholar] [CrossRef]
- Aznar-Cervantes, S.; Roca, M.I.; Martinez, J.G.; Meseguer-Olmo, L.; Cenis, J.L.; Moraleda, J.M.; Otero, T.F. Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 2012, 85, 36–43. [Google Scholar] [CrossRef]
- Hosie, I. Turning Nanofibre into Products. NSTI Adv. Mater. TechConnect Briefs 2015, 4, 1–4. [Google Scholar]
- Neotherix- Regenerative Scaffold for Tissue Repair. Available online: http://www.neotherix.com/technology.php (accessed on 16 January 2021).
- Drug Loading-Biosurface. Available online: https://www.biosurfaces.us/drug-loading-1 (accessed on 16 January 2021).
- Brand and Product Concepts. Available online: http://nask.hk/ (accessed on 16 January 2021).
- Kaist News Center. Available online: http://news.kaist.ac.kr/newsen/html/news/?mode=V&mng_no=6530 (accessed on 16 January 2021).
- Seta Filter Media- Revolution Fibres. Available online: https://www.revolutionfibres.com/seta/ (accessed on 16 January 2021).
- Products-OrthoRebirth. Available online: https://orthorebirth.com/?page_id=338 (accessed on 16 January 2021).
- BiowebTM E-Spun. Available online: https://www.zeusinc.com/products/biomaterials/bioweb-composites (accessed on 16 January 2021).
- Polyremedy Personalized Dressings. Available online: https://polyremedy.com/polyremedy-launches-healsmart-hyaluronic-acid-dressing-enhancement/ (accessed on 16 January 2021).
- SWASA-Breathe Clean Air. Available online: https://swasa.in/ (accessed on 16 January 2021).
- Product Description- Nicast. Available online: http://nicast.com/avflo/product-description/ (accessed on 16 January 2021).
- PK Papyrus®. Available online: https://www.biotronik.com/en-de/products/coronary/pk-papyrus (accessed on 16 January 2021).
- SurgiCLOT®-St Reresa Medical. Available online: https://stteresamedical.com/technology/surgiclot (accessed on 16 January 2021).
- Zhang, S.; Gelain, F.; Zhao, X. Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin. Cancer Biol. 2005, 15, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Bae, H.-I.; Kwon, O.K.; Choi, M.-S. Three-dimensional gastric cancer cell culture using nanofiber scaffold for chemosensitivity test. Int. J. Biol. Macromol. 2009, 45, 65–71. [Google Scholar] [CrossRef]
- Biopaper- Dipole Materials. Available online: https://www.dipolematerials.com/biopapers/ (accessed on 16 January 2021).
- 3D-Culture Archives-Nanofiber Solutions. Available online: https://nanofibersolutions.com/product-category/3d-cell-culture/ (accessed on 16 January 2021).
- Veterinary Products Archives- Nanofiber Solutions. Available online: https://nanofibersolutions.com/product-category/veterinary/ (accessed on 16 January 2021).
- RenovoDerm-Phoenix Wound Matrix. Available online: https://www.renovoderm.tech (accessed on 16 January 2021).
- Medprin Biotech. Available online: http://www.medprin.com/home/product/productdetails.html?id=12 (accessed on 16 January 2021).
- 3D Insert-PCL: Zen Cart, the ARt of E-Commerce. Available online: http://www.3dbiotekstore.com/index.php?main_page=index&cPath=10 (accessed on 16 January 2021).
- Clinical Trial for the Treatment of Diabetic Foot Ulcers Using a Nitric Oxide Releasing Patch: PATHON. Available online: https://clinicaltrials.gov/ct2/show/record/NCT00428727 (accessed on 16 January 2021).
- Bioinicia Gmp Certification for Electrospun Nanofibers. Available online: https://bioinicia.com/bioinicia-gmp-certification-for-electrospun-nanofibers/ (accessed on 16 January 2021).
