Comprehensive Study of Atorvastatin Nanostructured Lipid Carriers through Multivariate Conceptualization and Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preliminary Study
2.2.1. Partitioning Behavior of AT in Solid Lipids
2.2.2. Equilibrium Solubility of AT in Different Oils
2.3. Preparation of AT-NLCs
2.4. Experimental Designs
2.4.1. Combined D-optimal Design
2.4.2. Central Composite Design
2.5. Particle Size (PS) and Zeta Potential (ZP)
2.6. Entrapment Efficiency (EE%)
2.7. Differential Scanning Calorimetry (DSC)
2.8. Fourier Transform Infrared Spectroscopy (FTIR)
2.9. Transmission Electron Microscopy (TEM)
2.10. In Vitro Release Studies
2.11. In-Vivo Study
2.11.1. Experimental Animals
2.11.2. Pharmacodynamics Study
- Group I: The negative control group that had no hyperlipidemia.
- Group II: The positive control group that was orally treated with 0.5% carboxymethyl cellulose sodium solution.
- Group III: The AT suspension-treated group that received oral treatment (25 mg/kg) with pure AT suspension.
- Group IV: The Lipitor® 20-treated group that received oral treatment with Lipitor® 20 (equivalent to 25 mg/kg of AT).
- Group V: The optimized formulation-treated group that received oral treatment with the optimized AT-NLCs (equivalent to 25 mg/kg of AT).
2.11.3. Biochemical Assay
2.11.4. Histopathological Analysis
3. Results and Discussion
3.1. Preliminary Study
3.2. Combined D-optimal Screening Design
3.2.1. Effect of the Independent Variables on the Zeta Potential (ZP)
3.2.2. Effect of the Independent Variables on Particle Size (PS)
3.2.3. Effect of the Independent Variables on PDI
3.2.4. Summary of the Screening Results
3.3. Central Composite Design (CCD)
3.3.1. Effect of the Independent Variables on Particle Size (PS)
3.3.2. Effect of the Independent Variables on PDI
3.3.3. Effect of the Independent Variables on the Zeta Potential (ZP)
3.3.4. Effect of the Independent Variables on the Entrapment Efficiency (EE%)
3.3.5. Selection of the Optimized AT-NLC Formulation
3.4. Transmission Electron Microscopy (TEM)
3.5. Differential Scanning Calorimetry (DSC)
3.6. Fourier-Transform Infrared Spectroscopy (FTIR)
3.7. In Vitro Release Studies
3.8. In Vivo Pharmacodynamic Study
3.8.1. Biochemical Evaluation of Rats
3.8.2. Histopathological Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, T.; Zhao, W.; Xie, B.; Liu, H. Effects of Auricularia auricula and its polysaccharide on diet-induced hyperlipidemia rats by modulating gut microbiota. J. Funct. Foods 2020, 72, 104038. [Google Scholar] [CrossRef]
- Lan, T.; Li, Q.; Chang, M.; Yin, C.; Zhu, D.; Wu, Z.; Li, X.; Zhang, W.; Yue, B.; Shi, J.; et al. Lei-gong-gen formula granule attenuates hyperlipidemia in rats via cGMP-PKG signaling pathway. J. Ethnopharmacol. 2020, 260, 112989. [Google Scholar] [CrossRef] [PubMed]
- Gardouh, A.R.; Nasef, A.M.; Mostafa, Y.; Gad, S. Design and evaluation of combined atorvastatin and ezetimibe optimized self- nano emulsifying drug delivery system. J. Drug Deliv. Sci. Technol. 2020, 60, 102093. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Ma, Y.; Wang, D.; Zheng, Y.; Wang, X. Effect of black and white sesame on lowering blood lipids of rats with hyperlipidemia induced by high-fat diet. Grain Oil Sci. Technol. 2020, 3, 57–63. [Google Scholar] [CrossRef]
