Combination of Nanomicellar Technology and In Situ Gelling Polymer as Ocular Drug Delivery System (ODDS) for Cyclosporine-A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cell Cultures, Reconstituted Tissues and Animals
2.3. Preparation of Cyclosporine-A Loaded Nanomicellar Formulations NxCyA-ASN
2.4. Preparation of In-Situ Gelling Systems (Fx)
2.5. Preparation of Cyclosporine-A Loaded Assembling Surfactant Nanomicelles In-Situ Gelling Systems (Fx/N2CyA-ASNg)
2.6. Determination of Critical Micellar Concentration of VitE-TPGS:RH-40 (1:1) Binary Mixture
2.7. Characterization of NxCyA-ASN
2.7.1. Dynamic Light Scattering Analysis
2.7.2. Determination of the Amount of Solubilized CyA (CyA-In), CyA Entrapped (CyA-EE) and CyA Loading Efficiency (CyA-LE) of NxCyA-ASN Formulations
2.7.3. Determination of Thermal Stability and Regeneration Time (RT)
2.8. Characterization of Fx/N2CyA-ASNg
2.8.1. Solubilized CyA (CyA-In), CyA Entrapment (CyA-EE) and CyA Loading Efficiency (CyA-LE), Dh, PI, CP, RT for Fx/N2CyA-ASNg Formulations
2.8.2. Osmolality and pH of Fx/N2CyA-ASNg Formulation
2.8.3. Gelling Capacity and Rheological Analysis
2.8.4. Dynamic Viscoelastic Experiments
- -
- Stress sweep analysis, in which the stress (τ) was varied between 0.1 and 100 Pa, while the frequency was kept at 5Hz to determine the linear viscoelastic region (LVR) and consequently the maximum deformation reachable by the sample;
- -
- Frequency sweep analysis to determine the storage (or elastic) modulus (G’) and loss (or viscous) modulus (G’’), and the phase angle (δ) as a function of the frequency (1–10 Hz corresponding to 6.28 to 62.83 rad/s) at a constant stress (5 Pa) within the LVR.
2.8.5. TEM Analysis
2.8.6. Wettability of the Nanomicellar Formulations
2.8.7. Storage Stability
2.8.8. Cytotoxicity Assay
2.8.9. In Vitro Permeation Studies of CyA through Ocular Reconstituted Tissue
2.8.10. In Vivo Pharmacokinetic Studies: CyA Content in Tear Fluid of Rabbits
2.9. HPLC Analytical Method
3. Results
3.1. Characterization of NxCyA-ASNs
3.2. Characterization of Fx/N2CyA-ASNg
3.2.1. Size, CyA-In, CyA-EE, CyA-LE%, CP, RT, Osmolality and pH
3.2.2. Gelling Capacity (GC) and Rheological Characterization
3.2.3. Dynamic Linear Viscoelastic Range and Mechanical Spectra
3.2.4. TEM Analysis
3.2.5. Wettability of Fx/N2CyA-ASNg
3.2.6. Storage Stability
3.2.7. Cytotoxicity Assay
3.2.8. In Vitro Permeation Studies of CyA through Ocular Reconstituted Tissue
3.2.9. In Vivo Pharmacokinetic Studies: CyA Content in Tear Fluid of Rabbits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burstein, N.L.; Anderson, J.A. Corneal penetration and ocular bioavailability of drugs. J. Ocul. Pharmacol. 1985, 1, 309–326. [Google Scholar] [CrossRef] [PubMed]
- Suri, R.; Beg, S.; Kohli, K. Target strategies for drug delivery bypassing ocular barriers. J. Drug Deliv. Sci. Technol. 2020, 55. [Google Scholar] [CrossRef]