- Shah, V.P.; Amidon, G.L. G.L. Amidon, H. Lennernas, V.P. Shah, and J.R. Crison. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of In Vitro Drug Product Dissolution and In Vivo Bioavailability, Pharm Res 12, 413–420, 1995—Backstory of BCS. AAPS J. 2014, 16, 894–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebe, I.; Kallai-Szabo, B.; Zelko, R.; Szabo, D. Polymers and formulation strategies of nanofibrous systems for drug delivery application and tissue engineering. Curr. Med. Chem. 2015, 22, 604–617. [Google Scholar] [CrossRef]
- Walsh, T.; Karperien, L.; Dabiri, S.M.H.; Akbari, M. Fiber-based microphysiological systems: A powerful tool for high throughput drug screening. Microphysiological Syst. 2019, 3, 3. [Google Scholar] [CrossRef]
- Azari, P.; Luan, N.S.; Gan, S.N.; Yahya, R.; Wong, C.S.; Chua, K.H.; Pingguan-Murphy, B. Electrospun Biopolyesters as Drug Screening Platforms for Corneal Keratocytes. Int. J. Mater. Polym. BioMater. 2015, 64, 785–791. [Google Scholar] [CrossRef] [Green Version]
- Lakshman, J.P.; Cao, Y.; Kowalski, J.; Serajuddin, A.T.M. Application of Melt Extrusion in the Development of a Physically and Chemically Stable High-Energy Amorphous Solid Dispersion of a Poorly Water-Soluble Drug. Mol. Pharm. 2008, 5, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Chiou, W.L.; Riegelman, S. Pharmaceutical Applications of Solid Dispersion Systems. J. Pharm. Sci. 1971, 60, 1281–1302. [Google Scholar] [CrossRef] [PubMed]
- Van Den Mooter, G. The use of amorphous solid dispersions: A formulation strategy to overcome poor solubility and dissolution rate. Drug Discov. Today Technol. 2012, 9, e79–e85. [Google Scholar] [CrossRef] [PubMed]
- Murugan, R.; Ramakrishna, S. Design Strategies of Tissue Engineering Scaffolds with Controlled Fiber Orientation. Tissue Eng. 2007, 13, 1845–1866. [Google Scholar] [CrossRef]
- Freed, L.E.; Vunjak-novakovic, G.; Biron, R.J.; Eagles, D.B.; Lesnoy, D.C.; Barlow, S.K.; Langer, R. Biodegradable polymer scaffolds for tissue engineering. Bio/technology 1994, 12, 689–693. [Google Scholar] [CrossRef]
- Pham, Q.P.; Sharma, U.; Mikos, A.G. Pham2006. Tissue Eng. 2006, 12, 1197–1211. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Mondrinos, M.J.; Chen, X.; Gandhi, M.R.; Ko, F.K.; Lelkes, P.I. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J. Biomed. Mater. Res. Part A 2006, 79, 963–973. [Google Scholar] [CrossRef]
- Chandrasekaran, A.R.; Venugopal, J.; Sundarrajan, S.; Ramakrishna, S. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomed. Mater. 2011, 6, 015001. [Google Scholar] [CrossRef] [PubMed]
Manufacturer (Country of Origin) | Setup Scales Available | Operation Capacities | Way of Properties | References |
---|---|---|---|---|
Electroblowing | ||||
4Spin (Dolní Dobrouč, Czech Republic) | Laboratory | Unit type/Project system | Highly modular systems; Polysaccharides like Hyaluronic acid, Chitosan or Cellulose can be electrospun Fiber diameter: (>100) 300–500 nm | [98,119] |
Needle/Nozzleless electrospinning | ||||
Elmarco (Liberec, Czech Republic) | Laboratory and Industrial (Nanospider production line) | Unit type/Project system Mass production system Continuous system | Lab-based units: high throughput compared to needle-based systems; Industrial unit: low solvent consumption (minimalised usage and evaporation); Maximum effective nanofiber width: 1.6 m Fiber diameter: ● Industrial unit: ~150 nm +/− 30% SD; ● Mass production unit: 80–700 nm +/− 30% SD | [108,120,121] |
SKE (Research Equipment) (Bollate, Italy) (by Elmarco) (Czech Republic) | Laboratory and Pilot and Industrial | Unit type/Project system Batch type systems | Also needle-based units available (laboratory scale); Pilot- and industrial-scale units are needleless Co- and triaxial needles available | [116,122] |
Needle/Nozzle-based electrospinning | ||||
Electrospinning (Tong Li Tech)/NaBond (Hong Kong) | Laboratory and Pilot and Industrial | Unit type/Project system Batch type systems Mass production systems | Needle-based electrospinning; Near-field electrospinning; Coaxial electrospinning; 3D print electrospinning; Melt electrospinning; Continuous electrospinning; For Scale-up units: 0.5–1–1.6–2 m width machines available; Basic, Professional, Scale-up, Robotic, All-in-one, Bio-medical, Portable instruments; Accessories: Multi-needle spinneret, tubeless spinneret, rotating and magnetic electrode collector, x-y moving stage, syringe and continuous pump; | [110,123] |