- Rizvi, S.Z.H.; Shah, F.A.; Khan, N.; Muhammad, I.; Ali, K.H.; Ansari, M.M.; Din, F.U.; Qureshi, O.S.; Kim, K.-W.; Choe, Y.-H.; et al. Simvastatin-loaded solid lipid nanoparticles for enhanced anti-hyperlipidemic activity in hyperlipidemia animal model. Int. J. Pharm. 2019, 560, 136–143. [Google Scholar] [CrossRef]
- Khan, F.N.; Dehghan, M.H.G. Enhanced Bioavailability of Atorvastatin Calcium from Stabilized Gastric Resident Formulation. AAPS PharmSciTech 2011, 12, 1077–1086. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C.; Tsai, T.-H.; Huang, Z.-R.; Fang, J.-Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics. Eur. J. Pharm. Biopharm. 2010, 74, 474–482. [Google Scholar] [CrossRef]
- Kadu, P.J.; Kushare, S.S.; Thacker, D.D.; Gattani, S.G. Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS). Pharm. Dev. Technol. 2010, 16, 65–74. [Google Scholar] [CrossRef]
- Kassem, A.M.; Ibrahim, H.M.; Samy, A.M. Development and optimisation of atorvastatin calcium loaded self-nanoemulsifying drug delivery system (SNEDDS) for enhancing oral bioavailability: In vitro and in vivo evaluation. J. Microencapsul. 2017, 34, 319–333. [Google Scholar] [CrossRef]
- Kumar, P.P. Atorvastatin Loaded Solidlipid Nanoparticles: Formulation, Optimization, and in - vitro Characterization. IOSR J. Pharm. IOSRPHR 2012, 2, 23–32. [Google Scholar] [CrossRef]
- Sharma, M.; Mehta, I. Surface stabilized atorvastatin nanocrystals with improved bioavailability, safety and antihyperlipidemic potential. Sci. Rep. 2019, 9, 16105–16111. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Anwar, W.; Dawaba, H.M.; Afouna, M.I.; Samy, A.M.; Rashed, M.H.; Abdelaziz, A.E. Enhancing the Oral Bioavailability of Candesartan Cilexetil Loaded Nanostructured Lipid Carriers: In Vitro Characterization and Absorption in Rats after Oral Administration. Pharmaceutics 2020, 12, 1047. [Google Scholar] [CrossRef] [PubMed]
- Thapa, C.; Ahad, A.; Aqil, M.; Imam, S.S.; Sultana, Y. Formulation and optimization of nanostructured lipid carriers to enhance oral bioavailability of telmisartan using Box–Behnken design. J. Drug Deliv. Sci. Technol. 2018, 44, 431–439. [Google Scholar] [CrossRef]
- Murthy, A.; Ravi, P.R.; Kathuria, H.; Malekar, S. Oral Bioavailability Enhancement of Raloxifene with Nanostructured Lipid Carriers. Nanomaterials 2020, 10, 1085. [Google Scholar] [CrossRef]
- Sharma, K.; Hallan, S.S.; Lal, B.; Bhardwaj, A.; Mishra, N. Development and characterization of floating spheroids of atorvastatin calcium loaded NLC for enhancement of oral bioavailability. Artif. Cells Nanomed. Biotechnol. 2015, 44, 1448–1456. [Google Scholar] [CrossRef]
- Elmowafy, M.; Ibrahim, H.M.; Ahmed, M.A.; Shalaby, K.; Salama, A.; Hefesha, H. Atorvastatin-loaded nanostructured lipid carriers (NLCs): Strategy to overcome oral delivery drawbacks. Drug Deliv. 2017, 24, 932–941. [Google Scholar] [CrossRef] [Green Version]
- Beg, S.; Rahman, M.; Kohli, K. Quality-by-design approach as a systematic tool for the development of nanopharmaceutical products. Drug Discov. Today 2019, 24, 717–725. [Google Scholar] [CrossRef]
- Dhoot, A.S.; Fernandes, G.J.; Naha, A.; Rathnanand, M.; Kumar, L. Design of Experiments in Pharmaceutical Development. Pharm. Chem. J. 2019, 53, 730–735. [Google Scholar] [CrossRef]