- Lallemand, F.; Schmitt, M.; Bourges, J.L.; Gurny, R.; Benita, S.; Garrigue, J.S. Cyclosporine A delivery to the eye: A comprehensive review of academic and industrial efforts. Eur. J. Pharm. Biopharm. 2017, 117, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.; Kondiah, P.P.D.; Choonara, Y.E.; du Toit, L.C.; Ally, N.; Pillay, V. Advances in Biodegradable Nano-Sized Polymer-Based Ocular Drug Delivery. Polymers 2019, 11, 1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souto, E.B.; Dias-Ferreira, J.; López-Machado, A.; Ettcheto, M.; Cano, A.; Camins Espuny, A.; Espina, M.; Garcia, M.L.; Sánchez-López, E. Advanced Formulation Approaches for Ocular Drug Delivery: State-Of-The-Art and Recent Patents. Pharmaceutics 2019, 11, 460. [Google Scholar] [CrossRef] [Green Version]
- Jumelle, C.; Gholizadeh, S.; Annabi, N.; Dana, R. Advances and limitations of drug delivery systems formulated as eye drops. J. Control. Release 2020, 321, 1–22. [Google Scholar] [CrossRef]
- Patel, D.; Wairkar, S. Recent advances in cyclosporine drug delivery: Challenges and opportunities. Drug Deliv. Transl. Res. 2019, 9, 1067–1081. [Google Scholar] [CrossRef]
- Jerkins, G.W.; Pattar, G.R.; Kannarr, S.R. A Review of Topical Cyclosporine A Formulations—A Disease—Modifying Agent for Keratoconjunctivitis Sicca. Clin. Ophthalmol. 2020, 14, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Lallemand, F.; Daull, P.; Benita, S.; Buggage, R.; Garrigue, J.S. Successfully improving ocular drug delivery using the cationic nanoemulsion; novasorb. J. Drug Deliv. 2012, 2012, 604204. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, T.I.; Kim, J.H.; Yoon, K.C.; Hyon, J.Y.; Shin, K.U.; Choi, C.Y. Evaluation of Clinical Efficacy and Safety of a Novel Cyclosporin A Nanoemulsion in the Treatment of Dry Eye Syndrome. J. Ocul. Pharmacol. Ther. 2017, 33, 530–538. [Google Scholar] [CrossRef]
- Karn, P.R.; Kim, H.D.; Kang, H.; Sun, B.K.; Jin, S.E.; Hwang, S.J. Supercritical fluid-mediated liposomes containing cyclosporin A for the treatment of dry eye syndrome in a rabbit model: Comparative study with the conventional cyclosporin A emulsion. Int. J. Nanomed. 2014, 9, 3791–3800. [Google Scholar] [CrossRef] [Green Version]
- Başaran, E.; Demirel, M.; Sirmagül, B.; Yazan, Y. Cyclosporine A incorporated cationic solid lipid nanoparticles for ocular delivery. J. Microencapsul. 2010, 27, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Başaran, E.; Yenilmez, E.; Berkman, M.S.; Büyükköroğlu, G.; Yazan, Y. Chitosan nanoparticles for ocular delivery of cyclosporine A. J. Microencapsul. 2014, 31, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Sandri, G.; Bonferoni, M.C.; Gökçe, E.H.; Ferrari, F.; Rossi, S.; Patrini, M.; Caramella, C. Chitosan-associated SLN: In vitro and ex vivo characterization of cyclosporine A loaded ophthalmic systems. J. Microencapsul. 2010, 27, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Yang, J.; Zhang, H.; Gan, L. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention; enhanced corneal permeation and improved tear production. Int. J. Pharm. 2019, 565, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Di Tommaso, C.; Valamanesh, F.; Miller, F.; Furrer, P.; Rodriguez-Aller, M.; Behar-Cohen, F.; Gurny, R.; Möller, M. A novel cyclosporin A aqueous formulation for dry eye treatment: In vitro and in vivo evaluation. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2292–2299. [Google Scholar] [CrossRef]