Spraybase (Kildare, Ireland) | Laboratory | Unit type/Project system Batch type systems | Needle/Nozzle-based electrospinning; Melt electrospinning *; 5–40 um * (melt electrospinning); Coaxial/traixial kits available; 25–250 °C—PCL, PLA, PLGA, PP, PE, PMMA can be used (melt electrospinning) | [106,124] |
Bioinicia (Valencia, Spain) | Industrial * | Mass production system Continuous system | * Electrospinning contractor; GMP and ISO validated for pharma and biomedical products. | [105,125] |
E-Spin NanoTech Pvt. Ltd. (Uttar Pradesh, India) | Laboratory and Pilot | Unit type/Project system Batch type systems | Vertical, Horizontal, Inert Gas Spinning, Under solvent spinning; Ultra compact spinning chamber for low vacuum and inert gas spinning | [126,127] |
Erich Huber GmbH (Gernlinden, Germany) | Laboratory | Unit type/Project system | Programmable spinning nozzle; Rotating collector/x-y-plate; 3D spinning possible Insulated, easy-to-clean system hood; 3D spinning movement speed: 1–600 mm/min | [99,128] |
Fnm Co. (Fanavaran Nano-Meghyas) (Baghestan, Iran) | Laboratory and Pilot and Industrial | Unit type/Project system Batch type systems Mass production systems Continuous system | Lab-scale unit: Dual Pump Electrospinning Machine (Side by Side Electroris®) For polymeric/carbon/ceramic nanofibers with diameter range of 50 nm to a few micron core-shell nanofibers. One–eight spinning units for industrial unit, all parameters can be set separately Fiber diameter: 60–500 nm | [109,129] |
Fluidnatek (by Bioinicia) (Valencia, Spain) | Laboratory and Pilot | Unit type/Project system Batch type systems | Large-volume solution feeding system for extended production batches (single-phase or coaxial)* Multihead emitter system with larger-volume solution reservoirs; Solvent resistant housing; Easy-to-clean contruction for most models—ideal for cleanrooms; Package for GMP validation available (or ISO13485) | [105,125] |
HOLMARC Opto-Mechatronics (Kerala, India) | Laboratory | Unit type/Project system Batch type systems | Protein nanofibers, carbon nanotubbes, inorganic nanofibers; UV curing lamp (254 nm) can be added on the top of the rotating collector to cure the spun fibers; Holmarc’s model (HO-NFES-SYS): Nano Fiber Double Spinning and Yarning system Fiber diameter: 50–5000 nm | [100,130] |
INOVENSO (İstanbul, Turkey) | Laboratory and Pilot and Industrial | Unit type/Project system Batch type systems Mass production systems Continuous system | Single- and multi-nozzle systems for lab-scale workflow available; Maximum number of nozzles: 204 (industrial-scale machine); 180–5000 m2/day, 5000 g nanofiber/day. 50–400 nm diameter; 49,350 m2/day (23.5 h/day) Fiber diameter: 50–400 nm diameter | [111,131] |
KatoTech Co. Ltd. (Kyoto, Japan) | Laboratory | Unit type/Project system | This device is widely used in the automotive industry for research and development of filters and fuel cells. Fiber diameter: 50–800 nm | [65,101] |
LINARI NanoTech (Pisa, Italy) | Laboratory and Industrial | Unit type/Project system Batch type systems | Coaxial needle/multineedle systems; Up to eight independently controlled syringe pumps; Automatic cleaning of needles. Internal temp. and humidity control. | [112,132] |
MECC Co. Ltd. (Fukuoka, Japan) | Laboratory and Pilot | Unit type/Project system Batch type systems | Dedicated device for healthcare/medical application; Production of nonwoven nanofiber (effective width: 0.4–1 m); Fiber diameter: 10 nm- several micrometers | [133,134] |
Nadetech Innovations (Navarra, Spain) | Laboratory | Unit type/Project system | Spinnerets: single/coaxial/traixial/multi- nozzle | [102,135] |
Nanoflux (Singapore) | Laboratory and Pilot and Industrial | Unit type/Project system Batch type systems Continuous system | Multi-nozzle system for the continuous production of the nanofiber fabric products; Up to 135 needles; High-temperature unit (up to 280 °C available) | [113,136] |
NanoNC (Seoul, Korea) | Laboratory and Pilot and Industrial | Unit type/Project system Batch type systems Mass production systems Continuous system | Dual/multi-channel syringe pumps available; Coaxial/triaxial/precision/multi/heating/micro nozzle options; (Rotary jet and wet spinning machines available) | [114,137] |
Physics Equipment (Chennai, India) | Laboratory | Unit type/Project system Batch type systems | Spinning Chamber: Constructed with Aluminium Strut Frames. ● Two Polycarbonate- Clear doors ● Window on one side ● Fiberglass Panel on other sides ● With Sensor to switch of H.V.Power Supply | [103,138] |