- Pereira, R.R.; Testi, M.; Rossi, F.; Junior, J.O.C.S.; Costa, R.M.R.; Bettini, R.; Santi, P.; Santi, P.; Sonvico, F. Ucuùba (Virola surinamensis) Fat-Based Nanostructured Lipid Carriers for Nail Drug Delivery of Ketoconazole: Development and Optimization Using Box-Behnken Design. Pharmaceutics 2019, 11, 284. [Google Scholar] [CrossRef] [Green Version]
- Baruah, U.K.; Kuppusamy, G.; Ravisankar, V.; Karri, V.V.S.R.; Simhadri, P.K.; Singh, V. Optimisation of chloroquine phosphate loaded nanostructured lipid carriers using Box–Behnken design and its antimalarial efficacy. J. Drug Target. 2017, 26, 576–591. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.W.K.; Zhang, C.; Peng, F.; Liu, W.; Wan, J.; Wan, C.; Xu, H.; Yang, X. Nanostructured lipid carriers as a novel oral delivery system for triptolide: Induced changes in pharmacokinetics profile associated with reduced toxicity in male rats. Int. J. Nanomed. 2014, 9, 1049–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimojo, A.A.M.; Fernandes, A.R.V.; Ferreira, N.R.; Sánchez-López, E.; Santana, M.H.; Souto, E.B. Evaluation of the Influence of Process Parameters on the Properties of Resveratrol-Loaded NLC Using 22 Full Factorial Design. Antioxidants 2019, 8, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelidari, H.R.; Moazeni, M.; Babaei, R.; Saeedi, M.; Akbari, J.; Parkoohi, P.I.; Nabili, M.; Gohar, A.A.; Morteza-Semnani, K.; Nokhodchi, A. Improved yeast delivery of fluconazole with a nanostructured lipid carrier system. Biomed. Pharmacother. 2017, 89, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Abdolahpour, S.; Mahdieh, N.; Jamali, Z.; Akbarzadeh, A.; Toliyat, T.; Paknejad, M. Development of Doxorubicin-Loaded Nanostructured Lipid Carriers: Preparation, Characterization, and In Vitro Evaluation on MCF-7 Cell Line. BioNanoScience 2017, 7, 32–39. [Google Scholar] [CrossRef]
- Al-Maghrabi, P.M.; Khafagy, E.-S.; Ghorab, M.M.; Gad, S. Influence of formulation variables on miconazole nitrate–loaded lipid based nanocarrier for topical delivery. Colloids Surf. B Biointerfaces 2020, 193, 111046. [Google Scholar] [CrossRef]
- Shewaiter, M.A.; Hammady, T.M.; El-Gindy, A.; Hammadi, S.H.; Gad, S. Formulation and characterization of leflunomide/diclofenac sodium microemulsion base-gel for the transdermal treatment of inflammatory joint diseases. J. Drug Deliv. Sci. Technol. 2020, 102110, 102110. [Google Scholar] [CrossRef]
- Rajput, A.P.; Bariya, S.H. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: Formulation, optimization and in vivo characterization. J. Drug Deliv. Sci. Technol. 2019, 51, 214–223. [Google Scholar] [CrossRef]
- Soni, K.; Rizwanullah, M.; Kohli, K. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: In vitro, ex vivo and in vivo assessments. Artif. Cells Nanomed. Biotechnol. 2018, 46, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Siahdasht, F.N.; Farhadian, N.; Karimi, M.; Hafizi, L. Enhanced delivery of melatonin loaded nanostructured lipid carriers during in vitro fertilization: NLC formulation, optimization and IVF efficacy. RSC Adv. 2020, 10, 9462–9475. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, M.; Yadav, K.; Singh, D.; Singh, M.R. Topical delivery of fluocinolone acetonide integrated NLCs and salicylic acid enriched gel: A potential and synergistic approach in the management of psoriasis. J. Drug Deliv. Sci. Technol. 2021, 61, 102282. [Google Scholar] [CrossRef]