- Luschmann, C.; Tessmar, J.; Schoeberl, S.; Strauß, O.; Luschmann, K.; Goepferich, A. Self-assembling colloidal system for the ocular administration of cyclosporine A. Cornea 2014, 33, 77–81. [Google Scholar] [CrossRef]
- Kang, H.; Cha, K.H.; Cho, W.; Park, J.; Park, H.J.; Sun, B.K.; Hyun, S.M.; Hwang, S.J. Cyclosporine Amicellar delivery system for dry eyes. Int. J. Nanomed. 2016, 11, 2921–2933. [Google Scholar] [CrossRef] [Green Version]
- Grimaudo, M.A.; Pescina, S.; Padula, C.; Santi, P.; Concheiro, A.; Alvarez-Lorenzo, C.; Nicoli, S. Poloxamer 407/TPGS Mixed Micelles as Promising Carriers for Cyclosporine Ocular Delivery. Mol Pharm. 2018, 15, 571–584. [Google Scholar] [CrossRef]
- Pescina, S.; Lucca, L.G.; Govoni, P.; Padula, C.; Favero, E.D.; Cantù, L.; Santi, P.; Nicoli, S. Ex Vivo Conjunctival Retention and Transconjunctival Transport of Poorly Soluble Drugs Using Polymeric Micelles. Pharmaceutics 2019, 11, 476. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, J.; Kannarr, S.; Luchs, J.; Malhotra, R.; Justice, A.; Ogundele, A.; Darby, C.; Bacharach, J. Efficacy and Safety of OTX-101, a Novel Nanomicellar Formulation of Cyclosporine A, for the Treatment of Keratoconjunctivitis Sicca: Pooled Analysis of a Phase 2b/3 and Phase 3 Study. Eye Contact Lens 2020, 46 (Suppl. 1), S14–S19. [Google Scholar] [CrossRef]
- Gan, L.; Gan, Y.; Zhu, C.; Zhang, X.; Zhu, J. Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: In vitro and in vivo results. Int. J. Pharm. 2009, 365, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.H.; Mou, C.Y.; Lin, H.P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862–3875. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Rupenthal, I.D. Modern approaches to the ocular delivery of cyclosporine A. Drug Discov. Today 2016, 21, 977–988. [Google Scholar] [CrossRef] [PubMed]
- Majeed, A.; Khan, N.A. Ocular in Situ Gel: An Overview. JDDT 2019, 9, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Chetoni, P.; Burgalassi, S.; Monti, D.; Tampucci, S.; Tullio, V.; Cuffini, A.M.; Muntoni, E.; Spagnolo, R.; Zara, G.P.; Cavalli, R. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur. J. Pharm. Biopharm. 2016, 109, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Terreni, E.; Chetoni, P.; Tampucci, S.; Burgalassi, S.; Al-Kinani, A.A.; Alany, R.G.; Monti, D. Assembling Surfactants-Mucoadhesive Polymer Nanomicelles (ASMP-Nano) for Ocular Delivery of Cyclosporine-A. Pharmaceutics 2020, 12, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cholkar, K.; Hariharan, S.; Gunda, S.; Mitra, A.K. Optimization of dexamethasone mixed nanomicellar formulation. AAPS PharmSciTech 2014, 15, 1454–1467. [Google Scholar] [CrossRef] [Green Version]