Progene Link Sdn Bhd (Selangor, Malaysia) | Laboratory and Pilot and Industrial | Unit type/Project system Batch type systems Mass production systems Continuous system | Industrial unit: In each unit, there is a rotating drum dipped in the polymeric solution, and a plate/rotating drum collector placed on the top of each unit. | [115,139] |
Spinbox (by Bioinicia) (Valencia, Spain) | Laboratory | Unit type/Project system Batch type systems | Basic/Intermediate/Advanced kits available; Spare parts available; Engineered by Bioinicia and Fluidnatek systems, for research purposes | [105,125] |
SPINBOW (San Giorgio di Piano Italy) | Laboratory and Pilot | Unit type/Project system | Feeding unit with infusion pump (up to four syringes); Linear sliding system with a reciprocating motion housing (up to four needles) spinneret Rotating interchangeable drum collector | [140,141] |
Yflow (Málaga, Spain) | Laboratory and Pilot and Industrial | Unit type/Project system Batch type systems Mass production systems Continuous system | Upgrade: additional syringe pump for coaxial spinning; coaxial nozzle injector, Taylor cone visualization system. (From Professional system upwards upgrades are included) | [117,142] |
Product Type (e.g., Technology, Device, Filter, Mask, etc.) | Brand Name (Type) | Product Grade | Manufacturer | Detailed Specification (Availability, Key Features, etc.) | References |
---|---|---|---|---|---|
Publicly available products | |||||
Face mask (nanofiber for mask or filter technology) | SWASA® face mask (odorless, plus) N95/N99 Face mask technology | MD (recommended for medical doctors) | E-SPin NanoTech Pvt. Ltd. (Uttar Pradesh, India) | Patented face mask technology | [152] |
SWASA® Surgical mask | MD | Surgical face mask | |||
Surgical implants and wound treating products/wound dressings | AVflo™ | MD | Nicast (Lod, HaMerkaz, Israel) | Unique Nanofibrous Vascular Access Graft | [153] |
PK Papyrus® | Biotronic (Berlin, Germany) | Electrospun polyurethane fibers on stent surface; thin and highly elastic membrane | [154] | ||
Surgiclot® | St. Theresa Medical Inc. (Eagan, USA) | Dextran nanofibers; fibrin sealant designed specifically for bone bleeding; | [155] | ||
NanoCare® | Nanofiber Solutions™ (Ohio, USA) | Veterinary product; ECM-like fiber structure | [160] | ||
Phoenix Wound Matrix RenovoDerm® | Treatment of both partial- and full-thickness wounds | [161] | |||
Zeus Bioweb™ | Zeus Industrial Products, Inc. (Orangeburg SC, USA) | Ultrasmall PTFE polymeric fibers with low chemical reactivity | [150] | ||
ReBOSSIS® | Ortho ReBirth (Yokohama-shi Kanagawa pref., Japan) | Bone-void/defect-filling material; Components: TCP (β-Tricalcium Phosphate), Bioabsorbable Polymer and SiV (Silicone-containing Calcium Carbonate that promotes the bone formation). | [149] | ||
ReDura™ | MEDPRIN (Guangzhou, China) | FDA approved degradable material poly-L-lactic acid (PLA) Similar to native extracellular matrix (ECM), rapid repair and regeneration. | [162] | ||
HealSmart™ | DDS | PolyRemedy®, Inc. (Concord, MA, USA) | Antimicrobial Dressings with the addition of Hyaluronic Acid (HA) | [151] | |
3D InsertTM-PCL | DDS | 3D Biotek (New Jersey, USA) | Biodegradable polyester material that has been used in many FDA approved implants, drug delivery devices, suture, adhesion barrier. | [163] | |
Products under development | |||||
Patches | Pathon | other | N/A | N/A nitric oxide releasing patch | [164] |
Rivelin® patch | DDS | Bioinicia (Valencia, Spain) | Designed for unidirectional drug delivery to a mucosal surface. | [165] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omer, S.; Forgách, L.; Zelkó, R.; Sebe, I. Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes. Pharmaceutics 2021, 13, 286. https://doi.org/10.3390/pharmaceutics13020286
Omer S, Forgách L, Zelkó R, Sebe I. Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes. Pharmaceutics. 2021; 13(2):286. https://doi.org/10.3390/pharmaceutics13020286
Chicago/Turabian StyleOmer, Safaa, László Forgách, Romána Zelkó, and István Sebe. 2021. "Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes" Pharmaceutics 13, no. 2: 286. https://doi.org/10.3390/pharmaceutics13020286
APA StyleOmer, S., Forgách, L., Zelkó, R., & Sebe, I. (2021). Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes. Pharmaceutics, 13(2), 286. https://doi.org/10.3390/pharmaceutics13020286