- Choudhary, A.; Rana, A.C.; Aggarwal, G.; Kumar, V.; Zakir, F. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharm. Sin. B 2012, 2, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef]
- Youssef, A.; Dudhipala, N.; Majumdar, S. Ciprofloxacin Loaded Nanostructured Lipid Carriers Incorporated into In-Situ Gels to Improve Management of Bacterial Endophthalmitis. Pharmaceutics 2020, 12, 572. [Google Scholar] [CrossRef] [PubMed]
- Panda, R.; Kuotsu, K. Fabrication, characterization, and in vitro evaluation of pegylated glyceride labrasol® nanostructured lipid carrier composites of methotrexate: The pathway to effective cancer therapy. Asian J. Pharm. Clin. Res. 2019, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Nnamani, P.O.; Hansen, S.; Windbergs, M.; Lehr, C.M. Development of artemether-loaded nanostructured lipid carrier (NLC) formulation for topical application. Int. J. Pharm. 2014, 477, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Zirak, M.B.; Pezeshki, A. Effect of Surfactant Concentration on the Particle Size, Stability and Potential Zeta of Beta Carotene Nano Lipid Carrier. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 924–932. [Google Scholar]
- Li, H.; Chen, M.; Su, Z.; Sun, M.; Ping, Q.-N. Size-exclusive effect of nanostructured lipid carriers on oral drug delivery. Int. J. Pharm. 2016, 511, 524–537. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, L.; Su, X.; Zhang, P.; Ling, G. Repaglinide-loaded nanostructured lipid carriers with different particle sizes for improving oral absorption: Preparation, characterization, pharmacokinetics, and in situ intestinal perfusion. Drug Deliv. 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Eleraky, N.E.; Omar, M.M.; Mahmoud, H.A.; Aboutaleb, A.P.H.A. Nanostructured Lipid Carriers to Mediate Brain Delivery of Temazepam: Design and In Vivo Study. Pharmaceutics 2020, 12, 451. [Google Scholar] [CrossRef]
- Fatouh, A.M.; Elshafeey, A.H.; Abdelbary, A. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: Formulation, optimization and in vivo pharmacokinetics. Drug Des. Dev. Ther. 2017, 11, 1815–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, S.; Garg, T.; Murthy, R.; Rath, G.; Amit, G.K. Development, optimization and evaluation of long chain nanolipid carrier for hepatic delivery of silymarin through lymphatic transport pathway. Int. J. Pharm. 2015, 485, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Makhmalzadeh, B.S.; Salimi, A.; Kazemi, M. Preparation and optimization of polymeric micelles as an oral drug delivery system for deferoxamine mesylate: In vitro and ex vivo studies. Res. Pharm. Sci. 2019, 14, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Emami, J.; Rezazadeh, M.; Sadeghi, H.; Khadivar, K. Development and optimization of transferrin-conjugated nanostructured lipid carriers for brain delivery of paclitaxel using Box–Behnken design. Pharm. Dev. Technol. 