- Cagel, M.; Tesan, F.C.; Bernabeu, E.; Salgueiro, M.J.; Zubillaga, M.B.; Moretton, M.A.; Chiappetta, D.A. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur. J. Pharm. Biopharm. 2017, 113, 211–228. [Google Scholar] [CrossRef]
- Piazzini, V.; D’Ambrosio, M.; Luceri, C.; Cinci, L.; Landucci, E.; Bilia, A.R.; Bergonzi, M.C. Formulation of Nanomicelles to Improve the Solubility and the Oral Absorption of Silymarin. Molecules 2019, 24, 1688. [Google Scholar] [CrossRef] [Green Version]
- Vadlapudi, A.D.; Cholkar, K.; Vadlapatla, R.K.; Mitra, A.K. Aqueous nanomicellar formulation for topical delivery of biotinylated lipid prodrug of acyclovir: Formulation development and ocular biocompatibility. J. Ocul. Pharmacol. Ther. 2014, 30, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Y.; Cai, X.; Du, H.; Zhai, G. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf. B. Biointerfaces 2015, 128, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.A.; Mitu, A.; Patoary, M.O.F.; Islam, D.M.S. Physicochemical studies on effect of additives on clouding behavior and thermodynamics of polyoxyethylene (20) sorbitan monooleate. Indian J. Chem. 2016, 55A, 793–802. [Google Scholar]
- Salunke, S.R.; Patil, S.B. Ion activated in situ gel of gellan gum containing salbutamol sulphate for nasal administration. Int. J. Biol. Macromol. 2016, 87, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Kotreka, U.K.; Davis, V.L.; Adeyeye, M.C. Development of topical ophthalmic In Situ gel-forming estradiol delivery system intended for the prevention of age-related cataracts. PLoS ONE 2017, 12, e0172306. [Google Scholar] [CrossRef] [Green Version]
- Terreni, E.; Burgalassi, S.; Chetoni, P.; Tampucci, S.; Zucchetti, E.; Fais, R.; Ghelardi, E.; Lupetti, A.; Monti, D. Development and Characterization of a Novel Peptide-Loaded Antimicrobial Ocular Insert. Biomolecules 2020, 10, 664. [Google Scholar] [CrossRef]
- Burgalassi, S.; Monti, D.; Tampucci, S.; Chetoni, P. In vitro evaluation of some parameters involved in mucoadhesion of aqueous polymeric dispersions. Pharm. Dev. Technol. 2015, 20, 927–934. [Google Scholar] [CrossRef]
- García González, M.C.; Cely García, M.S.; Muñoz García, J.; Alfaro-Rodriguez, M.C. A Comparison of the Effect of Temperature on the Rheological Properties of Diutan and Rhamsan Gum Aqueous Solutions. Fluids 2019, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, M.; Kumar, M.; Pathak, K. Zero order delivery of itraconazole via polymeric micelles incorporated in situ ocular gel for the management of fungal keratitis. Colloids Surf. B Biointerfaces 2015, 130, 23–30. [Google Scholar] [CrossRef]
- Chetoni, P.; Monti, D.; Tampucci, S.; Matteoli, B.; Ceccherini-Nelli, L.; Subissi, A.; Burgalassi, S. Liposomes as a potential ocular delivery system of distamycin A. Int. J. Pharm. 2015, 492, 120–126. [Google Scholar] [CrossRef]
- Tampucci, S.; Monti, D.; Burgalassi, S.; Terreni, E.; Zucchetti, E.; Baldacci, F.; Chetoni, P. Effect of 5-Oxo-2-Pyrrolidinecarboxylic Acid (PCA) as a New Topically Applied Agent for Dry Eye Syndrome Treatment. Pharmaceutics 2018, 10, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stella, B.; Arpicco, S.; Rocco, F.; Burgalassi, S.; Nicosia, N.; Tampucci, S.; Chetoni, P.; Cattel, L. Nonpolymeric nanoassemblies for ocular administration of acyclovir: Pharmacokinetic evaluation in rabbits. Eur. J. Pharm. Biopharm. 2012, 80, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Guzman-Aranguez, A.; Perez de Lara, M.J.; Singh, M.; Singh, J.; Kaur, I.P. Bimatoprost loaded nanovesicular long-acting sub-conjunctival in-situ gelling implant: In vitro and in vivo evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109730. [Google Scholar] [CrossRef] [PubMed]
- Patist, A.; Oh, S.G.; Leung, R.; Shah, D.O. Kinetics of micellization: Its significance to technological Processes. Colloids Surf. A Physicochem. Eng. Aspects 2001, 176, 3–16. [Google Scholar] [CrossRef]
- Puig-Rigall, J.; Blanco-Prieto, M.J.; Radulescu, A.; Dreiss, C.A.; González-Gaitano, G. Morphology; gelation and cytotoxicity evaluation of D-α-Tocopheryl polyethylene glycol succinate (TPGS)—Tetronic mixed micelles. J. Colloid Interface Sci. 2020, 582, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.; Sosnik, A.; Chiappetta, D.A.; Veiga, F.; Concheiro, A.; Alvarez-Lorenzo, C. Single and mixed poloxamine micelles as nanocarriers for solubilization and sustained release of ethoxzolamide for topical glaucoma therapy. J. R. Soc. Interface 2012, 9, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- Tampucci, S.; Guazzelli, L.; Burgalassi, S.; Carpi, S.; Chetoni, P.; Mezzetta, A.; Nieri, P.; Polini, B.; Pomelli, C.S.; Terreni, E.; et al. pH-Responsive Nanostructures Based on Surface Active Fatty Acid-Protic Ionic Liquids for Imiquimod Delivery in Skin Cancer Topical Therapy. Pharmaceutics 2020, 12, 1078. [Google Scholar] [CrossRef]
- Zhu, L.; Ao, J.; Li, P. A novel in situ gel base of deacetylase gellan gum for sustained ophthalmic drug delivery of ketotifen: In vitro and in vivo evaluation. Drug Des. Devel. Ther. 2015, 9, 3943–3949. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, Y.; Li, X.; Kebebe, D.; Zhang, B.; Ren, J.; Lu, J.; Li, J.; Du, S.; Liu, Z. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J. Pharm. Sci. 2019, 14, 1–15. [Google Scholar] [CrossRef]
- Carmen García, M.; Carmen Alfaro, M.; Calero, N.; Muñoz, J. Influence of gellan gum concentration on the dynamic viscoelasticity and transient flow of fluid gels. Biochem. Eng. J. 2011, 55, 73–81. [Google Scholar] [CrossRef]
- Rupenthal, I.D.; Green, C.R.; Alany, R.G. Comparison of ion-activated in situ gelling systems for ocular drug delivery. Part 1: Physicochemical characterisation and in vitro release. Int. J. Pharm. 2011, 411, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Ruel-Gariépy, E.; Leroux, J.C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur. J. Pharm. Biopharm. 2004, 58, 409–426. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 37–51. [Google Scholar] [CrossRef]