2017, 22, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Soleimanian, Y.; Goli, S.A.H.; Varshosaz, J.; Sahafi, S.M. Formulation and characterization of novel nanostructured lipid carriers made from beeswax, propolis wax and pomegranate seed oil. Food Chem. 2018, 244, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Song, A.; Zhang, X.; Li, Y.; Mao, X.; Han, F. Effect of liquid-to-solid lipid ratio on characterizations of flurbiprofen-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for transdermal administration. Drug Dev. Ind. Pharm. 2016, 42, 1308–1314. [Google Scholar] [CrossRef] [PubMed]
- De Souza, I.D.L.; Saez, V.; De Campos, V.E.B.; Mansur, C.R.E. Size and Vitamin E Release of Nanostructured Lipid Carriers with Different Liquid Lipids, Surfactants and Preparation Methods. Macromol. Symp. 2019, 383, 1800011. [Google Scholar] [CrossRef] [Green Version]
- Kiss, E.L.; Berkó, S.; Gácsi, A.; Kovács, A.; Katona, G.; Soós, J.; Csányi, E.; Gróf, I.; Harazin, A.; Deli, M.A.; et al. Design and Optimization of Nanostructured Lipid Carrier Containing Dexamethasone for Ophthalmic Use. Pharmaceutics 2019, 11, 679. [Google Scholar] [CrossRef] [Green Version]
- Pogorzelski, S.; Sznitowska, M.; Watrobska-Swietlikowska, D. Surface tensometry studies on formulations of surfactants with preservatives as a tool for antimicrobial drug protection characterization. J. Biophys. Chem. 2012, 3, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Witayaudom, P.; Klinkesorn, U. Effect of surfactant concentration and solidification temperature on the characteristics and stability of nanostructured lipid carrier (NLC) prepared from rambutan (Nephelium lappaceum L.) kernel fat. J. Colloid Interface Sci. 2017, 505, 1082–1092. [Google Scholar] [CrossRef]
- Shete, G.; Puri, V.; Kumar, L.; Bansal, A.K. Solid State Characterization of Commercial Crystalline and Amorphous Atorvastatin Calcium Samples. AAPS PharmSciTech 2010, 11, 598–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasr, A.M.; Qushawy, M.; Elkhoudary, M.M.; Gawish, A.Y.; Elhady, S.S.; Swidan, S.A. Quality by Design for the Development and Analysis of Enhanced In-Situ Forming Vesicles for the Improvement of the Bioavailability of Fexofenadine HCl In Vitro and In Vivo. Pharmaceutics 2020, 12, 409. [Google Scholar] [CrossRef] [PubMed]
- Shahraeini, S.S.; Akbari, J.; Saeedi, M.; Morteza-Semnani, K.; Abootorabi, S.; Dehghanpoor, M.; Rostamkalaei, S.S.; Nokhodchi, A. Atorvastatin Solid Lipid Nanoparticles as a Promising Approach for Dermal Delivery and an Anti-inflammatory Agent. AAPS PharmSciTech 2020, 21, 1–10. [Google Scholar] [CrossRef]
- Yang, G.; Wu, F.; Chen, M.; Jin, J.; Wang, R.; Yuan, Y. Formulation design, characterization, and in vitro and in vivo evaluation of nanostructured lipid carriers containing a bile salt for oral delivery of gypenosides. Int. J. Nanomed. 2019, 14, 2267–2280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batts, K.P.; Ludwig, J. An Update on Terminology and Reporting. Am. J. Surg. Pathol. 1995, 19, 1409–1417. [Google Scholar] [CrossRef]
Factor | Name | Unit | Type | Min | Max |
---|---|---|---|---|---|
A | Labrasol | % | Mixture 1 | 0 | 100 |
B | Oleic acid | % | Mixture 1 | 0 | 100 |
C | Gelucire 43/01 | % | Mixture 2 | 0 | 100 |
D | Stearic acid | % | Mixture 2 | 0 | 100 |
E | Surfactant concentration | % | Numeric | 0.5 | 1.5 |
F | Homogenization speed | rpm | Numeric | 12,000 | 16,000 |
G | Sonication time | min | Numeric | 5 | 10 |
H | Total lipid | % | Numeric | 4 | 6 |
J | Solid/Liquid lipid ratio | Numeric | 25 | 75 | |
K | Lecithin | Categoric | Yes | No | |
L | Surfactant type | Categoric | Poloxamer 188 | Tween 80 |
Coefficients | AC | AD | BC | BD | ACE | ACF | ACG | ACH | ACJ | ACK | ACL | ADE | BDK |
ZP | −10.15 | −6.31 | −4.62 | −5.24 | 2.63 | −4.66 | 6.17 | ||||||
p | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0080 | <0.0001 | <0.0001 | ||||||
PS | 14.44 | 36.15 | 5.23 | 8.52 | 6.40 | −8.25 | 3.76 | 6.50 | −5.92 | 8.09 | −6.71 | 6.75 | |
p | <0.0001 | <0.0001 | 0.0018 | <0.0001 | 0.0009 | <0.0001 | 0.050 | 0.0009 | 0.0021 | <0.0001 | 0.0007 | 0.0001 | |
PDI | −10.16 | −0.24 | −0.32 | −0.22 | 0.11 | −0.06 | 0.19 | −0.06 | 0.08 | 0.06 | −0.05 | ||
p | −0.4844 | <0.0001 | <0.0001 | <0.0001 | 0.0004 | 0.0303 | <0.0001 | 0.0229 | 0.0055 | 0.0113 | 0.0441 | ||
Coefficients | ADF | ADG | ADH | ADJ | ADK | BCE | BCF | BCG | BCH | BCJ | BCL | BDH | |
ZP | 3.74 | 5.08 | 2.18 | 4.50 | −2.27 | 3.52 | −3.88 | 2.62 | −4.05 | −2.98 | 2.60 | ||
p | <0.0001 | <0.0001 | 0.0159 | <0.0001 | 0.0081 | 0.0004 | <0.0001 | 0.0041 | <0.0001 | 0.0009 | 0.0063 | ||
PS | 4.09 | −6.20 | −18.72 | −12.35 | |||||||||
p | 0.0125 | 0.0004 | <0.0001 | <0.0001 | |||||||||
PDI | 0.09 | −0.08 | |||||||||||
p | 0.0008 | 0.0023 |
Std | Run | A (%) | B (%) | C (%) | PS (nm) | PDI | ZP (mV) | EE (%) |
---|---|---|---|---|---|---|---|---|
8 | 1 | 16,000.00 | 75.00 | 2.50 | 79.79 ± 1.17 | 0.67 ± 0.01 | −23.57 ± 0.72 | 71.00 ± 0.29 |
7 | 2 | 12,000.00 | 75.00 | 2.50 | 79.52 ± 4.64 | 0.57 ± 0.15 | −32.87 ± 1.40 | 78.80 ± 0.25 |
17 | 3 | 14,000.00 | 60.00 | 1.75 | 56.92 ± 1.05 | 0.51 ± 0.01 | −26.40 ± 0.72 | 86.80 ± 0.40 |
12 | 4 | 14,000.00 | 85.23 | 1.75 | 114.77 ± 6.41 | 0.45 ± 0.02 | −31.53 ± 0.47 | 72.40 ± 0.40 |
16 | 5 | 14,000.00 | 60.00 | 1.75 | 54.00 ± 1.60 | 0.50 ± 0.13 | −25.63 ± 1.81 | 85.30 ± 0.30 |
6 | 6 | 16,000.00 | 45.00 | 2.50 | 72.05 ± 2.52 | 0.70 ± 0.03 | −30.97 ± 0.64 | 80.23 ± 0.25 |
20 | 7 | 14,000.00 | 60.00 | 1.75 | 67.95 ± 9.58 | 0.60 ± 0.14 | −22.97 ± 1.23 | 83.30 ± 0.25 |
11 | 8 | 14,000.00 | 34.77 | 1.75 | 171.53 ± 4.57 | 0.45 ± 0.04 | −23.20 ± 0.30 | 90.50 ± 0.45 |
4 | 9 | 16,000.00 | 75.00 | 1.00 | 132.17± 0.24 | 0.46 ± 0.04 | −28.17 ± 0.64 | 80.00 ± 0.32 |
13 | 10 | 14,000.00 | 60.00 | 0.49 | 57.10 ± 5.40 | 0.59 ± 0.13 | −27.17 ± 1.42 | 88.80 ± 0.10 |
18 | 11 | 14,000.00 | 60.00 | 1.75 | 55.43 ± 3.68 | 0.71 ± 0.06 | −27.00 ± 1.61 | 83.00 ± 0.17 |
1 | 12 | 12,000.00 | 45.00 | 1.00 | 134.53 ± 14.97 | 0.73 ± 0.15 | −26.77 ± 0.84 | 92.00 ± 0.10 |
2 | 13 | 16,000.00 | 45.00 | 1.00 | 87.37 ± 0.78 | 0.32 ± 0.01 | −27.80 ± 1.63 | 89.70 ± 0.25 |
14 | 14 | 14,000.00 | 60.00 | 3.01 | 56.35 ± 2.23 | 0.55 ± 0.02 | −26.43 ± 0.70 | 95.00 ± 0.30 |
9 | 15 | 10,636.41 | 60.00 | 1.75 | 53.28 ± 1.90 | 0.75 ± 0.02 | −31.17 ± 0.84 | 79.27 ± 0.37 |
15 | 16 | 14,000.00 | 60.00 | 1.75 | 50.45 ± 1.26 | 0.52 ± 0.01 | −24.67 ± 0.50 | 82.68 ± 0.12 |
19 | 17 | 14,000.00 | 60.00 | 1.75 | 56.22 ± 0.99 | 0.50 ± 0.01 | −24.20 ± 0.62 | 81.90 ± 0.21 |