- Mahboobian, M.M.; Mohammadi, M.; Mansouri, Z. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. J. Drug Deliv. Sci. Technol. 2020, 55, 101400. [Google Scholar] [CrossRef]
- Upadhayay, P.; Kumar, M.; Pathak, K. Norfloxacin loaded pH triggered nanoparticulate in-situ gel for extraocular bacterial infections: Optimization, ocular irritancy and corneal toxicity. Iran J. Pharm. Res. 2016, 15, 3–22. [Google Scholar]
- Nagai, N.; Minami, M.; Deguchi, S.; Otake, H.; Sasaki, H.; Yamamoto, N. An in situ Gelling System Based on Methylcellulose and Tranilast Solid Nanoparticles Enhances Ocular Residence Time and Drug Absorption into the Cornea and Conjunctiva. Front. Bioeng. Biotechnol. 2020, 8, 764. [Google Scholar] [CrossRef] [PubMed]
Formulations | VitE-TPGS:RH-40 | VitE-TPGS | RH-40 |
---|---|---|---|
Molar Ratio | (% w/w) | (% w/w) | |
N1CyA-ASN | 2.25:1 | 1.35 | 1.0 |
N2CyA-ASN | 1:1 | 0.6 | 1.0 |
N3CyA-ASN | 0.5:1 | 0.3 | 1.0 |
Degree of Gelation | Grade |
---|---|
No gelation | - |
Weak gelation, gel dissolves rapidly | + |
Immediate gelation with less stiff gel formation that remain for a few hours | ++ |
Immediate gelation with stiff gel formation that remain for an extended period of time | +++ |
Very stiff gel | ++++ |
Formulations | Dh nm ± S.D. | PI ± S.D. | CyA-In% w/w ± S.D. | CyA-EE% w/w ± S.D. | CyA-LE% w/w ± S.D. | CP °C | RT min |
---|---|---|---|---|---|---|---|
N1CyA-ASN | 15.7 ± 0.56 | 0.26 ± 0.06 | 0.131 ± 0.006 | 92.83 ± 0.83 | 5.12 ± 0.25 | >80 | - |
N2CyA-ASN | 15.8 ± 0.26 | 0.16 ± 0.02 | 0.144 ± 0.003 | 99.07 ± 1.61 | 8.22 ± 0.14 | 45 | 9 |
N3CyA-ASN | 16.9 ± 0.28 | 0.38 ± 0.03 | 0.063 ± 0.06 | 55.86 ± 2.21 | 2.55 ± 0.10 | 40 | 18 |
Formulation | Size, nm ± S.D. | PI ± S.D. | CyA-In% w/w ± S.D. | CyA-EE% w/w ± S.D. | CyA-LE% w/w ± S.D. | CP °C | RT min |
---|---|---|---|---|---|---|---|
F1/N2CyA-ASNg | 19.72 ± 1.97 | 0.14 ± 0.04 | 0.146 ± 0.06 | 97.28 ± 1.12 | 8.08 ± 0.10 | 45 | 10 |
F2/N2CyA-ASNg | 17.03 ± 0.87 | 0.23 ± 0.06 | 0.143 ± 0.08 | 95.28 ± 5.71 | 7.98 ± 0.47 | 45 | 10 |
F3/N2CyA-ASNg | 19.40 ± 1.52 | 0.28 ± 0.06 | 0.123 ± 0.05 | 89.14 ± 3.37 | 7.41 ± 0.28 | 45 | 10 |
Formulations | Degree of Gelation | Viscosity mPa s |
---|---|---|
F1/N2CyA-ASNg | + | 39.63 ± 0.23 |
F1/N2CyA-ASNg/ATF | + | 60.75 ± 2.08 * |
F2/N2CyA-ASNg | ++ | 70.34 ± 5.19 |
F2/N2CyA-ASNg/ATF | ++ | 119.6 ± 3.39 * |
F3/N2CyA-ASNg | +++ | 136.2 ± 20.86 |
F3/N2CyA-ASNg/ATF | +++ | 210.1 ± 14.71 * |
Formulation. Fx | Storage Modulus. G’ (Pa) | Loss Modulus G’’ (Pa) | Tangent of the Phase Angle. tanδ |
---|---|---|---|
F1 | 0.249 ± 0.030 | 0.078 ± 0.018 | 0.320 ± 0.112 |
F2 | 0.138 ± 0.010 | 0.093 ± 0.014 | 0.677 ± 0.094 |
F3 | 0.133 ± 0.002 | 0.167 ± 0.015 | 1.263 ± 0.127 |
F1/CyA-ASNg | 0.158 ± 0.034 | 0.048 ± 0.006 | 0.319 ± 0.120 |