10 | 18 | 17,363.59 | 60.00 | 1.75 | 161.10 ± 11.91 | 0.80 ± 0.08 | −29.53 ± 1.54 | 81.70 ± 0.15 |
3 | 19 | 12,000.00 | 75.00 | 1.00 | 208.20 ± 1.92 | 0.46 ± 0.02 | −39.63 ± 0.81 | 74.90 ± 0.15 |
5 | 20 | 12,000.00 | 45.00 | 2.50 | 71.72 ± 0.06 | 0.26 ± 0.01 | −19.60 ± 0.58 | 86.20 ± 0.25 |
Parameters | Intercept | A | B | C | AB | AC | BC | AA2 | BA2 | CA2 | ABC | AA2B | AA2C | ABA2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PS | 57.22 | 32.05 | −16.87 | 15.47 | −12.86 | 18.38 | 31.10 | 33.62 | −32.17 | −47.37 | ||||
p | <0.0001 | 0.0002 | 0.0001 | 0.0004 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||||
PDI | 0.54 | 0.11 | 0.06 | −0.05 | −0.09 | |||||||||
p | 0.002 | 0.0161 | 0.0300 | 0.0075 | ||||||||||
ZP | −26.25 | −2.42 | 1.22 | 4.14 | −1.56 | −1.77 | ||||||||
p | 0.0006 | 0.04 | <0.0001 | 0.046 | 0.0049 | |||||||||
EE | 82.71 | −5.40 | 2.35 | −4.39 | ||||||||||
p | <0.0001 | 0.0150 | 0.0269 |
Independent Variables | Dependent Variables | |||||||||
Predicted Value | Observed Value | |||||||||
A | B | C | R1 | R2 | R3 | R4 | R1 | R2 | R3 | R4 |
rpm | % | % | nm | mV | % | nm | mV | % | ||
16,000 | 45 | 1 | 82.32 | 0.38 | −28.59 | 92.91 | 83.80 ± 1.13 | 0.38 ± 0.02 | −29.65 ± 0.65 | 93.1 ± 0.04 |
Groups | TC | TG | LDL | HDL |
---|---|---|---|---|
Group I | 80 ± 4.58 | 85.33 ± 4.51 | 11.33 ± 1.15 | 52.33 ± 4.51 |
Group II | 140 ± 5.02 ** | 123.33 ± 5.03 ** | 68.67 ± 16.17 ** | 34.67 ± 3.21 ** |
Group III | 98 ± 3.02 * | 83.33 ± 0.58 * | 24.33 ± 1.53 * | 49 ± 5.72 |
Group IV | 97.67 ± 4.73 * | 81 ± 1.93 * | 16.67 ± 1.15 * | 44 ± 1.53 |
Group V | 64.67 ± 1.53 * | 80.33 ± 2.52 * | 10.67 ± 0.58 * | 51.77 ± 5.77 |
Group | Grading | Total |
---|---|---|
Group I | - | 0/18 |
Group II | Interface hepatitis = 1, Confluent necrosis = 1, Lytic necrosis = 2, Portal inflammation = 2 | 6/18 |
Group III | Portal inflammation = 1 | 1/18 |
Group IV | Interface hepatitis=1, Portal inflammation=1, Focal inflammation = 1 | 3/18 |
Group V | Confluent necrosis = 1 | 1/18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanem, H.A.; Nasr, A.M.; Hassan, T.H.; Elkhoudary, M.M.; Alshaman, R.; Alattar, A.; Gad, S. Comprehensive Study of Atorvastatin Nanostructured Lipid Carriers through Multivariate Conceptualization and Optimization. Pharmaceutics 2021, 13, 178. https://doi.org/10.3390/pharmaceutics13020178
Ghanem HA, Nasr AM, Hassan TH, Elkhoudary MM, Alshaman R, Alattar A, Gad S. Comprehensive Study of Atorvastatin Nanostructured Lipid Carriers through Multivariate Conceptualization and Optimization. Pharmaceutics. 2021; 13(2):178. https://doi.org/10.3390/pharmaceutics13020178
Chicago/Turabian StyleGhanem, Heba A., Ali M. Nasr, Tamer H. Hassan, Mahmoud M. Elkhoudary, Reem Alshaman, Abdullah Alattar, and Shadeed Gad. 2021. "Comprehensive Study of Atorvastatin Nanostructured Lipid Carriers through Multivariate Conceptualization and Optimization" Pharmaceutics 13, no. 2: 178. https://doi.org/10.3390/pharmaceutics13020178
APA StyleGhanem, H. A., Nasr, A. M., Hassan, T. H., Elkhoudary, M. M., Alshaman, R., Alattar, A., & Gad, S. (2021). Comprehensive Study of Atorvastatin Nanostructured Lipid Carriers through Multivariate Conceptualization and Optimization. Pharmaceutics, 13(2), 178. https://doi.org/10.3390/pharmaceutics13020178