F2/CyA-ASNg | 0.137 ± 0.006 | 0.105 ± 0.003 | 0.768 ± 0.017 |
F3/CyA-ASNg | 0.136 ± 0.001 | 0.175 ± 0.009 | 1.290 ± 0.066 |
F1/CyA-ASNg/ATF | 0.152 ± 0.025 | 0.037 ± 0.016 | 0.250 ± 0.056 |
F2/CyA-ASNg/ATF | 0.121 ± 0.020 | 0.065 ± 0.021 | 0.438 ± 0.061 |
F3/CyA-ASNg/ATF | 0.132 ± 0.030 | 0.087 ± 0.009 | 0.674 ± 0.096 |
Formulations | Contact Angle before Gelation (°) | Formulations | Contact Angle after Gelation (°) |
---|---|---|---|
N2/CyA-ASN | 33.37 ± 0.63 | - | - |
F1/N2CyA-ASNg | 34.27 ± 1.74 | F1/N2CyA-ASNg/ATF | 35.90 ± 3.78 |
F2/N2CyA-ASNg | 34.03 ± 2.03 | F2/N2CyA-ASNg/ATF | 35.73 ± 3.53 |
F3/N2CyA-ASNg | 36.66 ± 1.73 | F3/N2CyA-ASNg/ATF | 34.24 ± 2.12 |
(A) | |||
---|---|---|---|
Formulations | Dh nm | PI | CyA-EE% w/w |
F1/N2CyA-ASNg | 16.42 ± 0.35 | 0.24 ± 0.09 | 91.69 ± 5.71 |
F2/N2CyA-ASNg | 16.90 ± 0.35 | 0.25 ± 0.08 | 93.00 ± 2.78 |
F3/N2CyA-ASNg | 18.05 ± 0.45 | 0.32 ± 0.07 | 85.52 ± 3.71 |
(B) | |||
Formulations | Dh nm | PI | CyA-EE% w/w |
F1/N2CyA-ASNg | 16.20 ± 0.26 | 0.16 ± 0.08 | 94.28 ± 5.27 |
F2/N2CyA-ASNg | 17.07 ± 0.29 | 0.31 ± 0.04 | 89.20 ± 3.27 |
F3/N2CyA-ASNg | 17.80 ± 0.35 | 0.17 ± 0.09 | 86.76 ± 8.09 |
Formulations | C1min (μg mL−1) | AUC1min (μg/mL min−1) | AUC3min (μg/mL min−1) | Ke (min−1) | t½ (min) |
---|---|---|---|---|---|
Ikervis® * | 769.16 ± 43.50 | 1813 ± 354.1 | 868.3 ± 128.4 | 0.205 ± 0.033 | 3.83 ± 0.74 |
N2CyA-ASN | 1497.72 ± 174.8 | 2127 ± 87.82 | 500.7 ± 125.3 | 0.091 ± 0.010 | 7.97 ± 0.79 |
F1/N2CyA-ASN | 998.37 ± 126.17 | 3953 ± 756.8 | 2302 ± 548.4 | 0.097 ± 0.009 | 7.48 ± 0.75 |
F2/N2CyA-ASN | 499.31 ± 27.63 | -- | 2459 ± 290.1 | 0.065 ± 0.007 | 11.48 ± 1.39 |
F3/N2CyA-ASN | 653.93 ± 48.63 | -- | 2964 ± 415.4 | 0.044 ± 0.004 | 16.61 ± 1.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terreni, E.; Zucchetti, E.; Tampucci, S.; Burgalassi, S.; Monti, D.; Chetoni, P. Combination of Nanomicellar Technology and In Situ Gelling Polymer as Ocular Drug Delivery System (ODDS) for Cyclosporine-A. Pharmaceutics 2021, 13, 192. https://doi.org/10.3390/pharmaceutics13020192
Terreni E, Zucchetti E, Tampucci S, Burgalassi S, Monti D, Chetoni P. Combination of Nanomicellar Technology and In Situ Gelling Polymer as Ocular Drug Delivery System (ODDS) for Cyclosporine-A. Pharmaceutics. 2021; 13(2):192. https://doi.org/10.3390/pharmaceutics13020192
Chicago/Turabian StyleTerreni, Eleonora, Erica Zucchetti, Silvia Tampucci, Susi Burgalassi, Daniela Monti, and Patrizia Chetoni. 2021. "Combination of Nanomicellar Technology and In Situ Gelling Polymer as Ocular Drug Delivery System (ODDS) for Cyclosporine-A" Pharmaceutics 13, no. 2: 192. https://doi.org/10.3390/pharmaceutics13020192
APA StyleTerreni, E., Zucchetti, E., Tampucci, S., Burgalassi, S., Monti, D., & Chetoni, P. (2021). Combination of Nanomicellar Technology and In Situ Gelling Polymer as Ocular Drug Delivery System (ODDS) for Cyclosporine-A. Pharmaceutics, 13(2), 192. https://doi.org/10.3390/pharmaceutics13020192